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Abstract
The development of flight software for Unmanned Aerial Systems (UAS) is challenging due to the absence of an established
development process defined by aerospace certification authorities. This research paper outlines our methods and tools for
analyzing flight-criticalUAScontrol software on the target hardware.Wepresent our toolchain andmethodology for evaluating
the flight control computer stack, runtime memory, and timing characteristics. Additionally, we compare the performance of
the flight control computer under various hardware and cache settings to justify, which hardware features should be enabled.
The tools and processes employed in this research are deployable to any other development environment and are not restricted
to the specific target hardware used in this paper.

Keywords Flight control computer · Safety-critical software · Memory safety · Timing analysis · Software certification

1 Introduction

This paper is based upon a conference paper [1], which has
been extended and updated substantially.

All modern aircraft require on-board computing and
software (SW) for their operation. However, the computer
hardware (HW), the SW load, and the process how the SW is
developed strongly depends on aircraft category andmission.
For piloted commercial transports, safety is of utmost con-
cern. The flight software, which supports the pilot, runs on
large and redundant computer hardware. The safety-critical
portions of the flight software must be developed according
to the rigorous DO-178C [2] standard.

On the other hand, most Unmanned Aerial Vehicles
(UAVs) or Unmanned Aerial Systems (UASs) are substan-
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tially smaller than transport aircraft and are remotely piloted
or are flying autonomously. Often they are battery-powered.
This imposes severe restrictions on the type of comput-
ing hardware and software to be used: power and weight
limitations usually don’t allow for redundant computers or
sensor systems. Typically, small System-on-a-Chip (SoC)
processors or microcontrollers are being used as UAS Flight
Computers. On the software side, requirements and capabili-
ties for SW running on-board as UAS are very different from
commercial aircraft (AC):

• AUASdoes not have any pilots on board. Thismeans that
muchmore automated functionality needs to be available
on board. Even for a remote-piloted UAS, as a minimum,
inner-loop control, navigation, and communication must
be provided by the flight computer. Inherently unstable
multi-copters require fast inner-loop attitude control.

• Functionality for Autonomous Operations (AO) requires
an additional, often substantial software load to be exe-
cuted on-board and in real-time, e.g., trajectory planning,
on-board diagnostics, sensory and perception modules,
and on-board decision-making.

• Because of limited computational capacities, often no
or only small Operating Systems (OSes) are used. Typi-
cal examples include the ArduPilot [3] control software,
µCOS-II [4], or the OSEK/AUTomotive Open System
ARchitecture (AUTOSAR) [5]. Proper memory or tem-
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poral separation as required by the Aeronautical Radio,
Incorporated (ARINC)-653 standard [6] or even features
like virtual memory or Linux-style functionality is rarely
found on UAS platforms.

• Safety risks for UAS operations are much lower than for
commercial transports, Still a UAS can cause consider-
able harm to other aircraft (mid-air collisions) or human
life on the ground. Therefore, the UAS flight SWmust be
designed and developed to high safety and quality stan-
dards.
Unfortunately, there are currently no specific standards
for UAS software systems. Standards like DO-178C [2]
are “too heavyweight” and too expensive to implement.
Software guidelines for autonomy software (e.g., the
EASA Guidebook [7]) or standards for run-time assur-
ance (e.g., ASTM F-3269 [8]) are still in their infancy.

Based upon the observation that all UAS software is based
on low-level SWandOScomponents (e.g., interrupt routines,
drivers, memorymanagement) that are close to the hardware,
this paper addresses the following research questions:

1. Which Verification and Validation (V&V) methods and
state-of-the-art tools (open source when possible) can be
used to improve and ensure the safety of low-level com-
ponents of (advanced) UAS flight software?

2. Which important SW V&V issues, as mentioned, e.g.,
by DO-248 [9] (in particular non-determinism, memo-
ry/stack safety, timing, compiler optimization, and code
coverage) can be addressed by a simple, mainly open-
source toolchain and a light-weight development process
for UAS flight software?

In this paper, we focus on the analysis of memory
requirements and execution times under advanced hardware
features, interrupt routines, and synchronization between dif-
ferent hardware components. Based upon guidance provided
by the DO-178C standard and supplements, we present dif-
ferent techniques and measurements to support memory and
timing safety for flight-critical UAS software. Modern flight
computers consist of individual components that interact
with each other. We present results of studies, on how such
hardware component interaction can influence the overall
behavior of the software system. An important component
of analysis for memory safety is the analysis of the run-time
stack. We discuss static and dynamic approaches for deter-
mining the worst-case stack usage.

Themain focus of this paper is on the timing analysis of the
flight software. Since compiler optimizations and hardware
features of the Central Processing Unit (CPU) like caches
or branch prediction heavily influence the run-time of the
code, we first present measurements executed under differ-
ent configurations. These provide insight into software and

hardware configuration and yield a baseline for the Worst
Case Execution Time (WCET) analysis.

In this paper, we present measurements showing the influ-
ence of cache usage and hardware optimizations on the
run-time behavior on our hardware platform. We discuss the
major approaches for estimating worst-case execution times
with abstract interpretation, measuring high-water marks,
and hybrid approaches.We present the results of experiments
and measurements and discuss possible ways to reduce non-
determinism in the software executionwithout sacrificing too
much performance.

As our case study, we analyze the flight control soft-
ware for an unmanned aircraft, which is developed at the
Institute of Flight Systems Dynamics. The software for the
Critical Flight Control Computer (CFCC) has been fully
developed in a model-based manner with heavy use of
automatic code generation. The target platform is a small,
Power-PC MPC5777C-based computer system running a
small operating system without memory management.

The results of these analyses provide numerous data points
to support safety and reliability of the flight software. We
will discuss, how these analyses could be combined with
other verification and validation steps (static code analysis
and coverage-based testing) to demonstrate the safety of our
flight control system and how this process ultimately might
support certification of UAS flight control software.

The rest of this paper is structured as follows: Sect. 2 pro-
vides the background about theUAS, the flight computer, and
theflight control software for our case study. In Sect. 3wedis-
cuss the requirements for verification and validation (V&V)
as they are posed by relevant certification standards. Here, we
focus on our topics of WCET analysis and memory-related
issues. In Sect. 6.1 we describe the timing between the CPU
and the Air Data and Attitude Heading Reference System
(ADAHRS) and, moreover, present findings about synchro-
nization issues. Section 5 focuses on the memory-related
analyses for V&V: we present and compare techniques for
stack analysis and discuss the effects of cache for timing
analysis. In Sect. 6 we present techniques and experimental
results of run-time measurements, which are the baseline for
our study on Worst-Case Execution Time analysis, which
is described in detail in Sect. 6.4. Based upon analysis tech-
niques formemory and timing analysis, in Sect. 4,wepropose
a tool-chain that supports V&V of our model-based software
development process and provides important information
for future certification. Section 7 presents related work and
Sect. 9 summarizes the paper and concludes.
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2 Background

2.1 Embedded flight hardware

Despite their complexity, many UAS only have a relatively
small and simple main flight computer. Figure1A shows a
typical configuration of a flight computer that is in charge of
controlling the hovering engines, usually between 4 and 16
electrical motors that drive propellers.

The main flight computer, the Flight Control Computer
(FCC) is a single-board micro-controller with Random
Access Memory (RAM), flash RAM, and communication
interfaces. Figure1A shows an example board from our case
study (see below). TheFCCcomputermodule receives inputs
from theADAHRS, provides attitude angles, rotational rates,
and specific forces as well as airspeed and barometric alti-
tude data. In many cases, an ARINC-429 protocol is used to
transmit the data from the ADAHRS to the FCC. Additional
input comes from the pilot operating the vehicle or the guid-
ance and navigation computer. From these data, the necessary
power/throttle settings for each of the motors is calculated
and the necessary commands are sent to the Engine’s Speed
Controllers (ESCs) using a controller area network (CAN)
bus interface.

The FCC board also contains power regulators, timers,
Joint Test Action Group (JTAG) interfaces and other compo-
nents, which are not of interest to our considerations.

Such a minimalistic hardware configuration can be typ-
ically found in small UAS; larger UAS will use redundant
flight computers with higher complexity. Nevertheless, most
of the issues discussed in this paper can be studied on the
small hardware configuration.

2.2 Embedded flight software

As discussed above, the software running on the FCC is in
charge of controlling the various motors of the UAS. In gen-
eral, the SW structure for this task also applies to many other
embedded systems.Data coming from sensors or other inputs
need to be processed periodically, outputs computed and sent
to output interfaces, and internal states need to be updated.
In addition, other tasks for handling input/output (I/O) or for
online hardware monitoring is also executed regularly.

On small embedded hardware platforms like those descri
bed above, the software is executed under the control of
a small real-time operating system (OS). Typical operat-
ing systems for such a platform include µCOS-II [4] or
OSEK/AUTOSAR[5]. These provide substantially less func-
tionality than Linux-style systems or VxWorks, but have a
very small computational footprint.

Figure 2A shows a typical high-level software archi-
tecture. Sitting on top of the hardware, the OS provides
functionality to run one or more software tasks in a (possi-

bly preemptive) real-time manner. Interrupt service routines
(ISRs) respond to hardware events, e.g., to read available
data from a sensor interface. Driver components provide
higher functionality for reading and processing sensor data
and commands. Libraries, usually provided by the OS ven-
dor, implement the necessary low-level functionality. Note
that in many cases, such a system does not feature file sys-
tems, dynamic memory management, or interactive user I/O
functionality (e.g., login, shell).

Therefore, the toolchain for development, debugging, test-
ing, and deployment of safety-critical software on such
computing platformsmust be specifically tailored toward that
hardware.

Figure 2B illustrates a typical way, how the embedded
control software can be implemented. For each of the generic
development steps, we discuss the tools that have been used
in our case study. The algorithms and control logic for
the flight software are developed using a Matlab/Simulink
based tool-chain. For requirements management (functional
requirements, like performance and operational behavior) the
tool Polarion [10] was used. From the Simulink model, exe-
cutable C code is generated using the Mathworks Embedded
Coder. For building the full application code for the Critical
Flight Controller (CFC), the Simulink generated C-Code,
the OS code (µCOS-II-C-Code), and the driver code for the
different interfaces are compiled and linked together with a
version of the GCC (Gnu C Compiler) that uses the library
“newlib” for the provision of, e.g., mathematical functions.

2.3 Our case study: electric vertical take-off and
landing-transition vehicle

For our case study, we consider an Electric Vertical Take-
off (EVTOL) transition vehicle. The vehicle is controlled by
several independent FCCs Flight Control Computers (FCCs)
that are in charge of handling various subcomponents and
functions. For this paper, we focus on the FCC for control-
ling the aircraft in the hover regime, called the “CFCC",
which stands for “Critical Flight Control Computer".1 In
hover mode, the aircraft is actuated by 10 electric motors,
whose propellers generate thrust in the downward direc-
tion, like ones used to see in commercial small drones. Via
the ARINC-429 protocol, the FCC receives data from an
ADAHRS that provides attitude angles, rotational rates, and
specific forces, as well as airspeed and barometric altitude
data. Further input comes from the pilot operating the vehi-
cle (Fig. 1). From these data, the necessary speed for each of
the 10 motors is calculated by an INDI (Incremental Nonlin-
ear Dynamic Inversion)-controller and speed commands are

1 For simplicity reasons, we assume that there is only one FCC,
although the real UAS uses a redundant system architecture.
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Fig. 1 A High-level architecture
of the flight hardware, B image
of our FCC target hardware

Fig. 2 A High-level architecture
of the flight software. B
Model-based software
development process and
tool-chain

sent to the respective Engine Speed Controllers (ESC) via a
CAN bus interface.

The FCC itself consists of a Commercial off-the-shelf
(COTS) Microsys miriac MPX-C5777 computing module
that is built around an NXP MPC5777 micro-controller [11]
with an e200z7 Performance Optimization With Enhanced
RISC (PowerPC) running at 264 MHz. 256 KB of RAM
is available for the controller application, and 4 MB of flash
memory can be used for the application binary. CANcommu-
nication is established using the native CAN interfaces of the
microcontroller, and the ARINC-429 communication is real-
ized over a dedicated ARINC-429-interface chip connected
via Serial Peripheral Interface (SPI). Of course, further inter-
faces are provided but are not relevant to our interests.

As operating system, a version of µCOS-II—a preemp-
tive Real Time Operating System—that is tailored towards
usage in safety-critical applications is used. Among other
tasks that are related to I/O-handling and online hardware
monitoring, the most important task for our investigations
is the ‘CFC_task’. In this task, CAN and ARINC-429 data
from RAM buffers is transferred to the controller appli-
cation ‘CFC_step()’, and after its execution, the computed
actuator commands are written into the TX-buffers of the
CAN-Interface from where they are then sent to the ESCs.
Figure2A shows the high-level software architecture.

The execution of this task typically fits into a periodic
cycle time of 20 ms and there is still time for lower-priority
tasks to execute until the cycle starts over. The CFC_task
has the highest priority of all tasks being executed. Tim-

ing comes from a timer module that generates an interrupt
every 1 ms and by that notifies the OS that a millisecond
has passed. Periodic execution of the task is achieved by
sending the CFC_task to sleep after going through the cal-
culation of CFC_step() for an amount of time that results in
its rescheduling 20 ms after its last scheduling. In the mean-
time, other tasks can be executed. As the CFC_task has the
highest priority of all tasks, once its sleep time has passed,
it immediately preempts the currently executing task and the
cycle starts all over.

The controller algorithm itself, CFC_step() is devel-
oped with a Matlab/Simulink based tool-chain (Fig. 2B).
For requirementsmanagement (functional requirements, like
performance and operational behavior) Polarion [10] Via the
tool SimPol [12] those high-level and low-level requirements
are linked to the Simulink blocks of the controller model,
which implement their required functionality. Using only
a subset of the allowed Simulink functionality—which is
checked via the Simulink Model Advisor—the C-code, gen-
erated from the model by Embedded Coder is well traceable
to the Simulink model structure. For building the full appli-
cation code for the CFC, the Simulink-generated C-Code,
the µCOS-II-C-Code and the driver code for the different
interfaces are compiled and linked together with a version
of GNU Compiler Collection (GCC) that uses a version of
newlib for the provision of, e.g., mathematical functions.

The control law design and its functional and performance
testing are done within a Simulink environment, where a
detailed flight dynamics model of the EVTOL is used as the
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plant. After all model-in-the-loop tests run successfully, the
flight control algorithm is also tested on the target hardware.
This is accomplished by the use of a Hardware-in-the-Loop
(HIL) Setup. The HIL-Setup consists of a Real-Time-PC
(RTPC)which contains and executes amodel of every impor-
tant component of the system architecture. This also includes
the FCC. By virtually connecting the architecture compo-
nents, a full virtual system simulation is achieved in software,
comparable to the Simulink environment, but on a real-time
PC. Pilot inputs can then be provided to the simulation by
flight sticks from a cockpit mockup or a remote control and
the vehicle position and attitude are forwarded to a visu-
alization software such that a realistic flight simulator is
obtained. The special hardware and software solution used
in this HIL-simulation provides the possibility to substitute
simulated entities with real entities by having the possibility
to send out internal data via standard avionic interfaces, e.g.,
ARINC-429 or CAN. On the other side, CAN and ARINC-
429 messages from outside can be received by the RTPC
and be fed into the simulation. This allows connecting a real
FCC with the controller executable on target, sending the
ARINC-429 data from the simulation to the FCC, and for-
warding the received ESC commands received via CAN to
the ESC models. In the end, this gives the possibility to exer-
cise the CFCC in a very realistic environment representative
of its later application (“flying").

Of course, the FCC flight control algorithm can also be
executed without any incoming sensor data (“idle”). In the
paper, we will compare “idle” behavior with “flying” behav-
ior to see, to which extent the behavior in the “flying” case
can be deducted form the “idle” case—a setup that can be eas-
ily prepared in comparison to the time and resource-intensive
setup of fully integrated hardware in the loop flight simulator.

3 Verification and validation

The intended application of the Friction Stir Welding (FSW)
on small unmanned research aircraft (or optionally piloted
aircraft) does not require the application of DO-178C for cer-
tification purposes. Yet, the standard offers important insight
and enables us to design a software development and V&V
process that could extended toward certification.

Therefore, for the analysis of our flight software, we align
our V&V process and tools according to DO-178C [2] as
well as the supplemental document DO-248.

In particular, results of software tests and analyses will
be documented to supplement the “Software Reviews and
Analysis” (see DO-178C Sec 6.3). The results of the timing
analysis will be summarized and presented in the “Soft-
ware Accomplishments Summary” (DO-178C, Sec 11.20.i).
A detailed analysis will be carried out to support Objective
6 of DO-178C, Table A-5.

For the topics in this paper,we are specifically interested in
guidance regarding non-determinism, memory, timing, and
compiler optimizations. A detailed description of our tools
and approaches will be presented in subsequent sections.

The RTCA FAQ document/supplement for DO-178C,
namedDO-248 [9], discusses topics including compiler opti-
mization, code-inlining, and the use of data and instruction
caches. FAQ#73 (3.73) is specifically concerned with tim-
ing measurements and worst-case timing. Section 3.73 lists
several “factors, which can complicate the calculation of
WCET”. In the following, we list these factors and discuss,
if they apply to our situation, and how we address those.
1. Multiple interrupts that drive the system This factor is
not relevant in our case, because only one type of interrupt,
namely the 1 ms heartbeat interrupt occurs in the system. 2.
Many decisions in the algorithmThe CFC, as generated from
the Simulink model by Embedded Coder contains numer-
ous conditional statements. The run-time behavior of the
CFC code can be analyzed using WCET analysis taking into
account all decisions inside the code, run-timemeasurements
using a set of test cases that provide sufficient code cover-
age, or a hybrid testing andWCET analysis. Our approaches
will be discussed in detail in Sect. 6.4. 3. Use of processor
cache for instructions or data The use of data and instruc-
tion caches can substantially reduce the average execution
time, but will also introduce non-determinism into the sys-
tem which needs to be analyzed. 4. Lack of real-time driven
clock input This factor is, in principle, of no concern in our
architecture, where a hardware real-time clock drives and
controls the execution. However, inaccuracies and drift of the
hardware clocks in different components can add substantial
problems (see Sect. 6.1). 5. Differing methods of scheduling
the tasks to be executed In our architecture, priorities for the
individual tasks are fixed. Furthermore, the central CFC task
has, except for the error-handling task, which terminates the
entire execution, the highest priority. So, the CFC task will
never be preempted unless a system termination is required.
6.Use of a real-time operating system This architecture uses
a small real-time operating system (see Sect. 2). However,
due to simple scheduling, no dynamic generation/deletion of
tasks, or complex kernel functions, WCET analysis is not
influenced by these effects. Nevertheless, it is important to
analyze the overall timing behavior of the real-time operat-
ing system and the connection between different hardware
components (see Sect. 6.1).
7. Operational behavior that is non-deterministic (for exam-
ple stack usage) The CFC software is fully deterministic.
Since the CFC task is never invoked by an interrupt routine,
stack sizes, and stack pointers (with respect to the task stack
basis) are fully deterministic. The 1 ms heartbeat interrupt,
which comes in asynchronously does not affect the stack of
the CFC task, as the operating system provides a dedicated
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interrupt stack. After execution of the ISR, the CFC stack
will look exactly as before.

In the following sections, we will describe in detail some
of the issues mentioned above, present methods and tools
for analysis and mitigation. Based on that information, we
propose a draft process and tool-chain to facilitate analysis
and V&V of the CFC and UAS software in general.

4 Analysis tool-chain

Before we go into details of the individual methods and anal-
ysis tools, we will look at how they fit into the big picture of
the software development andV&Vprocess.Manyprocesses
and standards follow the traditional “V” shape, which defines
stages of requirements, design, implementation, and then unit
and system testing. Verification and validation activities are
linking these various stages. Although the analysis methods
discussed in this paper are very low-level and hardware-
oriented, their use can influence early stages, as, for example,
results of worst-case execution time analysis can have an
impact on the design and even requirements.

Figure 3 shows our analysis and V&V tool-chain: in the
middle column, we have the various phases and artifacts
involved. These are managed and/or created by tools like
Polarion (for requirements capture), Simulink [13], andReal-
TimeWorkshop (RTW) for the automatic generation ofmajor
parts of the flight software. The C/C++ compiler, in our case
GCC, and related tools generate the binary code for the exe-
cution on the target platform. Our analysis steps are shown
in the right column. Whereas most of them are dealing with
(generated) C/C++ code or even binary code, the analysis of
the software design, in the form of Simulinkmodels [13], can
provide valuable results too. For this purpose, we are using
the Simulink model advisor to inspect the Simulink models
[14].

The Simulink coder is used to auto-generate the C-code,
which implements the Simulink model functionality. Then,
the auto-generated code is integrated into the CFCC low-
level software, which includes: (a) board support package,
(b) low-level drivers, (c) operating system, and (d) compiler
libraries.

The entire software stack is analyzed using a static code
analyzer. PolySpace [15] is a good candidate here since it
is compatible and integrated into the MathWorks toolchain,
which also includes Simulink, which was used to define and
implement the controller (application layer).

Avstack [16] has been used to analyze the stack usage.
By adding the “-fstack-usage” compiler flag as a compiler
option, the GCC [17] compiler will auto-generate the max-
imum amount of stack used by each function in files with
.su extension, this will be performed while generating the
object files. These files are analyzable using the tool avstack,

which generates a report with the stack usage for the entire
application as an output. This tool is covered in more detail
in Sect. 5.1.

Experiments were done to integrate a compiler built-in
code coverage tool into our toolchain. Since we are using a
GCC compiler, we used its coverage instrumentation feature,
and the gcov [18] analysis tool. When an instruction of the
instrumented code is executed, the corresponding coverage
counter variable is incremented.After the programexecution,
a library function collects the information and writes it out
to a file for use by an analysis and visualization tool. For use
with our target hardware and operating system, we adapted
that library to work in an embedded environment. It will be
described in more detail in Sect. 5.2.

Lastly, we evaluated the worst-case execution time which
is an important aspect for real-time systems. In addition,
the WCET should be provided to the certification authority
according to DO-178C [2]. We used a commercial product
called RapiTime provided by Rapita. This tool instruments
the software. Then, the instrumented software needs to be
integrated into a framework that gathers the timing data from
the instrumented software. The framework stores this data
and provides it to the host PC which runs the RapiTime tim-
ing analysis. RapiTime generates a report, which contains
the timing details that were computed from the data captured
while running the instrumented executable on the target. The
WCET analysis is shown in detail in Sect. 6.4.

In the following sections, we will describe the tools/meth-
ods used for low-level memory and timing analysis. We use
our Case Study as a driving example and present the results
of experiments.

5 Memory-related analysis

The flight code is usually implemented in C. There, we can
distinguish between static memory, which is used to keep
code, constants, and static variables, and dynamic memory,
which is allocated and freed during the execution of the
program. In-flight code developed in C, only the stack is con-
sidered dynamicmemory. It is being usedwhen functions are
called, or when local variables are being used. At the end of
the function call, the stack pointer is reset, thus destroying
the local variables and freeing the memory. Explicit memory
allocation with malloc/free or new is, due to the com-
plexity of memory management and garbage collection, not
allowed in flight code [2, 19].

Whereas it can be checked during compile-time if the
static code and data fit into the given memory, the stack anal-
ysis is more complex and will be described in the following.
Both static and dynamic memory are subject to hardware
optimizations like enabling the caches or enabling the branch
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Fig. 3 Our analysis and V&V
tool-chain

prediction activation. Therefore, appropriate analyses need to
be carried out (Sect. 6.2).

5.1 Stack analysis

Within the framework of µCOS-II, for every single task
a constant amount of memory is reserved somewhere in
RAM, where the task’s private stack will be located. The
size of those stack segments has to be statically set by the
programmer in the source code before compile time. To
gather information about the stack usage of the CFC_task—
which is the most memory intensive task—a combination of
GCC-functionality and the freely available Perl script “avs-
tack.pl” [16] was used. Because GCC has to know howmuch
stack space to reserve for every function when generating
the machine code, this information can be readily obtained
by adding the flag -fstack-usage to the compile com-
mand line options. With this flag for every source code file<
source>.c a corresponding stack usage file < source
> .su is created by the compiler that contains the size of
memory used on the stack by the respective functions that
are defined in the C-file. The script “avstack.pl” constructs a
full call tree of all involved functions and adds up the con-
tributions of the different functions, which are taken from
the stack-usage files. By following the longest branch down
the call tree, the theoretical maximum stack usage of the
top-function can be calculated, if there are no recursion calls
inside the softwarewhich is a hard requirement for our exper-
iments.

To compare those numbers to the real stack usage on the
target, a stack marking method was used: Before the first
execution of the CFC_task, its stack is initialized such that
every byte contains the value 0xA5. As for the target hard-
ware the stack grows from high to low addresses, this means
that unused stack in the low-address-region will continue

Table 1 Stack usage computations and measurements

Optimization level computed [Bytes] measured [Bytes]

-O0 9120 9264

-O1 8776 8788

-O2 8760 8780

-O3 8768 8788

to contain the value 0xA5, while high-address regions that
were once written to typically not contain the value 0xA5
anymore. By implementing a routine that counts the number
of 0xA5-bytes from the lowest address of the stack space,
the real stack usage can be determined after the execution of
the code. Experiments in the “flying” setup show, that from
the very first moment of stack checking after the first exe-
cution of the controller algorithm, the stack usage obtained
by this method is constant. This is in line with expectations,
as the controller is designed such that the same control law
commands the airplane in its complete flight envelope and
thus the code does not contain functions that are specific to
specific flight maneuvers. Table 1 compares calculated and
measured values for different compiler optimization settings.

It can be seen that the order of magnitude is the same for
all 4 cases, for the measured usage as well as the calculated
usage. Further,measured and calculated usages are very close
to each other for all different optimization levels, which tells
us that the method works well. The measured stack usage is
always a bit bigger than the computed stack usage, which is
related to the fact that the operating system also reserves and
initializes a small portion of the task stackwhen initializing—
usage which is of course not taken into account by the GCC-
based static stack analysis. Any interrupts that may enter the
system at any time use a dedicated interrupt stack and by that
do not influence these calculations and measurements.
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5.2 Coverage analysis

An important validation task for any software is to check,
which parts of the code have been exercised during the
test runs. Although high code coverage does not necessarily
reduce the number of possible software errors, it indicates
that all necessary code has been touched by at least one test
case. Obviously, code branches and loops can require multi-
ple program executions to check that each branch (e.g., the
‘then‘ branch and the ‘else‘ branch is covered). Depending
on the level of criticality, software standards can require dif-
ferent coverage criteria and metrics. For example, DO-178C
[2], DAL-A requires code coverage and test coverage using
ModifiedCondition/Decision Coverage (MC/DC). Thismet-
ric does not only explore different branches of the code but
also tests for coverage of complex conditional statements. In
practice, full MC/DC coverage requires a substantial amount
of test cases and is hard to achieve. For lower DAL levels,
only statement and/or branch coverage is sufficient.

In general, code coverage is measured while the program
is executed on test cases (or, rarely, during real operation).
A multitude of tools, both COTS and open source, exist to
facilitate this task. However, there are several issues to be
considered: some tools perform instrumentation of the source
code to acquire the necessary data during run-time, in such
cases, the instrumented SW shall be part of the SW testing
process, also the instrumentation shall be optimized to have a
low impact on the system performance. For statement/branch
coverage, most compilers, e.g., GCC, provide instrumenta-
tion on the machine code level, substantially cutting down on
the required overhead. Also, the program under test should
be exactly executed in the way it will be executed during
the mission. This “fly as you test, test as you fly” principle
[20] suggests that the software is designed and implemented
in such a way that a code-coverage instrumentation (needed
during testing) stays in the production build and does not vio-
late any constraints. Therefore, a lightweight code coverage
tool is to be preferred.

Secondly, the code coverage counters are stored in mem-
ory. However, read-out and export usually requires OS
functions (like malloc, open, write, etc.), which are not nec-
essarily available on an embedded system. For example, our
case study system does not have a file system ofmallocmem-
ory management.

To meet the requirements above, we chose to develop a
customized tool using the code coverage instrumentation of
GCC. Based upon an open-source implementation of cover-
age analysis [21], we extended the existing code base to (a)
eliminate the use of file operations and memory allocation,
and (b) to be able to extract the data using the gdbdebugger on
the hardware level. After extracting the data from the target
hardware system, the coverage information can be analyzed
and used to produce annotated code listings. Figure4 shows

screenshots of the visualization on various levels of detail.
For the visualization, we used the open-source tool LCOV
[22].

6 Timing-related analysis

6.1 Hardware and OS timing issues

For the stability of the controller algorithm, the signal delay
in the closed control loop is an important parameter. The
ADAHRS sends newdata packets, containing themost recent
data “taken from physics” every 20 ms. The CFC_task is
also scheduled every 20 ms to read out ADAHRS data and
compute updatedmotor commands. Now, theADAHRSmay
send a new data packet to the CFCC, but the scheduling of
the CFC algorithm relative to the ADAHRS is such that this
data packet has to “wait” on the CFCC for, e.g., 15 ms until it
can be used in the computation, there is a dedicated task for
handling the processing of the ADAHRS data, and preparing
the data for the controller, within this 15 ms. This task also
handles the delivery of the data to the controller. These 15ms
are an effective delay in the control loop. Especially for INDI-
based control in the innermost attitude loop, these delays
should beminimized asmuch as possible as the phasemargin
here is typically small.

A further fact is that the 20 ms time difference between
the sending of two subsequent data packets of the ADAHRS
is based on the ADAHRS internal clock, while the schedul-
ing of the CFC main algorithm every 20 ms is based on
the CFCC internal clock. Of course, these clocks will have
a certain drift relative to each other, which is, e.g., further
dependent on the respective temperatures of their oscillators
and their drift over time. This means that independent oper-
ation of those two devices, the timing relation between the
sending of anADAHRS data packet and its subsequent usage
in the controller algorithm will change over time. In Fig. 5A,
the time difference between the reception of the most recent
ADAHRS data packet and the scheduling of the CFC_task
are plotted over iterations of the controller. The data were
obtained on the CFCC by subtracting two high-precision-
timer values, one of the receptions of a certain ARINC-429
label that designates the start of a new ADAHRS data packet
(which was recorded via a low-overhead interrupt) and the
moment of scheduling the CFC_task. One can see, that this
difference is not constant, but has a certain constant over
time slope. After the difference reaches 20 ms, it flips over to
zero, because the difference to themost recent reception of an
ADAHRS signal is recorded. The irregular part in the middle
comes from the behavior of the ADAHRS and introduces a
jitter in the range of 2 ms. For V&V, the impact of this irreg-
ular and non-deterministic behavior on the overall software
functionality must be studied and documented carefully.
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Fig. 4 A coverage summary
after execution, B example for
detailed analysis, indicating that
some logical conditions have
not been covered during a test
(shown in red) (colour figure
online)

Fig. 5 Relative timing between A incoming ARINC-429 messages and control algorithm execution, B with execution synchronization mechanism
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To account for those two shortcomings, namely the unnec-
essary introduction of a delay and the drifting of the offset
between 0 and 20 ms, a continuous synchronization mecha-
nism was implemented. Its goal is to start the execution of
the controller 4 ms after receiving a new data packet, this 4
ms between the receiving of a new data packet and the con-
troller execution is used to execute other tasks, which handle
the data packet processing and pack the inputs needed for
the controller execution. This synchronization mechanism is
handled by a real-time operating system. At the end of con-
troller execution, before the CFC_task is put to sleep for a
certain amount of time, the times of the last reception of an
ADAHRS packet and the time of the scheduling of the con-
troller algorithm are compared. If in subsequent samples,
this difference is too high or too low, a “re-synchronization
millisecond” is either added or subtracted from the waiting
time. By that, the CFCC “catches up” or “slows” down rel-
ative to the ADAHRS such that they reach and maintain a
defined offset. Using an accordingly tuned algorithm, the
synchronization also can handle the “jitter” phase of the
ADAHRS transmission as can be seen in Fig. 5B. Now, a
re-synchronization millisecond is added each time the offset
grows too big, i.e., bigger than 4.5 ms in this case. Besides
minimizing the delay between ADAHRS and CFCC, the
delay is now also constant. This information helps the control
law designers in their gain tuning and controller design.

6.2 Cache usage

To observe the effects of data and instruction caches on the
execution time, a simple example (Listing 1) was put onto the
target hardware. Here, an array xwith 1000 integer elements
has been initialized with some values. Then, inside the main
loop, elements of the array x are accumulated such that each
element x[i] is accessed twice. With a data cache of suf-
ficient size, it can be expected that the value is stored in the
cache with the first access; for the second access, the value
stored in the cache can be accessed much faster [23].

Listing 1 Benchmark code for cache usage

uint32_t x[1000] = { 23, 4, 33, . . . };
int cnt , acc , t1 , t2 , delta_t ;
for ( ; ; ){
t1 = STM_A_CNT;
for(cnt = 0, acc = 0;cnt < 999; cnt++){
acc += x[cnt]+x[cnt+1];
}

t2 = STM_A_CNT; delta_t = t2−t1 ; prt ( delta_t ) ;
}

For our analysis, the repeated execution time of the inner
for-loop is measured in the following way: the MPC5777C
contains a timermodule called STM_Awhose 32-bit timer—
once started—increases at half of the processor frequency,

Table 2 Execution times in timer ticks for the code of listing 1

1st 2nd 3rd 4th

Cache DIS 65,008 64,983 64,983 64,983

Cache EN 18,291 17,500 17,500 17,500

i.e., 132 MHz. By noting down the timer values before and
after the for-loop and sending the difference via a serial inter-
face to amonitoring computer, execution timemeasurements
can be taken in real-time and with minimal overhead. This is
also the method employed in all further time measurements
taken in this paper. The execution timemeasurement data are
stored in a non-cached memory area, and the transmission
to the monitoring computer is performed through a DMA
channel. Transmission of the execution time measurement
data is done after completing the required timing analysis,
so as not to interrupt the timing analysis. One expects that
there is a difference in execution times depending on the
enabling of the data cache. With cache, the execution time
should be smaller, as the processors L1-Cache with 16 KB
is big enough to hold the whole array x inside it and no
direct RAM accesses are needed, compared to the situation
with disabled cache, where in every iteration some access
to RAM takes place. However, for the first iteration with
enabled cache, we expect a bigger run-time, as the array x is
not yet in the cache, which highlights the benefits of enabling
the cache, in case of cache-sensitive applications, and also
confirms that in our fight controller application, the cache
will become fully usable after the first iterations, which is
accounted in the WCET analysis.

Running the experiment once with enabled and once
with disabled caches showed (Table 2) that very quickly the
execution times became stationary, and as expected, cache
activation reduced the execution times, with the first execu-
tion taking longer than the following ones.

6.3 Execution time analysis

To get an overview of the typical execution times of the
CFC_step() function, the same simple instrumentation as
described above was used. The measurements were taken
using different parameter settings: one parameter was the
optimization level of the compiler (-O0, -O1, -O2, -O3),
another one is the enabling of data and instruction cache,
and the third one is the use of the branch prediction mod-
ule of the processor. Further, measurements were taken in
the “idle” setup and the “flying” setup using a pilot and the
HIL-Flight Simulator.

A typical plot of the execution time over controller repeti-
tion number in the “flying” setup is shown in Fig. 6. One can
see that in the beginning, the execution time is a bit smaller.
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Fig. 6 Measured run-times of execution of the Controller algorithm in
the “flying” scenario, Cache On, -O0, Branch prediction enabled

Fig. 7 Execution times of CFC_Step

This related to the fact, that the controller itself has to be
armed and activated before being able to control the aircraft.
The high plateau afterward corresponds to nominal operation
with the CFCC in control. Characteristics are the sharp drops
in the execution time that happen occasionally. This comes
from the fact that in INDI, an iterative control allocation algo-
rithm is used. In certain cases, this allocation converges very
fast—e.g., in the cases, where there is no difference to the
solution from the last execution. Nominal execution times
are centered around a certain value, although subject to jit-
ter that introduces a certain standard deviation. The bar plots
in Fig. 7 document the respective numbers for the different
settings.

These measurements reveal that activating the cache has
a big impact as it always reduces the execution time by a
factor of around 2.8. Compiler optimization also reduces exe-
cution times substantially. Here, the difference from O0 (no
optimization) to O1 is the biggest, while the transitioning to
O2 or O3 does not have a very big effect anymore. While
enabling the O0 compiler flag, the GCC compiler the com-
piler reduces the execution time, and the code size and, while

avoiding any optimizations that significantly affect the com-
pilation time. By enabling O2 the GCC compiler performs
all possible optimizations except space-speed trade-off, O2
has higher compilation time than O1. Lastly, by enabling O3
the GCC compiler enables all the optimizations flags. In gen-
eral, execution times in the “flying” scenario are bigger than
those in the “idle” scenario. Here, a factor of about 1.6 for
disabled caches and a factor of 1.3 for enabled caches can
be observed. These factors make it evident that timing mea-
surements should not only be taken for the “idle” scenario
but for a multitude of realistic flight scenarios. These mea-
surements indicate that the maximum observed execution
time of CFC_Step() is always within bounds here we run the
flight control computer in a simulation environment while
flying, to force the execution of our SW WCET software
path. Even a build without optimization results in execution
times well below the limit of 20 ms. However, we can not be
sure that this big safety margin exists for all possible flight
scenarios. Although the maximum observed execution time
is always within bounds, WCET analysis is still needed to
guarantee that during flight time, the flight control computer
will always have the required idle time, and the execution of
the CFC_Step will fulfill the timing requirement of the entire
system.

6.4 Worst case execution time analysis

This section discusses the timing analysis and provides our
approach to analyze the system’s WCET in more detail. In
real-time applications, timing information is important to
understand the system behavior on the target hardware under
all circumstances. In this section, we will discuss common
tools and methodologies that are being used to analyze the
worst-case execution time and present the results ofmeasure-
ments and timing analysis for our case study.

Besides the importance of analyzing the timing informa-
tion to understand the application behavior, aWCET analysis
is demanded by the aerospace certification authorities [Fed-
eral Aviation Administration (FAA) [24] and European
Union Aviation Safety Agency (EASA) [25]]. Thus, it is
good practice to integrate the needed tools and processes
for analyzing theWCET into the tool-chain and the software
development process.

Figure8 from Rapita [26] shows how the execution times
of a certain application are typically distributed. What is
displayed here is a histogram of subsequent execution time
measurements taken by running the application software on
the target hardware.

Real-time systems typically comewith an upper bound on
the response time, which is the time passing between captur-
ing the inputs, executing the functionality, and producing the
output. The WCET of a function is the maximum interval
of time this function can need to be executed on the compu-
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Fig. 8 Timing information observable during run-time. Figure repro-
duced with permission

tational platform. We did the WCET analysis to understand
the maximum time frame demanded by the system, and to
verify if it is acceptable or not. The WCET path is the path
that results in having the longest execution time. The Low
watermarkof a certain functionality is theminimumobserved
execution time captured while executing this function on the
target. Contrarily, the high watermark of a certain function is
the maximum observed execution time captured while exe-
cuting this function on the target. TheWCET is always equal
to or higher than the high watermark.

6.5 Tools and approaches forWCET analysis

Three well-known approaches are being used nowadays for
analyzing/measuring the worst-case execution time:
Abstract Interpretation [27–29] is a static analysis method
where the computations are abstracted and symbolically
executed with respect to the hardware model, along with
pipelines, caches, memory, and buses. This approach does
not require real hardware as it relies on simulation. This
will avoid having the target hardware as a blocking point.
Abstract interpretation plays a great role at the start of new
projects, where there could be a limitation in hardware,
i.e. if the SW development started before having the actual
hardware. Abstract interpretation requires comprehensive
engineering work to implement models of the entire compu-
tational platform architecture, as well as the entire hardware
configuration.
Analysis by measurements is based on running the soft-
ware on the hardware and capturing timing information of
the application and the software tasks, e.g., on the target
hardware. The hardware is needed for this approach as the
measurements will be performed on the target itself. If the
data are captured on the target hardware itself, it needs to be
transferred to the PCwith the analysis tool using for example
a debugger or a communication interface such as Universal
Asynchronous Receiver–Transmitter (UART), CAN, or Eth-
ernet.

Hybrid analysis [30] combines information from hardware
timing measurements as well as from static code analysis.

6.6 Experiments and results

This section shows the WCET analysis using the tool
RapiTime from Rapita, which is performing a hybrid WCET
analysis. The controller software has been instrumented by
RapiTime. The auto-generated instrumented software con-
tains a certain ID for each code block, while executing a
certain codeblock the instrumented software stores the times-
tamp captured at the start and end of executing this code
block.2 These timestamps get mapped to the code block ID
assigned by the tool while generating the instrumented soft-
ware. The tool uses these timestamps and the corresponding
IDs to analyze the execution time for each code block sep-
arately. Each function consists of one or more code blocks,
the function WCET is the sum of the WCET of each code
block inside this function.

RapiTime provides several timing analysis profiles, we
instrumented the software using the “Full Timing” profile;
which instruments each code block; as explained above, to
be able to get detailed timing information. Then, the instru-
mented software has been executed on the target hardware,
the timing information has been collected while running the
controller on the hardware. The target hardware sends the
captured timing information to the host PC via a commu-
nication channel, in these experiments, we used the UART
protocol to transmit the timing analysis data from the tar-
get hardware to the host PC. This timing information gets
provided to RapiTime, the tool combines the captured tim-
ing information, additionally, it performs static code analysis
on the source code. Lastly, the tool combines the captured
run-time timing information and the data collected from the
static code analysis to calculate theminimum execution time,
average execution time, high watermark, andworst-case exe-
cution time.

We used RapiTime to estimate the WCET for four dif-
ferent executables, all executing the same main functionality
(i.e., the CFC_task with the CFC_step() function being the
most important ones), butwith different settings in the startup
phase of the processor, leading to certain features being used
or not. The GCC compiler optimization was set to -O0 for
all four code versions. All measurements were taken on tar-
get and in the “idle” scenario, by running the instrumented
software on the target for a certain amount of time. These
are the scenarios that we evaluated (a) Data and instruction
caches ON, branch prediction ON, (b) Data and instruction
caches ON, branch prediction ON, (c) Data and instruction

2 Compilers assemblies statements and declarations presented in the
source code into groups, each group is referring to a code block.
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caches OFF, branch prediction ON, and (d) Data and instruc-
tion caches OFF, branch prediction OFF.

We afterward compared the timing analysis information
generated by RapiTime for the four settings by having a
look at the below timing matrices which are included in the
RapiTime generated report:

• Minimum Execution Time: The minimal observed exe-
cution time for executing the controller software on the
target.

• Average Execution Time: The average execution time
observed while running the controller software on the
target.

• High Water Mark: The maximum observed execution
time while executing the controller software on the tar-
get. TheWCET is always equal to or higher than the high
watermark.

• Worst-Case Execution Time: RapiTime computes this
number by assuming that each software block inside the
application is being executed in its maximum observed
execution time which has been observed while execut-
ing the application on the target. In addition, the tool
assumes that each loop inside the application iterates the
maximum observed number of iterations while running
the application software on the target. RapiTime also
assumes that for each loop the maximum execution time
observed to execute a certain iteration will be the execu-
tion time needed for every single one of the iterations in
that loop.

Figure 9 compares the minimum execution time, average
execution time, high watermark, and worst-case execution
time of each of the 4 code versions.

The analysis shows how enabling the caches and branch
prediction impacts the four timing parameters.

• The WCET was reduced by 11.04% by enabling the
branch prediction only.

• The WCET was reduced by 53.13% by enabling the
instruction and data caches only.

• TheWCETwas reduced by 54.02% by enabling both the
caches and branch prediction.

• The high-watermarkwas reduced by 18.72%by enabling
the branch prediction only.

• The high-watermarkwas reduced by 60.29%by enabling
the instruction and data caches only.

• The high-watermarkwas reduced by 62.54%by enabling
both the caches and branch prediction.

It is underlined that the impact of branch prediction
alone is not so significant, this concludes that the correctly
predicted branches are not 100% in the WCET path. Fur-
thermore, theminor improvement noticed in enabling branch

prediction alone is related to our SW architecture and struc-
ture, as it does not include many branches. In contrast, to
branch prediction, we noticed major improvements while
enabling the caches ON alone, this is because our SW is
cache-sensitive, due to the enormous amount of lookup tables
which is used by the flight controller.

The results show that enabling the caches and branch pre-
diction reduced the controller execution time on the target
hardware. For any controller benchmark, this timing analy-
sis can be performed to examine the impact of any hardware
feature on the average execution time and WCET. Develop-
ers can select the right hardware features to be enabled, by
comparing the WCET for different hardware configurations.

7 Related work

In the research paper “Execution time analysis and optimiza-
tion techniques in the model-based development of a flight
control software” [32], they approached enhancing the exe-
cution time using a formally verified compiler and enabling
the compiler optimization. CompCert from Absint is used
as a compiler and has been evaluated in this case study.
The flight management controller has been developed using
model-based development, and the software has been auto-
generated from the Simulink model. This current case study
is performed on a flight control application; in which safety
perspectives were considered. The enhancement is assessed
by evaluating the execution time measurements on the hard-
ware using a real-time environment and a static worst-case
execution time analysis using aiT from Absint.

This paper concluded that it is conceivable to get a
safe execution time bound for Simulink model-based devel-
oped software. To get constrained limits for the investigated
WCET without exerting a tremendous amount of effort in
the analysis. The use of the CompCert [33] prompts an enor-
mous improvement in the execution time in contrast with the
non-optimized compilation. CompCert utilization improved
the execution time with a margin more significant than the
improvements achieved by optimizing the auto-generated
code. they recommended applying both CompCert optimiza-
tions in combination with auto code generation optimization
to achieve the maximum execution time enhancement.

In the research “Impact of Cache Partitioning on Multi-
Tasking Real Time Embedded Systems” [34], the authors
discussed cache partitioning and its impact on multi-tasking
real-time applications. Cache partitioning approaches are
extensively used as an interpretation for the cache inter-
ference quandary. Their main concern is that real-time
embedded systems need to limit task real-time usage, rather
than just improving the cache hits/misses rates, by reducing
the cache misses ratio.

They presented the partitioning issue in the form of an
optimization problem. The optimization problem is in charge
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Fig. 9 Comparison of timing
analyses carried out by
RapiTime [31], BP refers to
branch prediction

of handling the size of cache partitions, in addition, to assign-
ing the partitions to the real-time tasks. They aim to improve
the task’s worst-scenario utilization by resolving this prob-
lem. They presented the proposed algorithm in their research
paper. Their results show that the cache partitioning problem
can lead to: (a) increasing real-time schedulability, and (b)
improving the task run-time utilization by 15%. It could be
beneficial to combine the tool-chain and process mentioned
in our case study, with cache partitioning techniques, divide
the controller application, into several tasks, see the impact
of the proposed approach in the worst-case execution time,
and compare the timing measurements with the scenario of
just enabling the cache without the cache partitioning.

The effective use of multi-core platforms is one of the
prime challenges in aerospace. The introduction of multi-
core platforms is especially challenging for the high critical-
ity levels of Design Assurance Level A (DAL-A) and Design
Assurance Level B (DAL-B). Multi-core platforms usage in
aerospace applications is defined in Certification Authori-
ties Software Team (CAST)-32A [35] as they showed the
challenges of themulti-core platforms. The paper “Multicore
In Real-Time Systems - Temporal Isolation Challenges Due
To Shared Resources” [36]; introduces multi-core temporal
isolation techniques to allow the usage of advanced compu-
tational platforms in aerospace applications by applying the
following temporal isolation: (a) system bus, (b) memory, (c)
cache, (d) logical units, and (e) pipeline stages.

Applying the analysis measurements that have been dis-
cussed in our case study, especially the WCET analysis on
a multi-core platform is a promising topic for the future of
aerospace. Since the silicon industry is moving very fast,
and nowadays there are advanced computational platforms
available. However, this leads to making the analyses more
complicated, it’s more challenging to analyze the WCET for
applications running on these platforms, due to the inter-
action between multi-core and shared resources. Also, the
new platforms provide more advanced hardware features,
which results in more complicated hardware architecture;
this makes the WCET analysis more challenging, and certi-
fying the hardware according to DO-254 [37] is not an easy
task.

For measuring code coverage, there are numerous COTS
and Open Source tools available. For an overview see, e.g.,
[38].

8 Recommendations

In this section, we state our recommendations which shall
ease the development strategy and flight systems certifica-
tion process. We found out that planning the tools which
shall be used in code verification and providing the DO-
178 certification artifacts, need to be done at an early stage
in the development cycle, we have seen also that even for
low-criticality level software projects tools like Polyspace
for static code analysis, avstack for stack analysis, gcov for
code coverage, and RapiTime for WCETmeasurements, can
be very useful to avoid SW issues, and errors at late stages in
the projects. These verification tools can run automatically
through CI, which will reduce the overhead of running the
verification cycles at an early stage in the project.

In addition to tooling planning,V&Vplanning plays a role
as well, in aerospace software projects, the relation between
V&V tasks, and certification requirements needs to be high-
lighted at an early stage in the projects, and the definition
of the V&V tasks needs to be aligned with the certification
requirement, in this approach the V&V itself shall provide
the certification artifacts during the development cycle. This
will make the certification process smoother and more con-
venient.

Moreover, defining test cases, which test the system
against its high-level and low-level requirements, can ease the
V&V right side tasks, since testing tasks consumemost of the
project development time, it makes sense to start testing in an
early phase, and run the test cases on the developed functions
using modern Continuous Integration (CI) approaches.

We found that early software and resources analysis
provides, valuable information for the entire project, for
example, a high worst-case execution time for some con-
troller functions, can be detected if each developed controller
module has its worst-case execution time analysis once it’s
fully developed, before integrating the full flight controller
modules. This can highlight if a certain module has a high
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worst-case execution time margin and needs further opti-
mization, or even needs changes in its design, or hardware
configuration needs changes, for example, cache config-
uration, branch prediction, or in the worst scenario, the
computing platform needs to be changed as to provide suffi-
cient computing resources to fulfill the execution of the flight
controller algorithms with the required idle time needed by
the certification authorities, same goes for other analysis as
stack analysis, and static code analysis, this analysis helps in
avoiding major project issues in the late development stage.

While doing intensive SW analysis and testing during the
V&V cycles, many tools need to instrument the software,
for providing testing and analysis data, for example, run-
time test cases, test coverage, or worst-case execution time.
This results in providing the analysis on a different code ver-
sion than the developed initial code. In this case, analysis
and software verification verified the instrumented software
and not the initially developed software, its recommended
to fly with the instrumented software; as moving the instru-
mented code, needs to prove, that the instrumented software
has the same analysis and verification aspects as the instru-
mented software. However, the instrumented software uses
additional memory resources, and CPU load, which needs to
be reserved for it during the project resources planning.

Many projects only perform static and run-time analysis
on the application level and avoid examining the operating
system and low-level artifacts as a micro-controller abstrac-
tion layer. However, the interaction of such low-level artifacts
and the exact SoC used for the project can cause HW/SW
failures, It is recommended to include the operating sys-
tem and the micro-controller abstraction layer SW in the
validation and verification process, to examine if the entire
system is working as expected and the operating system, pro-
vides the required functionalities on the selected SoC, also
timing dependencies between an operating system and appli-
cation need to be examined since the operating system adds
additional latency for providing some functions which are
used by the flight controller, this latency needs to be con-
sidered in the analysis. In addition, to this, the operating
system and the micro-controller abstraction layer, reserve
memory resources, and also share the cache lines with the
flight controller, these resource sharing and conflicts need to
be considered in the HW/SW analysis.

Hardware configuration plays a significant role in the
entire SW analysis, for example, cache and branch predic-
tion are significant topics in flight computer development,
because flight algorithms are cache-sensitive, and also use
many branch scenarios. We found that activating the cache
reduces the execution time by a factor of 2.8, and the con-
troller execution time is higher during the flight time, with a
factor of 1.6 in case of cache is disabled, and a factor of 1.3 if
the cache is enabled. This shows how the flight algorithms are
cache-sensitive. This opens the topic of cache optimization

to extend the benefits gained from enabling the cache. For
example, cache lock-down and cache coloring can help sig-
nificantly improve system determinism. In addition, to the
hardware configuration and its impact on the entire flight
computer performance, compiler settings as the optimiza-
tion level, can highly influence the flight controller memory
and CPU load, it’s recommended that every flight controller
project study the available compiler options, and its impact
on the project. In our project, we found the execution time
reduction gained by -O1 instead of -O0 is significant. How-
ever,moving to -O2 or -O3 did not result in further significant
optimizations. In conclusion in general HW configuration
and compiler settings can result in improving the execution
time by a whole order of magnitude in corresponding sce-
narios.

9 Conclusions

In this section, we conclude our research; which has been
represented in our study case. Integration of worst-case exe-
cution time analysis tools to the tool-chain is a good practice
especially for aerospace applications since it allows early
understanding of theWCET and the percentage of which the
WCET is growing over the development of new controller
(application) features. in addition, running the application
on the host PC processor architecture is not enough to under-
stand how the application runs and behaves on the target
hardware. Also, we managed to compare the margin of
growth between the average execution time, high watermark
execution time while running the full software stack on the
target hardware, and the theoretical analysis of the WCET.
This allows a better understanding of the application and the
hardware behavior.

The utilization of the avstack tool was straightforward, the
tool uses auto-generated stack information delivered by the
GCC compiler using the compiler “-fstack-usage” flag. The
tool uses the auto-generated stack information as input and
generates the maximum stack size utilized for each function.
This is a good practice to be integrated into the tool-chain,
for a better understanding of the stack usage.

As shown in the related work several approaches could be
added to the systems from similar study cases; to improve the
run-time performance. Replacing the GCC with CompCert
from Absint could allow us to enable the compiler optimizer
while having a verified executable, this could result in a lower
WCET. Besides, it’s fascinating to try applying our toolchain
on a multi-core platform and study how the WCET analysis
can be integrated into the toolchain and process in the case
of multi-core platforms.
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