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Abstract
Dual quaternion is the parameter that can describe position and attitude in a unified form. It is extension of dual number
and quaternion; so, mathematical and parameter characteristics of those are holding. The attitude and orbital kinematics
model can be concurrently integrated in a simplified and intuitive formulation with dual quaternion. From these merits, dual
quaternion-based relative navigation for spacecraft proximity operation is investigated in this paper. Especially, the case is
considered which interested points are not coincident with center of mass of spacecraft. At this time, it is obvious that position
is affected by rotational motion of rigid body.With conventional decoupled relative kinematics, this attitude–position coupling
effect cannot be described at once. However, the new dual quaternion-based relative kinematics can represent coupled orbital
motion in a simple form. Motivated by these backgrounds, in this paper, to estimate relative position and attitude states using
vision sensor, dual quaternion-based relative kinematics is formulated. To reduce the number of state variables, error dual
quaternion is applied, which makes the number of state variable be six instead of eight, by using parameter constraints of dual
quaternion. Extended Kalman filter and unscented Kalman filter are adopted to realize relative navigation. Since the necessity
of velocity information in dual quaternion kinematics, two types system models are constructed—velocity propagation and
velocity measurement model. In addition, the six line-of-sight measurements are used to update the dual quaternion parameter.
Simulation results show that the kinematics model is accurately derived, states are well estimated, and statistics of estimation
errors are consistent with estimated error covariance.

Keywords Dual quaternion · Vision-based relative navigation · Spacecraft proximity operation · Attitude–position coupling ·
Extended Kalman filter · Unscented Kalman filter

1 Introduction

Relative navigation for multiple spacecraft is a key technol-
ogy for space missions such as formation flying, rendezvous
and docking. Thanks to hardware technologies, various and
complicated mission designs with multiple spacecraft have
become possible; so, precise relative navigation is considered
as evenmore important than before. Especially, in the case of
deep space missions being subject to limitation in communi-
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cationwith ground stations, real-time computation of relative
navigation solution is required using availablemeasurements
only.

Precise solution of navigation is usually based on accu-
rate kinematics. In general, independent relative kinematics
for position and attitude has been widely employed. It is
valid with point masses assumption if two spacecrafts are
located at a distance. However, in the case of close range,
relative navigation error tends to increase in size. Segal and
Gurfil [1] showed that relative position is affected by atti-
tude change during proximity operation, and it obviously
takes place between arbitrary points of the spacecraft not
the center of mass. It means that the position–attitude cou-
pling problem requires additional considerations to find the
position of an arbitrary point affected by rotational motion.
In on-orbit servicing missions such as docking and ren-
dezvous, the interesting points as sensors or docking spots
may not be coincident with the center of mass, so that tar-
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get re-positioning and corresponding control are required for
precise proximity operation.

With the background addressed above, three possible
approaches are available to address the translation–rotation
coupling problem; an indirect way determining position of
an arbitrary point from the center of mass, adoption of
position–attitude coupled kinematics, and applying the so-
called dual quaternion kinematics. In the first approach,
conventional relative kinematics is used to formulate the
issue between centers of mass of two satellites, and then
position of target points is re-calculated. This approach
could be regarded as being intuitive and reliable based on
geometrical vector calculation, but additional computation
is required. The second approach takes position–attitude
coupled kinematics, that is relative kinematics substituting
position, velocity, and acceleration equations including angu-
lar velocity about an arbitrary point [1, 2]. The kinematics
does not require additional calculation because the relative
angular velocity is involved in the equations of motion;
however, it is expressed in a very complicated manner. Moti-
vated by such reasons, this study suggests dual quaternion
kinematics, the third approach that is describing translation-
al–rotational motion simultaneously in a simple way.

Dual quaternion-based kinematics is known to be
described in a compact form in general, and position and
attitude parameters are clearly defined. In this paper, the
position–attitude coupling problem is solved using dual
quaternion formulation to estimate relative navigation states
between two spacecraft, chief and deputy satellites. Trans-
lational and rotational motions are constructed with dual
quaternion and dual velocity parameters. Because dual
quaternion-based kinematics includes translational motion
affected by rotational motion, it is possible to determine the
position and attitude of an arbitrary point at one time in a com-
pact and simplified form. Moreover, the navigation solution
in form of dual quaternion parameter is applicable to con-
trol or guidance system which has translation and rotation
maneuver complexly.

The dual quaternion introduced by Clifford [3] is the
parameter representing position and attitude in a unified
form. It is an expansion of the dual number and a unit quater-
nion; so, parametric and mathematic properties are retained
[4, 5]. With its inherent advantages for minimal efforts in
computational rigid transformation, it is widely employed
in three-dimensional computer graphics and robotics fields.
Due to the advantages in performance, dual quaternion-
related studies have been gradually increasing in recent years
in aerospace engineering applications also for guidance, nav-
igation and control. The feedback landing guidance control
laws are introduced to handle the translational and rotational
motion of rigid body as a single screw motion [6–8]. And
some adaptive control laws are suggested for spacecraft in
relative operation missions [9–11]. In relative navigation,

estimation techniques using extended Kalman filter (EKF)
have been intensively studied. Many of those approaches
employ dual inertia operator to estimate angular and linear
velocity under the assumption of known mass moment of
inertia information of spacecraft [12, 13]. Dual quaternion-
based relative navigation-applied extended Kalman filter
(EKF) is introduced in asteroid circumnavigation consider-
ing gravityfield and integrated navigation sensor system [14].
In addition, extended and unscented Kalman filter (UKF)
using dual quaternion-based twistor parameters are proposed
for relative navigation between two spacecraft [15, 16].
Those are based upon dual quaternion measurements with
angular, linear and acceleration measurements. However, it
is difficult to obtain dual quaternion measurements directly
from conventional sensors. As a more practical sensor in
spacecraft relative navigation system, the vision sensors can
give information for relative position and attitude [17]. Zivan
andChoukroun applied dual quaternion-basedEKFandUKF
to VISNAV system that is configured with beacons and PSD,
but PSD is aligned to the center of mass of the spacecraft and
measured minimum 15 line-of-sights [18]. Sensor alignment
generally does not coincide with the center of mass, thereby
causing the position–attitude coupling problem. Thus, this
study aims to configure dual quaternion-based relative nav-
igation for an arbitrary point on the spacecraft using six
beacons as available vision sensors. This approach to the
point of inconsistency with the center of mass shows that
estimation of the unknown target point can be extended in
the future.

EKF is a principal tool to handle relative attitude and
position estimation problem. It successively updates state
vectors by applying prior states into a first-order linearized
model of nonlinear systems. Estimation problem of nonlin-
ear systems can be established using EKF, but nonlinearity
of system and measurement model cannot be fully taken into
account with first-order linearization. As another way for
nonlinear systems, UKF approach has been popular alterna-
tive [19–21]. Since Jacobianmatrix is not required for system
model in UKF, it can be helpful to avoid error arising from
linearization. The results of EKF andUKF using dual quater-
nion are compared in vision-based relative navigation system
in this paper. First, error dual quaternion kinematics equa-
tions between desired and current states are derived in EKF
framework. Using error dual quaternion, parameter number
can be reduced from eight to six, and it brings an advan-
tage in computational burden for covariance calculation. For
UKF, nonlinear dual quaternion-based system and measure-
ment model kinematics are used in the process of calculation
of sigma points and unscented transformation. Simulation
results show that position and attitude are effectively esti-
mated from dual quaternion-based filter without additional
calculation for position correction affected by rotation.
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This paper is comprised as follows. Section 2 briefly
describes dual quaternion and itsmathematical preliminaries.
The conventional relative position and attitude kinematics
is summarized in the same section. The dual quaternion-
based kinematics and relative navigation system targeted in
this research are presented in Sect. 3. In Sects. 4 and 5, the
EKF using error dual quaternion kinematics and the UKF are
derived. Relative navigation simulation results using vision
sensor measurements are discussed in Sect. 6, while Sect. 7
provides conclusions.

2 Overview on Dual Quaternion and Relative
Kinematics

This section is an overview on dual quaternion and con-
ventional relative kinematics between two spacecraft. The
mathematical characteristics of dual quaternion are summa-
rized in subsection. In general, relative position kinematics
is described regarding two spacecraft, a chief and a deputy as
point masses. And relative attitude kinematics is expressed
using quaternion parameters. Following subsections briefly
present kinematics as base of the research.

2.1 Quaternion and Dual Quaternion

A unit quaternion as q � [
q0 qTv

]T
, defined with vector, qv ,

and scalar, q0, could be the most widely used attitude param-
eter in spacecraft. And the parameter θ represents rotational
angle of object about a principal axis, n.

q � [
cos θ

2 nT sin θ
2

]T
, (1)

whereas quaternion only describes attitude, dual quaternion
includes both rigid rotational and translational motion infor-
mation simultaneously. Dual quaternion is an extension of a
unit quaternion and is defined in a similar concept to dual
number [3–5] as

q̄ � qr + εqd. (2)

Dual quaternion consists of two parts: real part, qr, and
dual part, qd. Each part is formatted in quaternion form and
ε denotes dual part parameter. Real part is a unit quaternion
for rotation and dual part contains translational information
combined with rotational part.

qr � [
q0 qTv

]T
, (3)

qd � 1

2
t ⊗ qr, (4)

Fig. 1 Relative orbital motion between two spacecraft

where t � [
0 rT

]T
is also in quaternion form with posi-

tion vector, r, and zero scalar parameter. And ⊗ denotes
quaternion multiplication of two quaternion vectors, q and
p, defined as

q ⊗ p �
[

q0 p0 − qTv pv

q0pv + p0qv + qv × pv

]
. (5)

Basic mathematical preliminaries of dual quaternion are
the same as dual number. For two dual quaternion, q̄ � qr +
εqd and p̄ � pr + εpd, scalar multiplication, addition, dual
quaternion multiplication, and conjugate are as follows

sq̄ � sqr + εsqd,

q̄ + p̄ � (qr + pr) + ε(qd + pd),

q̄ ⊗d p̄ � (qr ⊗ pr) + ε(qr ⊗ pd + qd ⊗ pr),

q̄∗ � q̄−1 � q∗
r + εq∗

d � q−1
r + εq−1

d , (6)

where ⊗d denotes dual quaternion multiplication and * indi-
cates a conjugate operator.

2.2 Relative Orbital Motion

For two spacecrafts, a chief and a deputy satellites, which are

in relative orbit, the relative position vector, ρ � [
x y z

]T
,

is expressed in the Hill’s coordinate frame,
{
ôr, ôθ , ôh

}
,

which is pointed to the deputy from the chief as shown in
Fig. 1.

The details of orbital relative equations of motion are
derived in Ref. [17]. With the assumption of small relative
distance compared with the chief orbit radius, rc, relative
position kinematics is expressed in a vector form as

ρ̈ + 2ω0 × ρ̇ + ω̇0 × ρ + ω0 × ω0 × ρ � − μ

r3c

o

⎡

⎣
−2x
y
z

⎤

⎦ + wρ,

(7)
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where ω0 � [
0 0 θ̇

]T
is the orbital rate of the chief in rotat-

ing Hill’s frame with true anomaly, θ , of the chief, μ is the

gravitational parameter, andwρ � [
wx wy wz

]T
represents

acceleration disturbance modelled as zero-mean Gaussian
white-noise processes with variance of σ 2

x , σ
2
y , and σ 2

z .

2.3 Relative Attitude Dynamics

Relative attitude dynamics between the two spacecraft is
defined as quaternion multiplication. Let the attitude of the
chief and the deputy satellites with respect to inertial frame is
qc and qd, relative attitude is q, and relative angular velocity
is ω. Then, the attitude and angular velocity of the deputy
satellite with respect to chief are

q � q∗
c ⊗ qd, (8)

ω � RT
q ωd − ωc, (9)

whereωc andωd are body angular velocities of the chief and
the deputy satellites, and Rq is the rotational transformation
matrix of relative attitude.

Rq �
(
q20 − qTv qv

)
I3×3 + 2qvqTv − 2q0

[
qv×

]
, (10)

where [α×] is a skew-symmetric matrix form for cross
product. Then the relative attitude kinematics to describe
rotational motion is defined by

q̇ � 1

2
q ⊗ ω. (11)

3 Dual Quaternion-Based Relative
Navigation System

Conventional relative kinematics equations describe transla-
tional orbit and rotational motion independently. Otherwise,
dual quaternion kinematics can represent both relationships
simultaneously; so, it is possible to effectively express trans-
lational motion affected by rotation. In this section, relative
kinematics equations are constructed using dual quaternion.
Additionally, vision-based relative navigation approach is
introduced, which is the main subject of this research.

3.1 Dual Quaternion-Based Relative Kinematics

Dual quaternion is defined with real and dual part quaternion
or attitude and position vector.

q̄ � qr + εqd � q + ε
1

2

[
0
ρ

]
⊗ q, (12)

where the real part quaternion means attitude quaternion and
dual part quaternion is represented by multiplication of posi-
tion and attitude. Inversely, from the dual quaternion, attitude
and position vector can be obtained as

q � qr, (13)

ρ � (
2qd ⊗ q∗

r

)
2:4. (14)

Dual quaternion kinematics is similarly defined as quater-
nion part using the dual velocity vector, ω̄.

˙̄q � 1

2
q̄ ⊗d ω̄. (15)

The dual velocity also has a real part, ωr � [
0 ωT

]T
,

for angular velocity and dual part, vd � [
0 vT

]T
for linear

velocity, v.

ω̄ � ωr + εvd. (16)

Equation (15) can be rewritten using dual quaternion mul-
tiplication of Eq. (6), which yields

˙̄q � 1

2
qr ⊗ ωr + ε

1

2
(qr ⊗ vd + qd ⊗ ωr). (17)

3.2 Vision-Based Relative Navigation

This subsection describes the problem set, which is com-
prised of two satellites as a chief and a deputy under relative
orbit motion. It is assumed that two satellites have constant
body angular velocities. The chief satellite is equipped with
six beacon sensors and the deputy satellite employs position
sensing diode (PSD) sensors [17]. The six line-of-sight mea-
surements from beacons can be used to estimate position and
attitude. Positions of beacons attached on the chief are known
and PSD attached on the deputy is not aligned on the center
of mass. Let the relative position vector between centers of

mass of the two satellites is ρ0 � [
x0 y0 z0

]T
and position

vector between the chief center of mass and PSD location,
i.e., an arbitrary point, of the deputy is ρ � [

x y z
]T

as
shown in Fig. 2. Then, the goal of navigation is to estimate
relative attitude and position vector about an arbitrary point,
that is, q and ρ.

The vision sensormeasurement from i th beacon is defined
in a unit vector form as

b̃i � Ari + υi , i � 1, 2, . . . , N (18)
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Fig. 2 Vision-based navigation system configuration

where N is the total number of observations, A is attitude
matrix, and ri is distance vector from i th beacon to PSD.

ri � 1
√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2

⎡

⎣
Xi − x
Yi − y
Zi − z

⎤

⎦.

(19)

And υi is a zero-mean Gaussian white-noise process from
sensor with variance of σ 2

i which satisfies E{υi } � 0 and
E

{
υiυ

T
i

} � σ 2
i

(
I3×3 − bibTi

)
. To obtain relative angular

velocity between two spacecraft, the angular velocities for
each spacecraft are measured by rate gyro and Eq. (9) is
applied. Each gyro measurement, ω̃, is generally modelled
as

ω̃ � ω + β + ηv, (20)

β̇ � ηu, (21)

where ω is the true angular velocity vector, β is the bias, and
ηv and ηu are the sensor noise approximated as Gaussian
with variances of σ 2

v and σ 2
u . In this problem, it is assumed

that chief and deputy gyro measurements are known a priori
and the subscripts of c and d are used to distinguish values
belonging to each spacecraft.

In the similar manner to the angular velocitymeasurement
model, the translational velocity measurement model can be
defined with the true velocity vector, v, such that

ṽ � v + βr + ηrv, (22)

β̇r � ηru, (23)

where ṽ is the linear velocity measurement, βr is the
velocimeter bias, and ηrv , ηru are zero-meanGaussian white-
noise processes with variances, σ 2

rv and σ 2
ru , respectively.

4 Dual Quaternion-Based Extended Kalman
Filter (DQ-EKF)

In this section, equations for dual quaternion-based relative
navigation are derived using EKF algorithm. It has beenmost
widely adopted for estimation of nonlinear systems by uti-
lizing linearized systems and measurement model. For EKF,
error dual quaternion is derived first, and it provides advan-
tages with less computational burden by reduction of error
states from eight to six. The line-of-sight measurements from
six beacons are used for update procedure. In addition, rate
gyros are used for the angular velocity measurements. One
consideration should be given to the velocity state. By hav-
ing the linear velocity in dual quaternion kinematics, velocity
propagation or measurement is required. This research dis-
cusses these two cases together.

4.1 Error Dual Quaternion Kinematics

In amanner similar to the error quaternion,with the estimated
value indicated as ∧, the definition of error dual quaternion
is

δq̄ � ˆ̄q−1 ⊗d q̄

� q̂−1
r ⊗ qr + ε

(
q̂−1
d ⊗ qr + q̂−1

r ⊗ qd
)

� δqr + εδqd. (24)

Then, the error dual quaternion kinematics is described as

δ ˙̄q � δq̇r + εδq̇d (25)

and the real and dual parts error kinematics is given such that

δq̇r � −1

2
ω̂r ⊗ δqr +

1

2
δqr ⊗ ωr, (26)

δq̇d � 1

2
δqr ⊗ vd − 1

2
v̂d ⊗ δqr +

1

2
δqd ⊗ ωr − 1

2
ω̂r ⊗ δqd.

(27)

With the constraints for dual quaternion as

qr0 �
√
1 − qTrvqrv, qd0 � −qTrvqdv

qr0
(28)

and the assumption of small angle and short distance, the
error quaternion can be derived by linearization as

δqr �
[

δqr0
δqrv

]
�

[
1

1
2δα

]
, δqd �

[
δqd0
δqdv

]
�

[
0

1
2δκ

]
.

(29)
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It turns out that eight parameters of dual quaternion are
reduced to six. The details of real part error quaternion kine-
matics are described in [17] as

δα̇ � −[
ω̂d×

]
δα − �βd + Rq̂r�βc − ηdv + Rq̂rηcv. (30)

Equation (27) can be simplified with the first-order lin-
earization as

(31)

δq̇d ∼� 1

2

((
Rq̂r�ρ̇

) − 2
[
δqrv×

] (
Rq̂r

˙̂ρ
))

+
1

2

([
δqdv×

]
ω̂d − [

δqdv×
]
Rq̂r ω̂c

)

And dual part error quaternion can be derived such that

δκ̇ � Rq̂r�ρ̇ +
[
Rq̂r

˙̂ρ×
]
δα +

([
Rq̂r ω̂c×

] − [
ω̂d×

])
δκ (32)

If linear velocity measurement is used, the dual part error
quaternion is defined with velocimeter bias and noise model.

(33)

δκ̇ �
[
Rq̂r

˙̂ρ×
]
δα +

([
Rq̂r ω̂c×

] − [
ω̂d×

])
δκ

− Rq̂r�βr − Rq̂rηrv.

4.2 Case 01: Linear Velocity PropagationModel

For the full state vector for update, x �
[
qTr qTd ρ̇T βTc βTd

]T
, the error state vector and process

noise vector are introduced as

�x � [
δαT δκT �ρ̇T �βTc �βTd

]T
, (34)

w � [
ηT
cv ηT

dv ηT
cu ηT

du wρ

]T
. (35)

With error state equations of Eqs. (30) and (32), and bias
errors such that

�β̇c � β̇c − ˙̂
βc � ηcu, (36)

�β̇d � β̇d − ˙̂
βd � ηdu, (37)

the error state dynamics for EKF is defined as

�ẋ � F�x + Gw (38)

where

F �

⎡

⎢⎢
⎢⎢
⎢
⎣

−[
ω̂d×

]
03×3 Rq̂r −I3×3 03×3[ ˙̂ρ×

] ([
Rq̂r ω̂c×

] − [
ω̂d×

])
03×3 03×3 −I3×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

⎤

⎥⎥
⎥⎥
⎥
⎦

.

(39)

G �

⎡

⎢⎢
⎢⎢
⎣

Rq̂r −I3×3 03×3 03×3 03×3 03×3

03×3 03×3 −I3×3 03×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 03×3 I3×3

⎤

⎥⎥
⎥⎥
⎦

, (40)

and the process noise matrix can be constructed using vari-
ances of sensor and process noise.

Q �

⎡

⎢⎢⎢
⎢
⎣

σ 2
cvI3×3 03×3 03×3 03×3 03×3

03×3 σ 2
dvI3×3 03×3 03×3 03×3

03×3 03×3 σ 2
cuI3×3 03×3 03×3

03×3 03×3 03×3 σ 2
duI3×3 03×3

03×3 03×3 03×3 03×3 σ 2
xyzI3×3

⎤

⎥⎥⎥
⎥
⎦

. (41)

For the true and estimated measurement from a vision
sensor,

b � Rqr ri , (42)

b̂ � Rq̂r r̂i , (43)

the measurement error is represented as

�b � b − b̂

� [
Rq̂r r̂i×

]
δα + Rq̂r�r

≈ [
Rq̂r r̂i×

]
δα + Rq̂r

∂ r̂i
∂ρ̂

RT
q̂r

δκ. (44)

Then, the Jacobian sensitivity matrix is

H �

⎡

⎢⎢
⎣

∂b1
∂qr

∂b1
∂qd

...
...

∂bN
∂qr

∂bN
∂qd

⎤

⎥⎥
⎦ �

⎡

⎢⎢⎢
⎣

[
Rq̂r r̂1×

]
Rq̂r

∂ r̂1
∂ρ̂

RT
q̂r

...
...[

Rq̂r r̂N×]
Rq̂r

∂ r̂N
∂ρ̂

RT
q̂r

⎤

⎥⎥⎥
⎦

. (45)

4.3 Case 02: Linear Velocity Measurement Model

In the linear velocitymeasurement case, velocimeter bias and
noise are considered instead of velocity states. Since relative
velocity for an arbitrary point is obtained by velocimeter
directly, the arbitrary point information is not required.

With linear velocity measurement, the full state vector
consists of velocimeter bias instead of velocity such that x �
[
qTr qTd βTc βTd βTr

]T
. Then, the error state and the process

noise vector are defined as

�x � [
δαT δκT �βTc �βTd �βTr

]T
, (46)

(47)w � [
ηT
cv ηT

dv ηT
rv ηT

cu ηT
du ηT

ru

]T
.
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To propagate states, error state kinematics of Eqs. (30)
and (33) is used. And velocimeter bias error equations are
augmented additionally with gyro bias error in Eqs. (36) and
(37).

�β̇r � β̇r − ˙̂
βr � ηru . (48)

The sensitivity matrix for the line-of-sight measurements
is not different from linear velocity kinematics model case.

5 Dual Quaternion-Based Unscented Kalman
Filter (DQ-UKF)

SinceEKFhas linearization processwith small error assump-
tion in the first-order terms only, it may be difficult to
guarantee performance in highly nonlinear systems or mea-
surement models. As an alternative approach, UKF is an
estimator without linearization process; so in this study, dual
quaternion-based UKF is attempted. The approach of UKF is
based on a sigma-point implementation called the unscented
transformation to propagate means and covariance matrices
[15, 19–21]. Since UKF uses nonlinear systems and mea-
surement models directly, linearization procedure for system
model is not required.

For a random variable x with

x ∼ N (xm , Px ) (49)

sigma points and weight are defined as

χ1 � x, χi+1 � x + ui ,

χi+n+1 � x − ui where i � 1 . . . n, (50)

and

W1 � κ

n + k
, Wi+1 � 1

2(n + k)
,

Wi+n+1 � 1

2(n + k)
where i � 1 . . . n, (51)

where ui is a row vector of matrix U satisfying

UTU � (n + κ)Px , (52)

and κ is an arbitrary constant. Then, the mean and covariance
of a function given by

y � f (x) (53)

are constructed as

ym �
2n+1∑

i�1

Wi f (χi ), (54)

Py �
2n+1∑

i�1

Wi { f (χi ) − xm}{ f (χi ) − xm}T . (55)

The procedures above are called as unscented transforma-
tion.

Next, the error dual quaternion-based UKF can be derived
also in the following step.

Step 1 Temporal update
(
χi

(
δ ˆ̄qk−1

)
, Wi

)
←

(
δ ˆ̄qk−1, Pk−1

)

χi

( ˆ̄qk−1

)
← χi

(
δ ˆ̄qk−1

)

( ˆ̄q−
k , P−

k

)
� Unscented Transformation

(
f
(
χi

( ˆ̄qk−1

))
, Wi , Q

)

δ ˆ̄q−
k � ˆ̄q−1

k−1 ⊗ f
(
χi

( ˆ̄qk−1

))
(56)

Step 2 Measurement update
(
χi+1

(
δ ˆ̄q−

k

)
, Wi+1

)
←

(
δ ˆ̄q−

k , P−
k

)

χi+1

( ˆ̄q−
k

)
← χi

(
δ ˆ̄q−

k

)

(
ẑk , Pz

) � Unscented Transformation
(
h
(
χi+1

( ˆ̄q−
k

))
, Wi+1, R

)
,

(57)

Pxz �
2n+1∑

i�1

Wi
{
f (χi ) − x̂−

k

}{
h(χi+1) − ẑk

}T

Kk � Pxz/Pz (58)

δ ˆ̄qk � Kk
(
zk − ẑk

)

ˆ̄qk � ˆ̄q−
k ⊗ δ ˆ̄qk

Pk � P−
k − Kk PzK

T
k . (59)

DQ-UKF is implemented without Jacobian matrix as the
result of linearization. So, pervious measurement formu-
lation and state vectors are cast into UKF approach with
simulation results presented in the next section.

6 Simulation Results

In this section, simulation results are presented. Before
discussing the results, relative orbital motion using dual
quaternion kinematics is summarized to verify that dual
quaternion can represent position–attitude coupling scenar-
ios. Subsequently, simulation results of vision-based relative
navigation systems using DQ-EKF and DQ-UKF are pro-
vided.

6.1 Relative Orbit Motion

In proximity operation, relative position between two satel-
lites is affected by attitude changes. Such a coupling effect is
represented about an arbitrary point of a satellite, which is not
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Fig. 3 Relative orbit motion with conventional kinematics and position difference of an arbitrary point

Fig. 4 Position difference of an arbitrary point and error between dual quaternion and conventional kinematics

the center of mass. Figure 3 shows the difference of relative
position between an arbitrary point and the center of mass of
a deputy satellite. The semi-major axis and eccentricity of a
chief orbit are a � 6, 998, 455 m, and e � 0.00172, respec-
tively. Orbital parameters are propagated using the following
equations.

r̈c(t) � rcθ̇
2
(
1 − 1

1 + e cos θ

)
, (60)

θ̈ (t) � −2ṙc
θ̇

rc
. (61)

Initial orbital radius and rate of the chief satellite
are defined as rc(t0) � a(1 − e) m and ṙc(t0) �
0 m/s, while true anomaly rate is determined as θ̇

(t0) � √
μ/rc(1 + e cos θ)(1 + e)/rc rad/s with θ(t0) � 0

at perigee. Here, the earth gravitational constant is μ �
3.985744e14 m2/s2. The initial conditions for orbitalmotion
are as follows.

q(t0) � [√
2/2 0 0

√
2/2

]T
,

ρ0(t0) � [
200 200 100

]T
m,

ρ̇0(t0) � [
0.01 −0.4325 0.01

]T
m/s,

ωc � [
0 0.0011 −0.0011

]T
rad/s,

ωd � [−0.002 0 0.0011
]T

rad/s.

The PSD sensor position, P � [
1 1 1

]T
m, is set to

an arbitrary point. The position vector from the chief to an
arbitrary point on the deputy is constructed using vector
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Fig. 5 Attitude estimation error with DQEKF in linear velocity propagation model case

Fig. 6 Position estimation error with DQEKF in linear velocity propagation model case

geometry after finding ρ0. Relative orbit motion is propa-
gated using Eqs. (7) and (11) in conventional kinematics
case, and Eq. (15) is used for dual quaternion-based kine-
matics case with time step of 10 s.

With the same condition, Fig. 4 represents position differ-
ence of an arbitrary point in relative orbital motion generated
by dual quaternion-based relative kinematics. This kinemat-
ics produces almost the same results for relative position
about an arbitrary point. The negligible differences in Fig. 4
may come from parameter conversion between dual quater-
nion and position vector as computational error. These
simulation results indicate that the dual quaternion-based
kinematics can represent position–attitude coupling effect
without additional processing about an arbitrary point.

6.2 Vision-Based Relative Navigation with DQ-EKF

In this subsection, relative navigation with a vision sensor is
simulated. The dual quaternion-based extendedKalmanfilter
(DQ-EKF) is implemented. The initial conditions of relative
orbit are used same as above subsection with initial position
and attitude errors such that

�α � [
1 1 1

]◦
, �ρ0 � [−5 3 −3

]T
m,

�ρ̇0 � [
0 0.01 0.02

]T
m/s.

Initial position and velocity errors forρ0 and ρ̇0 are used to
compute errors for qd and ρ̇. The gyro biases are βc � βd �
[
1 1 1

]T ◦/h for both chief and deputy satellites. In addition,
gyro and process noise parameters are set to σcu � σdu �

123



International Journal of Aeronautical and Space Sciences (2019) 20:1010–1023 1019

Fig. 7 Gyro bias estimation with DQEKF in linear velocity propagation model case

Fig. 8 Attitude estimation error with DQEKF in linear velocity measurement case

√
2 × 10−10 rad/s

√
s, σcv � σdv � √

2 × 10−5 rad/s
√
s

and wxyz � √
10 × 10−10 m/s

√
s, respectively. In addition,

the line-of-sight measurements are generated with Eq. (18)
with noise of σi � 0.0005◦. Six beacons are located on the
chief satellite at

[
Xi Yi Zi

] �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
0.5 0.5 0.0

]
[−0.5 −0.5 0.0

]
[−0.5 0.5 0.0

]
[
0.5 −0.5 0.0

]
[
0.2 0.5 0.1

]
[
0.0 0.2 −0.1

]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

m

and the initial error covariance matrix for state is defined as
below for linear velocity kinematics model case.

P0 � diag
([

σ 2
qr I3×3 σ 2

qd I3×3 σ 2
ρ̇ I3×3 σ 2

βc
I3×3 σ 2

βd
I3×3

])

� diag
([

I3×3(
◦)2 2.5I3×3 0.02I3×3(m/s)2 4I3×3(

◦/h)2 4I3×3(
◦/h)2

])

In the case of velocitymeasurementmodel, the initial error
covariance matrix is set to

P0 � diag
([

σ 2
qr I3×3 σ 2

qd I3×3 σ 2
βc
I3×3 σ 2

βd
I3×3 σ 2

βr
I3×3

])

� diag
([

I3×3(
◦)2 2.5I3×3 4I3×3(

◦/h)2 4I3×3(
◦/h)2 0.02I3×3(m/s)2

])

The true velocimeter bias is βr � [
10 10 10

]T
m/h and

σru � √
2 × 10−5 m/s

√
s, σrv � √

2 × 10−2 m/s
√
s for

noise levels.
Figures 5, 6, 7 show estimation results of dual quater-

nion EKF for linear velocity kinematicsmodel (DQEKF-01).
In this case, dual quaternion and linear velocity kinematics
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Fig. 9 Position estimation error with DQEKF in linear velocity measurement case

Fig. 10 Velocimeter bias estimation with DQEKF in linear velocity
measurement case

is implemented as described in Sect. 4.2 with line-of-sight
and gyro measurements. Attitude and position are shown to
converge quickly in seconds, and estimation errors result in
within 0.1◦ and 0.3 m.

The results of linear velocitymeasurement case using dual
quaternion-based EKF (DQEKF-02) are in Figs. 8, 9, 10. In
DQEKF-2, velocimeter bias state is considered instead of
velocity kinematics. Velocity state is not propagated in kine-
matics, whereas position is propagated in dual quaternion
kinematics and updated using line-of-sight measurements.
In the simulation results, attitude, position and biases are
well estimated. Attitude estimation error within 0.1◦ is not

different from the case DQEKF-01. Position knowledge
affecting relative distance and attitude is changing period-
ically between 0.3 m and 1 m. Since DQEKF-02 does not
propagate velocity states through the system model unlike
DQEKF-01, it can be seen that the measured value accord-
ing to the relative position and attitude in the orbit is more
reflected to the position states markedly.

6.3 Vision-Based Relative Navigation with DQ-UKF

With the same initial condition of DQEKF, UKF using dual
quaternion are simulated for two cases of velocity kinemat-
ics and measurement model. In UKF, nonlinear system and
measurement model are adopted without linearization; so,
simulation results show that estimation knowledge tends to
be affected by model nonlinearity and noise more than the
EKF cases. For the first case of velocity kinematics model
(DQUKF-01), the results are presented in Figs. 11 and 12.
Attitude and position estimation errors are within 0.1◦ and
0.3 m and gyro biases are well identified by filter algorithms.

Velocity measurement case with UKF (DQUKF-02)
exhibits similar tendency as DQEKF-02. States are well
estimated as in Fig. 13 and 14. Since estimation is con-
ducted without linearization, the velocimeter sensor noise
is reflected in results.

7 Conclusion

This study formulates dual quaternion kinematics for rela-
tive navigation, which is applicable to estimate relative pose
between arbitrary points attached to two on-orbit satellites.
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Fig. 11 Attitude estimation error with DQUKF in linear velocity propagation model case

Fig. 12 Position estimation error with DQUKF in linear velocity propagation model case

A set of six beacons and PSD is applied to generate vision
sensor measurements to facilitate relative navigation. Two
well-known filtering methods, EKF and UKF, are adopted to
estimate relative pose and slowly varying sensor parameters.
Since the measurement observability is affected by relative
orbit in vision-based navigation, the error covariance period-
ically increases and shrinks. It stands out in the model using
velocity measurements only without propagation. However,
simulation results showed that the dual quaternion-based
nonlinear estimation filters converged well and yielded rea-
sonable performance for the unknown arbitrary points , even

the velocity is not propagated in the systemmodel. Although
the dual quaternion formulation has advantages regarding
translational-rotational coupling motion over the traditional
decoupled formulation, it has not yet been widely used as
the state variables in spacecraft proximity operations. This
study demonstrated the possibility of the dual quaternion-
based relative navigation approach, especially for caseswhen
interesting points such as docking port or special marker are
not attached to the center of mass of spacecraft, which covers
the general proximate missions.
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Fig. 13 Attitude estimation error with DQUKF in linear velocity measurement case

Fig. 14 Position estimation error with DQUKF in linear velocity measurement case
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