CORRECTION

Correction to: End-of-life geostationary satellite removal using realistic flat solar sails

Hao Mei¹ · Christopher J. Damaren¹ · Xingqun Zhan²

Published online: 14 June 2021 © Shanghai Jiao Tong University 2021

Correction to: Aerospace Systems https://doi.org/10.1007/s42401-021-00089-8

Due to an unfortunate oversight the Eq. (8), Tables 2 and 4 has been given erroneously. It should read (Tables 2 and 4)

The original article can be found online at https://doi.org/10.1007/ s42401-021-00089-8.

🖂 Hao Mei

hao.mei@mail.utoronto.ca

Christopher J. Damaren damaren@utias.utoronto.ca

Xingqun Zhan xqzhan@sjtu.edu.cn

- ¹ University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, ON M3H 5T6, Canada
- ² Shanghai Jiaotong University School of Aeronautics and Astronautics, 800 Dongchuan Road, Shanghai 200240, China

Aerospace Systems (2021) 4:269-270

Table 2 region	The GEO graveyard	Property	Requirement
		Perigee altitude	A minimum increase of 235 km + $(100 \cdot C_R \cdot A/m)$
			235 km : the sum of the upper altitude of the GEO protected region (200 km) and the maximum descent due to luni-solar and geo-potential perturbations (35 km)
			C _R : the solar radiation pressure (SRP) coefficient
			A/m: the area to dry mass ratio
		Eccentricity	[0, 0.003]

Solar sail thrust model		
Ideal sail	$\boldsymbol{f}_{\text{ideal}} = \left[2P_{\odot} \cdot (A/m) \cdot \cos^2 \alpha\right] \boldsymbol{n}$	
Realistic flat Sail	$f_{\text{real}} = f_n + f_t$	
	$\boldsymbol{f}_n = \left(P_{\odot} \frac{A}{m} \left[(1 + \tilde{r}s) \cos^2 \alpha + B_f (1 - s)\tilde{r} \cos \alpha + (1 - \tilde{r}) \frac{\xi_f B_f - \xi_b B_b}{\xi_f + \xi_b} \cos \alpha \right] \right) \boldsymbol{n}$	
	$\boldsymbol{f}_t = \left(P_{\odot} \frac{A}{m} (1 - \tilde{r}s) \cos \alpha \sin \alpha \right) \boldsymbol{t}$	
Control angle constraints		
Ideal sail	$\alpha \in [0^\circ, 90^\circ], \delta \in [0^\circ, 360^\circ]$	
Realistic flat sail	$\alpha \in [0^\circ, 85^\circ], \delta \in [0^\circ, 360^\circ]$	
System dynamics		
Ideal sail	$\dot{\boldsymbol{x}}(t) = \boldsymbol{P}(\boldsymbol{x}) \cdot \boldsymbol{C}_{OP} \boldsymbol{C}_{PG} \boldsymbol{C}_{GS} \cdot \boldsymbol{f}_{\text{ideal}} + \boldsymbol{b}(\boldsymbol{x})$	
Realistic flat sail	$\dot{\boldsymbol{x}}(t) = \boldsymbol{P}(\boldsymbol{x}) \cdot \boldsymbol{C}_{OP} \boldsymbol{C}_{PG} \boldsymbol{C}_{GS} \cdot (\boldsymbol{f}_n + \boldsymbol{f}_t) + \boldsymbol{b}(\boldsymbol{x})$	

The original article has been corrected.