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Abstract
Rotor assembly is a core tache in the whole process of aero-engine manufacturing. Preventing out-of-tolerance of concentric-
ity is one of the primary tasks. Conventional assembly approaches are based on a manual test with the dial indicator, depend-
ing on experience appraises, which lack systematic and quantitative precision design theory. As a result, two issues need to be 
solved: the modeling problem of complicated geometric variations in three-dimensions, as well as the abnormal distribution 
of ubiquitous actual deviations. This work attempts to propose a novel probabilistic approach for three-dimensional varia-
tion analysis in rotor assembly. Based on rotor’s revolving characteristics and multistage stacking process, Jacobian–Torsor 
model is adopted to establish the variation propagation, and Pearson distribution family is used to derive the probability 
density function, which can quickly determine the variation distribution pattern and efficiently perform statistical variation 
analysis. A real case of mechanical assemblies consisting of revolving axisymmetric components is concerned. The results 
show that the suggested method has a similar accuracy, but much higher efficiency than conventional methods. Calculations 
agree with the experimentations, and the probability distribution type of the part’s variation has an appreciable impact on 
the final assembly precision.

Keywords Aero-engine rotor · Jacobian–Torsor model · Revolving components assembly · Pearson distribution family · 
Probability distribution type

1 Introduction

The core of aero-engine consists of a large number of rotor 
parts. As the high-speed rotating component, aero-engine 
rotor is usually produced as a combination of different rotor 
parts, to keep its repairability and maintainability. Due to the 
presence of part’s manufacturing error, datum error, posi-
tioning error etc., variation accumulation is inevitable during 
aero-engine rotor assembly process. Minor variations are 
caused in the actual component from the nominal geometry 
[1]. As the assembling process went on, these variations 
would propagate and drive the final dimensions of assembly 
out of specification. Reducing product cost and enhancing 
quality is the tallest target that the enterprise pursues. Sta-
tistical variation analysis is an excellent way for predicting 

product performance in the initial design stage [2]. It is actu-
ally a quantitative design method which can analyze the size 
effect containing various tolerance specification quantita-
tively, to meet both design and manufacturing requirements.

Machinery quality is affected by many factors during 
processing, such as tool wearing, clamping way, human 
factors, etc. When various influencing factors are generated 
randomly, parts manufacturing variations are in accordance 
with normal distribution. Normality assumption is conveni-
ent for statistical evaluation due to its symmetry, and benefi-
cial to theoretical study. On this account, traditional meth-
ods of tolerance design and variation analysis have widely 
adopted the hypothesis that the random variables of parts 
variations are normally distributed. Conventional methods 
for exploring assembly variation propagation are mainly 
based on a manual test with the dial indicator, depending 
on experience appraises, or extremum method [3–6], or the 
mean square root (MSR) method [7–9], which lack of sys-
tematic and quantitative precision design theory. However, 
the result calculated by extremum method is far too restric-
tive that would lead to high production cost, while the MSR 
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method concerns mean-square variation that is primarily 
suitable for solving the plane size-chain problem [10–12]. 
These methods are used frequently in the case of normal 
distribution. Meanwhile, they are underdeveloped in regard 
to the geometrical errors in the spatial 3D state [7, 13].

However, in practical matters, most variation distribu-
tion of part variable disobey the normal type. For example, 
if tool wear plays the dominant role during processing, the 
actual variable variation of part’s dimension would follow 
uniform distribution (flat-topped distribution); if a manu-
facturing process involves the simultaneous processing of 
two machine tools, the mixing variable variations of the 
parts would satisfy bimodal distribution; when adopting a 
trial cutting approach to fabricate shaft journals or aper-
tures, operators tend to keep a certain machining allow-
ance deliberately, which would cause skewed distribution 
of the final dimensional variables. The most versatile and 
popular way for statistical variation analysis is Monte Carlo 
(MC) simulation, which is a numerical method and suit-
able for data abnormal distribution. According to known 
or assumed statistical distributions, random variation of 
each component can be generated, and the corresponding 
critical feature will be calculated for each set of part vari-
ables. By this means, the probability can be worked out 
indicating that whether the key characteristic is satisfied 
or not. Nowadays, MC simulation method has been devel-
oped into the core of most of the commercial software for 
3D tolerance analysis, such as 3DCS, VSA, CATS-1DXL 
and CETOL, to name a few. However, to realize accurate 
prediction, a large number of data samples are desired 
[14–17], inevitably causing the time-consuming calcula-
tion, which is the obvious drawback to MC approach. This 
problem becomes more prominent when variation analysis 
is performed within an iterative loop of a more compli-
cated variation propagation issue, and the solution would 
be extremely computationally expensive.

From the above, it is observed that the statistical methods 
developed so far are not very effective for solving the issue 
of 3D variation propagation with abnormal distribution. As 
this paper focuses on the general case of the mechanical 
assembly consisting of revolving axisymmetric components 
[18–23], which is widely used in the aero-engine industry, 
especially in the engine rotors fabricating [24, 25], there is a 
clear need to adopt a simple and rapid probabilistic approach 
for determining the likelihood that the mechanical assembly 
is acceptable or not, so as to consider the practical distribu-
tion of variation variables and efficiently deal with large sets 
of data.

Recently, Yang et al. [26] researched the density distri-
bution of rotation error in aero-engine assembly. Probability 
density functions (PDF) for the eccentricity were formulized 
based on the assumption that the component variations 
were statistically independent, zero-mean Gaussian random 

variables with known standard deviations. This PDF was 
essentially a Rayleigh distribution and results were calcu-
lated more efficiently than Monte Carlo simulations. Ghie 
[27] enriched the Jacobian–Torsor model combining with 
uncertain measurements. The uncertainty magnitudes were 
estimated using the approximate normal distribution method 
and spread to FR by linear superposition. However, this PDF 
could not give consideration to the skewed distribution of 
variables. Ahsanullah and Hamedani [28], on the basis of the 
conditional distribution of generalized order statistics, tried to 
study more detail on the various characterizations of certain 
univariate continuous distributions. It provided a base of fur-
ther research of multivariable continuous distributions, which 
was applicable to the stream of multisource variation model-
ling. Kharoufehy and Chandraz [29] used a discretized, multi-
variate kernel density estimate and a simple transformation to 
approximate the probability distribution of the overall assem-
bly characteristic. By this method, the typical assumptions of 
independence and normality could possibly be relaxed when 
the number of components being combined was small. But it 
was hard to select the smoothing parameter (h), which would 
yield possibly dramatically different distributions. From this 
review, we can know that modelling PDF is very complex and 
it is difficult to consider the polymorphic probability density 
distribution. In this paper, we will introduce an innovation 
of Pearson distribution family [30, 31] to address this issue, 
which will be discussed detailedly in Sect. 2.2.

In addition, variation accumulation of the rotor assem-
bling process can be hardly described by reason of the 
uncertainty inherent in a complex assembly. In the past 
few years, three-dimensional variation modelling methods 
have been studied. Four mainstream modelling approaches 
among them have been reported largely and studied deeply, 
i.e., the direct linearization method (DLM), the tolerance 
map (T-Map) model, the matrix model and the unified Jaco-
bian–Torsor (J–T) model. The DLM [32, 33] uses vectors to 
represent either component dimensions or assembly dimen-
sions. Although all types of tolerances can be modeled, it is 
difficult to define the joint types and the effects of geometric 
variations, as well as the interaction between geometric tol-
erance and dimensional tolerance is indistinct. The T-Map 
model [34, 35] is a hypothetical Euclidean volume that is 
fully consistent with the ASME standard, but the Minkowski 
operation of T-Map for tolerance propagation and the visual-
ization of higher-dimensional maps are not straightforward. 
The matrix model [36, 37] uses a displacement matrix to 
describe small displacements of a feature within its toler-
ance zone. Although it is suitable for tolerance propagation 
analysis, the computation process is very difficult and time-
consuming, under the action of large numbers of constraint 
inequalities, especially non-linear inequalities. The J–T 
theory [38, 39] is well suited to a complex assembly that 
contains large numbers of joints and geometric tolerances. 
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It combines the advantages of the torsor model which is 
suitable for variation representation and the Jacobian matrix 
which is suitable for variation propagation. Therefore, the 
J–T model is well suited to a complex assembly that contains 
large numbers of joints and geometric deviations. Parts of 
aero-engine rotors are usually rich in variation information 
and joints of cylindrical and planar surfaces. In view of the 
rotor’s configuration and assembling characteristics of aero-
engine, the J–T model is used to build the variation propaga-
tion model of multi-stage stackup in this paper.

Therefore, based on the above aspects, this paper will 
propose a novel probabilistic analysis method combined 
with Jacobian–Torsor modelling theory, to take account of 
random component variability during revolving components 
assembly. The rest of the paper is organized as follows. Sec-
tion 2 reminds the theory of the unified Jacobian–Torsor and 
Pearson distribution family. Section 3 explores the statisti-
cal analysis method and gives the specific solution. Sec-
tion 4 proves this method by a realistic case originating in 
aero-engine subassembly. Section 5 discusses the results and 
Sect. 6 is conclusions.

2  Related Works

2.1  Description of Jacobian–Torsor Model

The traditional J–T model consists of the Jacobian matrix 
and torsor model. The Jacobian matrix originates from the 
expression in robot kinematics, which is:

where [Ri
0
] represents the ith frame orientation; 

[
RPti

]
 is a 

projection matrix that allows efficient transformation of vari-
ation direction to the target analysis direction; 

[
Wn

i

]
 describes 

the positional relation between adjacent frames in the form 
of skew-symmetric matrix. It is defined as Eq. (2):

The subscript  FEi in [J] means the ith functional ele-
ment. Two categories of FEs exist in the assembly: internal 
FE (IFE) and contact FE (CFE). The former denotes two 
mating features on the same part and the latter denotes two 
mating features on separated ones. FEs’ Variations could be 
delivered to the FR (functional requirement) by Jacobian 
matrix. It is observed that the Jacobian model only expresses 
the three-dimensional geometric relationship between the 
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features, without defining the objects and contents propa-
gated, so it is an incomplete model.

Torsor model can describe the ideal position and orienta-
tion of any surfaces by three translational vectors and three 
rotational vectors. Figure 1 shows a torsor model to express 
the position and orientation of an ideal surface. Assuming 
t is the tolerance between arbitrary feature S1 and nominal 
feature S0, there is:

where u, v, w denote translation vectors along x, y and z axes; 
α, β and γ denote rotation vectors around x, y and z axes 
respectively in local coordinate system.

Hervé [40] presented the displacements set theory, defin-
ing the non-invariant degrees, which determined the effec-
tive vectors. According to this, some vectors could be taken 
zero value to simplify the modeling process. Table 1 has 
shown seven primary torsor forms.

It is observed that the torsor model fully expresses the 
position and direction of the feature in 3D space. If com-
bining with the tolerance constraint equation, a complete 
syntactic and semantic representations of geometric toler-
ances can be construed. But it is also observed that the torsor 
model is unable to characterize the variation propagation. 
It will probably have to be with the help of some transfer 
function or transfer matrix.

The variation of torsors propagates to the target character-
istics taking advantage of Jacobian matrix, which accurately 
expresses the relative positions and orientations between the 
local and global coordinates. The unified J–T model takes 
synthesize advantages of the Jacobian matrix and torsor 
model. The former is appropriate for variation propagation 
and the latter is suited to variation expression [41, 42]. The 
form of J–T model could be written as:

(3)T1−0 =
[
u v w � � �

]T
,

Fig. 1  Torsor model in its tolerance zone
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where 
(
�, �

)
 is the variation zone, and β, γ, u, v and w follow 

the similar way as α. Other parameters have the same mean-
ings as those in Eq. (1).

2.2  Pearson Distribution Family

Statistician K. Pearson [30, 31] firstly proposed the Pearson 
system of distributions in 1895, which involved the normal 
distribution and diversified abnormal distributions. The 
Pearson system included four main types of parameters, 
which were used to reflect the general distribution in prac-
tice. Its probability density function (PDF) f(x) was deter-
mined by the differential equation as follows:

When a1 = 1, the parameters a0, b0, b1 and b2 entirely 
depend on the first four orders of the central moments of the 
distribution parameters μ1, μ2, μ3, and μ4. It also could be 
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(5)
df (x)

dx
=

(a0 + a1x)f (x)

b0 + b1x + b2x
2
.

indicated as the moment ratios as β1 = μ3
2/μ2

3 and β2 = μ4/μ2
2, 

which are shown as follows:

where

The general solution of f(x) is:

Based on the above analysis, Pearson system will be 
elaborated as seven distribution patterns [43, 44], which are:

where p, q and α, β are all greater than zero, and α/p = β/q. 
It is essentially Beta distribution.

where p, 𝛼 > 0 . It is a special case of pattern I where 
p = q, � = � , and the distribution curve of pattern II is a 
symmetrical U type curve.

where 𝜇, 𝛼, 𝜆 > 0 . It is a shifted gamma distribution where 
� is a location parameter.

where 𝛼 ≥ 1∕2, 𝜆 > 0, 𝛽 > 0, I(𝛼, 𝛽, 𝜆) = ∫ ∞

−∞
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(
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x

𝛽

)
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dx.

(6)a0 = −b1,

(7)b0 = A�2(4�2�4 − 3�2
3
) = B�2(4�2 − 3�1),

(8)b1 = A�3(�4 + 3�4) = B�
√
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(9)b2 = A(2�2�4 − 3�2
3
− 6�6) = B(2�2 − 3�1 − 6),

(10)A = −(10�2�4 − 18�6 − 12�2
3
)−1,

(11)B = −(10�2 − 12�1 − 18)−1.

(12)f (x) = C exp

{
−
∫

a0 + a1x

b0 + b1x + b2x
2
dx

}
.

(13)

Distribution pattern I: f (x) =
(p + x)𝛼−1(q − x)𝛽−1

B(𝛼, 𝛽)(p + q)𝛼+𝛽−1
, (−p < x < q),

(14)

Distribution pattern II: f (x) =
(p2 − x2)𝛼−1

B(𝛼, 𝛼)(2p)2𝛼−1
, (−p < x < p),

(15)

Distribution pattern III ∶ f (x)

=
𝜆𝛼

Γ(𝛼)
(x − 𝜇)𝛼−1e−𝜆(x−𝜇), (𝜇 < x < ∞),

(16)Distribution pattern IV ∶ f (x) =
exp

(
−� arctan

x
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)

I(�, �, �)(�2 + x2)�
,

(17)

Distribution patternV ∶ f (x)

=
𝜆𝛼

Γ(𝛼)
(x − 𝜇)−(𝛼+1)e−𝜆(x−𝜇)

−1

, (𝜇 < x < ∞),

Table 1  Features and their Torsor models

where “–” means the vector is invalid in the corresponding direction. 
a and p, respectively, denote thread tooth link angle and screw pitch.
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where 𝛼, 𝜆 > 0 . It is a shifted inverse gamma distribution 
where � is a location parameter.

w h e r e  𝛼, 𝛽 > 0  .  W h i l e  p = 1, q = 0  , 
f (x) =

1

B(𝛼,𝛽)
(x + 1)−(𝛼+𝛽)x𝛼−1, (0 < x < ∞).

where 𝛼 ≥ 1∕2, p > 0 . Student’s t-distribution belongs to this 
kind of distribution.

Besides these seven main types of distribution, Pearson 
distribution family also includes some special cases, such as 
normal distribution, power function distribution, exponen-
tial distribution, etc. Seven types of Pearson distribution can 
be identified according to the different distributions of the 
quadratic equation roots of b0 + b1x + b2x

2 = 0 . Assuming 
D = b2

1
− 4b0b2, � = b2

1
÷ (4b0b2) , the Pearson distribution 

pattern could be distinguished by the value of D and λ, as 
demonstrated in Table 2.

It can be also categorized in terms of moment ratios �1, �2 . 
The � in first approach of classification can be represented as 
�=

1

4
�1
(
�2+3

)2(
4�2 − 3�1

)−1
(2�2 − 3�1 − 6)−1 . The details 

are shown in Table 3.

3  Statistical Algorithm

In this paper, simplified cylindrical components were used to 
illustrate the assembling process, where coordinate system 
0 represented the global coordinate system and the revolv-
ing axis was denoted with a virtual centerline that passed 
through the bottom part’s base centre and was perpendicular 
to its datum plane, as illustrated in Fig. 2.

Before applying the model, it should be noted that for 
every rotor part, two assumptions will be made to simplify 
operations.

• As the Jacobian matrix cannot solve the structure of par-
tial parallel connection well, the locating spigot round 
(A) contact pair of the cylindrical joint) is ignored, and 
the flange plane (B) contact pair of the planar joint) of 
the rotor part is reserved. Generally, the contact pair of B 
shows the most significant effect due to that the mounting 
edge of area B is much larger than that of A. Figure 3a 
has illustrated this difference.

• This paper adopts a unified solution that each rotor’s bot-
tom face is set as the datum, while the top face is desig-
nated by a geometric tolerance with the corresponding 
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datum plane. Figure 3b has illustrated the standardized 
rotor part to simplify and maintain the geometric toler-
ance information.

On the basis of the above assumptions, variations 
propagate from rotor’s bottom to the top. According to 
the characteristics of Jacobian matrix, [[J1, J2, J3, J4, J5, 
J6]FE1, [J1, J2, J3, J4, J5, J6]FE2, …, [J1, J2, J3, J4, J5, 
J6]FEn] represents the transfer process of the variations 
from  FE1 to  FEn. Therefore, Eq. (4) using interval-based 
uncertainty zone representation can be further rewritten as 
Eq. (20), which is fit for deterministic variation analysis 
and beneficial to the error compensation.

Equation  (20) could be characterized as yFR = f (ui, 
vi, wi, αi, βi, γi), (i = 1, 2, …, n), where yFR denotes the 
variation of FR, and (ui, vi, wi, αi, βi, γi) represents the 
translation variation or rotation variation of FE in dif-
ferent direction. Assuming that all the variation of FE is 
independent of each another and distributed randomly, we 
could calculate the four main parameters of FR in virtue 
of the parameters of FE. Based on the characteristics of 
Pearson system, the distribution pattern could be deduced 
and the PDF could be determined when the first four cen-
tral moments are derived. As for arbitrary distribution, the 
μ1 which is the first-order central moment will be equal 
to zero identically; the μ2 which is the second-order cen-
tral moment represents data dispersion degree, equaling 
to the variance σ2; the μ3 which is the third-order cen-
tral moment is related to S (coefficient of skewness), and 
S = μ3/σ3; and the μ4 which is related to K (coefficient of 
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Table 2  Method 1 to determine Pearson distribution types

a1 D � Distribution pattern Remarks

0 0 0 Exponential distribution
≠ 0 > 0 −∞ Pattern VII b0 = 0

(−∞, 0) Pattern I
0 Pattern II
(1,∞) Pattern VI
∞ Pattern III

= 0 1 Pattern V b1 = b2 = 0

Uncertain Normal distribution
< 0 (0, 1) Pattern IV
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kurtosis) is formulated as K = μ4/σ4. Due to the four main 
parameters (mean value, variance, skewness and kurtosis) 
of an arbitrary probability distribution could characterize 
the distribution shape visually, we will calculate the four 
main parameters to obtain the first four central moments 
indirectly in this article. Computational formulas of the 
mean value, variance, skewness and kurtosis can be con-
sulted in reference [45].

Back in Eq. (20), hence a0, b0, b1 and b2 could be gained 
with the known distribution parameter of FR. Distribu-
tion pattern would be determined by adopting the method 
of Pearson distribution family (Tables 2 or 3) and the PDF 
could be expressed. Ultimately the probability distribution 
curve could be derived and the assembly qualified rate could 
be worked out. The solution procedure is shown in Fig. 4.

4  Case Study

To prove the feasibility of the new method mentioned above, 
a real rotor assembly originating in an aero-engine will be 
used for statistical variation analyzing. As shown in Fig. 5, 
the aero-engine rotor assembly consists of four revolving 
components with high precision and all relevant coordinates 
have been established. Frame 0 is the overall coordination 
system and the revolving axis is specified as the center line 
that passes through the datum plane of the bottom part and 
is perpendicular to it.

Every part’s dimension and composite tolerance have 
been shown in Table 4, which have been illustrated in Fig. 5. 
The pose position and orientation of the whole assembly 
are directly affected by each rotor’s geometric variations 
and their joints. Various errors accumulate on the final rotor 
part, which are very important for performance stability of 
aero-engine assembly. To meet the technical requirement, 
concentricity control of rotor assembly is very critical. On 

Table 3  Method 2 to determine 
Pearson distribution types

Pattern I Pattern II Pattern III Pattern IV Pattern V Pattern VI Pattern VII

𝜆 < 0 𝛽1 = 0

𝛽2 < 3

2�2 − 3�1

−6 = 0

0 < 𝜆 < 1 � = 1 𝜆 > 1 𝛽1 = 0

𝛽2 > 3

Fig. 2  Assembly accuracy prediction: a poor assembly and b quali-
fied assembly

Fig. 3  The rotor parts: a the 
actual parts and b the geometric 
model
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the basis of statistical variation analysis approach that is 
referred in Sect. 3, the specific calculation process is dem-
onstrated as follows.

First, a coordinate reference system and the assembly 
relation graph were built. The global reference system 0 
was established in the center of the rotor base, and local 
coordinate systems were set in the center of related adja-
cent surfaces. The assembly relation graph was illustrated 
in Fig. 6. FR was the pose accuracy of the top part in regard 
to the coordinate system 0. It was observed that there was 
a serial path for variation propagation from FEi to FR, i.e. 
 IFE1-CFE1-IFE2-CFE2-IFE3-CFE3-IFE4-FR.

Secondly, according to the connection graph mentioned 
above, the variation propagation model would be established. 
Based on the expression of the unified Jacobian–Torsor model, 
the Jacobian matrix and the tolerancing torsor of FEi could be 

calculated, as well as its corresponding variation range could 
be determined. Table 5 has shown the detailed expression 
forms.

Next, according to Eq. (20), by multiplying the Jacobian 
matrixes and torsors together, the expression of the results 
could be derived as Eq. (21). In this case, the components’ 
eccentricity along one certain direction was arbitrarily chosen 
for demonstration. For example, in the direction of x axis, the 
cumulative variation could be extracted from u4 in Eq. (21) and 
formulized as Eq. (22). And it was also important to note that 
all the effective vectors in tolerancing torsors should satisfy the 
variation requirement, as listed in the third column of Table 5.

(21)

[FR]4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u4

v4

w4

�4

�4

�4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4∑
i=1

�
�
i
×

�
i∑

j=1

H
j

��

4∑
i=1

�
−�

i
×

�
i∑

j=1

H
j

��

4∑
i=1

w
i

4∑
i=1

�
i

4∑
i=1

�
i

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0.02�1 + 0.04�2 + 0.06�3 + 0.08�4
−0.02�1 − 0.04�2 − 0.06�3 − 0.08�4

w1 + w2 + w3 + w4

�1 + �2 + �3 + �4
�1 + �2 + �3 + �4

0

⎤⎥⎥⎥⎥⎥⎥⎦

,

(22)yu4 = 0.02�1 + 0.04�2 + 0.06�3 + 0.08�4.

Fig. 4  Statistical variation analysis using Pearson distribution family

Fig. 5  Four-stage rotor assem-
bly
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Thirdly, calculate the distribution parameters of FEs and 
FR, on the basis of Eqs. (23) ~ (26) below. Then the FR’s 
distribution type could be determined and its PDF would 
be deduced.

where ai represented the sensitivity coefficient, Exi and 
Ey respectively were the mathematical expectations of the 
ith FE and FR. The σxi and σy, respectively, were the stand-
ard deviations of the ith FE and FR. The Sxi and Sy denoted 
skewness coefficient of the ith FE and FR. The Kxi and Ky 
denoted the kurtosis coefficient of the ith FE and FR.

It should be noted that in abnormal distribution models, 
Beta distribution can handle various laws of the probability 
of manufacturing variations [8]. There are four parameters 

(23)Ey =

n∑
i=1

aiExi
,

(24)�2
y
=

n∑
i=1

a2
i
�2
xi
,

(25)Sy =
E
�
y − E(y)

�3
�3
y

=

∑n

i=1
a3
i
Sxi�

3
xi

�3
y

,

(26)

Ky =
E
[
y − E(y)

]4
�4
y

=

(
n∑
i=1

a4
i
Kxi

�4
xi
+ 6

n−1∑
i=1

n∑
j=i+1

a2
i
a2
j
�2
xi
�2
xj

)
∕�4

y
,

in the Beta distribution function, which are two location 
parameters and two shape parameters. According to dif-
ferent parameter values, it can characterize many different 
distribution patterns, such as Rayleigh distribution, uniform 
distribution, trapezium distribution, triangular distribution, 
etc. As a result, in this paper we would use Beta distribution 
to simulate skewed distribution of the actual manufacturing 
practice.

The most common types of probability distribution in the 
machining process mainly consist of normal distribution, 
skewed distribution, uniform distribution (flat-topped dis-
tribution), etc. [46]. To test the influence of variation distri-
bution type on the final assembly precision, the distribution 
type of FE was supposed to follow the above distribution 
patterns, respectively. In the following, four probability com-
binations would be researched as listed in Table 6, where the 
skewed distribution would be simulated by Beta distribution 
approximation.

The distribution parameters of FR could be calculated 
based on Eqs. (23) to (26). The distribution results were 
shown in Table 7. According to Eqs. (6) to (11), the values 
of a0, b0, b1, b2 could be further derived. Then referring 
to Tables 2 and 3, the variation distribution pattern of FR 
could be determined. The results had been listed in the last 
column of Table 7.

In the end, the PDF would be solved by adopting Pearson 
distribution family formulas of pattern IV and VI. By using 
Matlab function ([p, type, coefs] = pearspdf (X, mu, sigma, 
skew, kurt)), the probability density of Pearson distribu-
tion with mean ‘mu’, standard deviation ‘sigma’, skewness 
‘skew’ and kurtosis ‘kurt’ could be easily worked out, which 
was evaluated at the value of X.

The qualification rates of four combinations were cal-
culated and compared with the results of MC simulation, 
which have been shown in Table 8. It should be noted that 
in this case, the simulated number of MC was set to 10,000, 
which was beneficial to balance accuracy with efficiency. 
Meanwhile with regard to the qualification rate, in accord-
ance with engineering requirements, FR should fall in the 
qualified range of 0.038 mm. See the table below for more 
details.

Table 4  Dimensions and 
geometric tolerances of each 
component

Component Base diameter 
(mm)

Top diameter 
(mm)

Height (mm) Profile tolerance 
(mm)

Parallelism 
tolerance 
(mm)

1 107 405 315 0.020 0.015
2 405 410 135 0.020 0.015
3 410 400 165 0.020 0.015
4 400 440 365 0.020 0.015

IFE: Internal FE
CFE: Contact FE
FR

Rotor 1

FR

CFE10

Rotor 2

1 2 3 4 5 7

Rotor 3 Rotor 4

CFE2 CFE3IFE2 IFE3
6

IFE4
IFE1

Fig. 6  Connection graph of four-stage assembly
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Table 5  Jacobian matrixes and 
tolerancing torsors

No FEs Jacobian matrixes Tolerancing 
torsors

Variations

1 IFE1 ⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 315 0

0 1 0 −315 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

0

2 CFE1 ⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0.02 0

0 1 0 −0.02 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

w1

�1

�1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−0.020∕2 ≤ w1 ≤ 0.020∕2

−0.015∕405 ≤ �1 ≤ 0.015∕405

−0.015∕405 ≤ �1 ≤ 0.015∕405

3 IFE2 ⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 450 0

0 1 0 −450 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

0

4 CFE2 ⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0.02 0

0 1 0 −0.02 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

w2

�2

�2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−0.020∕2 ≤ w2 ≤ 0.020∕2

−0.015∕410 ≤ �2 ≤ 0.015∕410

−0.015∕410 ≤ �2 ≤ 0.015∕410

5 IFE3 ⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 615 0

0 1 0 −615 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

0

6 CFE3 ⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0.02 0

0 1 0 −0.02 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

w3

�3

�3

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−0.020∕2 ≤ w3 ≤ 0.020∕2

−0.015∕400 ≤ �3 ≤ 0.015∕400

−0.015∕400 ≤ �3 ≤ 0.015∕400

7 IFE4 ⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 980 0

0 1 0 −980 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

0
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5  Comparison and Discussion

5.1  Statistical Probability Analysis

Figure 7 has illustrated the variation distribution curve as 
well as MC statistical histograms according to Table 7. By 
comparing the results of the proposed method to Monte 
Carlo simulation, it was observed that the probability density 
curve agreed with the histogram statistics very well, as illus-
trated in Fig. 7a–d. Figure 7 also showed the qualification 
rate of the four combinations. In combination with Table 8, 
the relative error of qualification rate generated by the Pear-
son distribution family and MC method was less than 0.5 
percent off. It turned out that the suggested method had a 
similar accuracy with MC method. In addition, the absolute 
time would be used as a measurement for comparison of 
the proposed method and MC simulation. The time function 
“tic & toc” was adopted in our MATLAB program to record 
the run time for the two methods. Table 9 has indicated the 
results.

As seen from the Table 9, the computation of the pro-
posed method is almost instantaneous. Using an Intel Core 
(TM) 2, 1.83 GHz, 1.5 GB RAM computer, the average time 
consumption of this model is 0.025 s. But when performing 
traditional Monte Carlo simulation (the simulated number 

was set to 10,000 in this case), the average time consump-
tion reaches up to 0.408 s, which is sixteen times of the 
proposed method. The result demonstrates that the Pearson 
distribution family method could enhance work efficiency 
significantly.

Additionally, as can be seen from Fig. 7, whenever the 
FE’s variation distribution changed, the FR’s distribution 
pattern and its corresponding probability form would bring 
about apparent changes. Similar changes have taken place 
in the results of the assembly qualified rate as well. To be 
specific, in the four groups of case results, normal distribu-
tion (combination 1) guaranteed the highest pass percent-
age of 99.8%, but the left-skewed distribution (combina-
tion 3) almost caused the qualified rate to be zero due to 
overlarge mean shift. In Fig. 7c, the mean shift reached up 
to 0.1396 mm, which directly led to most of the products to 
be unqualified.

All the above results demonstrated that part’s variation 
distribution type had an important effect on the final assem-
bly precision. The conventional hypothesis of normal dis-
tribution would not be able to describe the real variation 
conditions. And the Pearson distribution family method is an 
effective solution for complicated probability density func-
tion. Therefore, to predict the accurate assembly precision, 
each part’s real variation distribution must be determined. 

Table 6  Distribution type and parameters of the FEs

No Distribution pattern Distribution parameter

�1 �2 �3 �4

1 Normal � = 0, � =
0.005

405
� = 0, � =

0.005

410
� = 0, � =

0.005

400
� = 0, � =

0.005

440

2 Beta (right-skewed) � = 2, � = 5 � = 3, � = 4 � = 2, � = 8 � = 1.5, � = 3.2

3 Beta (left-skewed) � = 5, � = 2 � = 4, � = 3 � = 8, � = 2 � = 3.2, � = 1.5

4 Mixing � = 0, � =
0.005

405
 (Normal) � = 5, � = 2 (Beta) � = 2, � = 5 (Beta) a = −0.015∕440,

b = 0.015∕440  (Uniform)

Table 7  Distribution type and 
parameters of the FR

Parameter Combination 1 Combination 2 Combination 3 Combination 4

Mean 0 0.0604 0.1396 0.0457
Variance 0.0125 0.0189 0.0189 0.0115
Skewness 0 0.3734 -0.3734 0.2417
Kurtosis 3 2.8210 2.8210 2.9311
Distribution pattern IV VI VI VI

Table 8  Qualification rate of 
four combinations

Method Combination 1 (%) Combination 2 (%) Combination 
3 (%)

Combination 4 (%)

Proposed method 99.88% 11.59% 0.00% 26.28%
MC method 99.84% 11.55% 0.00% 26.26%



1102 International Journal of Aeronautical and Space Sciences (2021) 22:1092–1105

1 3

This required to take the practically assembling technology 
and the processing level into account during the phase of 
product design. Only this could make results be more rea-
sonable and reliable.

It should be noted that in this paper the variation prob-
ability distribution of FE is regarded as a known condition. 
Historical manufacturing data of the parts should have been 
collected and analyzed firstly. So when we use a statistical 
variation analysis method to solve the distribution pattern 
of FR, the statistical variation results of FE can be directly 
invoked. However, MC simulation is an extremely time-
consuming process, especially when a large number of data 
samples are desired to improve the FR’s prediction accu-
racy. Apparently, the statistical variation of FR can be hardly 
achieved in time. This is an urgent problem to be solved in 
this paper.

5.2  Experimental Study

The experiment was carried out to verify the accuracy and 
reliability of the results presented in the case study. A 

group of high-pressure turbine rotors (HPTRs) of an aero-
engine have been coupled on the same rotary main axis 
of the air-bearing turntable. Their structures, dimensions, 

Fig. 7  Variation distribution 
curve and histogram: a com-
bination 1, b combination 2, c 
combination 3, and d combina-
tion 4

Table 9  Run time for the two 
methods

Method Combination 1 Combination 2 Combination 3 Combination 4 Average

Proposed method 0.02 s 0.03 s 0.02 s 0.03 s 0.025 s
MC method 0.39 s 0.42 s 0.39 s 0.43 s 0.408 s

Fig. 8  Actual assembly process of HPTRs
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and tolerance specifications were the same as the case in 
Sect. 4. An axial dial indicator was used to measure the 
run-out value of the end face, and a radial dial indicator 
was used to measure the run-out value of the final compo-
nent flange. The former was adopted to control tilt amount, 
and the latter was applied to characterize the concentricity. 
As shown in Fig. 8, the HPTRs were assembled randomly 
by top stage control: after one stage rotor installation, 
its concentricity was measured. If the concentricity was 
unqualified, the rotor part would be dismantled and rotated 
to a new installation angle, ensuring that the threshold 
condition of concentricity can be met after each part stack-
ing. Then the next stage rotor was assembled upward.

Following this procedure, experiments have been imple-
mented. Twenty times for repetitive assembly were com-
pleted. Measured data sets of the eccentricity of the top 
stage rotor were [0.026 0.025 0.061 0.048 0.075 0.061 
0.037 0.077 0.023 0.057 0.020 0.043 0.047 0.042 0.028 
0.069 0.054 0.066 0.019 0.026], the unit of which was 
millimetre, as shown in Table 10.

These statistics showed that the mean value of the 
repeated measures was 0.0452 mm, and the variance was 
0.0186  mm2, which was closer to the simulating result of 
combination 2 referred to the Table 7. The measured data 

sets were further divided into several groups from 0.005 
to 0.080 mm with interval step length 0.005 mm, and the 
variation distribution has been illustrated in Table 9. It was 
observed that the concentricity variation of the top stage 
rotor presented a typical right-skewed distribution, which 
conformed to the prediction results of combination 2 that 
was shown in Fig. 7b. These results proved that measured 
data in a certain error range accorded well with the cal-
culations. The variation analysis method suggested in this 
paper was conducive to precision prediction and tolerance 
design for revolving components assembly.

6  Conclusions

This work was attempting to propose a novel variation analy-
sis method for revolving components assembly. A calculat-
ing scheme was illustrated on a realistic case originating in 
aero-engine subassembly. Following conclusions could be 
drawn:

(1) Unified Jacobian–Torsor theory was used to estab-
lish the serial kinematic chain, which combined the 
advantages of the torsor model which was suitable for 

Table 10  Measured results

Item Measured value Predicted value

1 0.026

Mean 0.0452
Variance 0.0186

Mean 0.0604
Variance 0.0189

2 0.025
3 0.061
4 0.048
5 0.075
6 0.061
7 0.037
8 0.077
9 0.023
10 0.057
11 0.02
12 0.043
13 0.047
14 0.042
15 0.028
16 0.069
17 0.054
18 0.066
19 0.019
20 0.026
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variation representation and the Jacobian matrix which 
was suitable for variation propagation. For aero-engine 
rotors which contain lots of geometric variations and 
composite features, Jacobian–Torsor theory can effec-
tively solve the 3D variation modelling.

(2) Pearson distribution family method was used to perform 
statistical variation analysis. Compared to MC results 
with 10,000 simulation times consuming 0.408 s, this 
novel method has a similar accuracy, but much higher 
efficiency (the average time consumption is 0.025 s).

(3) The result of FR depends on each FE’s probability dis-
tribution pattern significantly. To obtain more accurate 
predictions, the real distribution states of parts varia-
tions should be detected and used, which is beneficial 
to tolerance design and performance forecast.
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