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Abstract
Accurate remaining useful life (RUL) estimation is crucial for the maintenance of complex systems, e.g. aircraft engines.
Thanks to the popularity of sensors, data-drivenmethods are widely used to evaluate RULs of systems especially deep learning
approaches. Though remarkably capable at non-linear modeling, deep learning-based prognostics techniques lack powerful
spatio-temporal learning ability. For instance, convolutional neural networks are restricted to only process grid structures
rather than general domains, recurrent neural networks neglect spatial relations between sensors and suffer from long-term
dependency learning. To solve these problems, we construct a graph structure on sensor network with Pearson Correlation
Coefficients among sensors and propose a method for combining the power of graph convolutional network on spatial learning
and sequence learning success of temporal convolutional networks.We conduct the proposedmethod on aircraft engine dataset
provided by NASA. The experimental results demonstrate that the established graph structure is appropriate and the proposed
approach can model spatio-temporal dependency accurately as well as improve the performance of RUL estimation.

Keywords Aircraft engine · Remaining useful life estimation · Graph structure · Spatio-temporal modeling

1 Introduction

In view of the major consequences and huge expense are
usually relevant to system failures, prognostics and health
management (PHM) has received increasing attention in
academia and industry. As a challenging task in PHM, prog-
nostics aims to estimate how much time remains before
a likely failure or in other words remaining useful life
(RUL) to promote reliability and safety. Methods to evalu-
ate RUL can be mainly grouped into three major categories:
model-based methods, experience-based methods and data-
driven methods [1]. The former requires extensive expert
knowledge about systems to build a physical model [2–4],
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which is usually unavailable in practice, e.g. aircraft engines.
Experience-based methods leverage historical failure cases
to build hidden relationship among current system states,
current lives and recorded failure instances. However, meth-
ods included in this category, e.g. instance-basedmethods [5,
6], require more calculations as reference cases increase and
depend too much on run-to-failure cases.

Data-driven methods, especially deep learning tech-
niques, have emerged as a research hotspot with the availabil-
ity of sensor data fromnumerous systems. The clipped sensor
readings and their corresponding RULs are used as inputs to
train a deep neural network, and the network can discover
intricate relations between them with powerful non-linear
modeling capabilities. For example, Babu et al. [7] treated
segmented sensor readings as 2-dimensional (2D) inputs and
utilized 2D convolution to extract more informative feature.
Li et al. [8] stacked 1-dimensional (1D) convolution layers
for feature extraction of each sensor signals and predicted
RUL by a fully-connected layer. Malhi et al. [9] proposed a
learning-based method for long-term prognostics of rolling
bearing with recurrent neural network (RNN). Wu et al. [10]
combined a long short-termmemory network (LSTM) based
model with a dynamic difference method to get rid of oper-
ating condition influence.
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However, methods mentioned above neglect spatial rela-
tionships between different sensors and RNN-based struc-
tures are possible to accumulate error by steps and difficult
to capture long-term dependence. In this work, we adopt
two crucial strategies to solve these two problems. First, we
compute the weighted adjacency matrix of senor network
with Pearson correlation coefficients (PCCs) among sensors.
Second, graph convolutional networks (GCNs) and tempo-
ral convolutional networks (TCNs) constituted by stacked
dilated casual convolutions work together to capture spatio-
temporal dependencies followed by gating mechanism and
skip connections.

The rest of the paper is organized as follows. Section 2
introduces the related work, including convolution on graph
structure and spatio-temporal graph neural networks. Sec-
tion 3 presents how to build graph structure of sensor network
via PCCs and introduces the proposed framework. Section 4
shows the experimental results on C-MAPSS dataset. The
last section draws the conclusion and discusses the future
work.

2 Related work

2.1 Convolution on graph structure

Convolutions in the graph domain can be categorized as spa-
tial approaches and spectral approaches [11]. The former
defines convolutions directly on graph which is challeng-
ing to deal with differently sized neighborhoods [12–14]. Li
et al. [12] model the spatial dependency based on diffusion
process as:

gθ ∗ x �
K−1∑

k�0

(
θk,1Ak

1 + θk,2Ak
2

)
x, (1)

where x ∈ R
N . is the input; gθ is a filter parameterized by

θ ∈ R
K×2.; A1 and A2 are the transition matrices of the

diffusion process and the reverse one; k is the diffusion step
and in [12] a finite K -step truncation of the diffusion process
is adopted.

The latter operated convolutions based on Fourier domain
[15], which is defined as:

gθ ∗ x � gθ (L)x � gθ

(
U�UT

)
x � Ugθ (�)UT x, (2)

where gθ is a filter parameterized by θ ∈ R
N ; x ∈ R

N is

the signal; L � IN − D− 1
2 AD− 1

2 is the normalized graph
Laplacian (D is the degree matrix and A. is the adjacency
matrix of the graph);� is the diagonal matrix of eigenvectors
of L; U is the matrix of eigenvectors of L .

Further to reduce the high computing consume of Eq. (2),
many researchers proposed different methods. Hammond

et al. [16] approximate the gθ (�). with a truncated expansion
in terms of Chebyshev polynomials up to K th order:

gθ ∗ x ≈
K−1∑

k�0
θkTk

(
L̃
)
x, (3)

where L̃ � 2
λmax

L − IN , λmax is the rgest eigenvalue of L; Tk
(x) � 2xTk−1(x)−Tk−2(x)with T0(x) � 1 and T1(x) � x .;
θ ∈ R

K s a vector of Chebyshev coefficients.
More efforts are made to overcomthe problem of over-

fitting and numerical instabilities in [17], where a first-order
approximation of Chebyshev polynomials and some normal-
ization tricks are introduced:

gθ ∗ x ≈ θ
′
0x + θ

′
1(L − IN )x � θ

′
0x − θ

′
1D

− 1
2 AD− 1

2 x

� θ
(
IN + D− 1

2 AD− 1
2

)
x � θ D̃− 1

2 ÃD̃− 1
2 x,

(4)

where θ � θ
′
0 � −θ

′
1, θ

′
0 and θ

′
1 are two free parameters;

Ã � A + IN is the adjacency matrix with self-connections,
IN is the identity matrix; D̃ii � ∑

j
Ãi j .

2.2 Spatio-temporal graph neural networks

Spatio-temporal graph neural networks have a wide range of
applications, e.g. traffic forecasting, action forecasting and
wind speed forecasting [18–22]. In these tasks, the key is to
determine the optimal combinations of spatial information
and temporal dynamics under specific settings. Li et al. [12]
replaced the matrix multiplications in gated recurrent units
(GRU)with diffusion convolutions to extract spatio-temporal
features of traffic flow, which was modeled as a directed
graph. Seo et al. [19] combined convolutional neural network
(CNN) on graphs to identify spatial structures and RNN to
find dynamic patterns for predicting structured sequences of
data, e.g. frames in videos.

However, RNN-based approaches are inefficient for long
sequences and more likely to explode when they are com-
bined with GCN [20]. Yu et al. [21] computed the distances
among stations as the adjacency matrix of road graph, and
then utilized complete convolutional structures to extract
spatio-temporal features of traffic network. Yan et al. [22]
designed a generic representation of skeleton sequences and
extended graph neural networks with 1-D CNN to model
dynamic skeletons effectively. Zhang et al. [23] used adaptive
graph convolution to learn spatio-temporal features for RUL
prediction. Different from their work, we explore a different
graph convolution process and a different network structure.
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Fig. 1 Structure of the proposed method

3 RUL estimation based on spatio-temporal
graph convolutional network

In this work, the graph structure of sensor network is con-
structed with PCCs and a method combining GCNs and
TCNs is proposed to estimate RULs. Figure 1 shows the
structure of our model where spatio-temporal convolutional
blocks (ST-Conv blocks) are crucial components. Each ST-
Conv block consists of two GCNs and two TCNs followed
by gating mechanism to fuse both spatial and temporal fea-
tures. Residual connections are applied in blocks and skip
connections are utilized throughout the network to speed up
convergence. The fully connected layer is utilized to get the
final RUL result.

3.1 Problem definition

Generally, RUL estimation is a typical time-series prediction
problem that predicting the systemwill fail after ŷt time steps
based on given T running observations:
[
xt−T+1, . . . , xt

] →h(·) ŷt . (5)

where ŷt is the estimated RUL; xi ∈ R
N

(i � t − T + 1, . . . , t) is recorded sensor readings at
time i ; h(·) is a function that maps T running observations
to the RUL at time t .

Figure 2 shows a simplified diagram of engine. We can
see various subroutines are assembled together and we can
monitor its status by collecting data from different parts, such
as pressure at fan inlet, HPC stall margin, temperature at
LPT olet and so on. It is undoubtful that each part will be
affected by other parts even operating environments rather
than independent of each other. Considering the external and
internal influences, graph structure is very suitable for this
situation since it can aggregate information fromneighboring
nodes. In this work, we define the sensor network as a graph
where sensors are nodes, their relations are edges, impact
magnitude and its positive or negative represent weighted
adjacencymatrix. The schematic diagram is shown inFig. 3.

Fig. 2 Simplified diagram of engine [24]

Combined with the graph structure, the original Eq. (5)
can be expanded to:

[
xt−T+1, . . . , xt ;G] →h(·) ŷt , (6)

where G � (V, E, A) is the graph structure of sensor net-
work; V is the set of nodes or in other words sensors with a
total of N ; E . is the set of edges; A ∈ R

N×N is a weighted
adjacency matrix derived from other nodes.

3.2 Graph convolution for spatial information

Different from traffic forecasting or action recognition where
the adjacency matrix can be computed based on Euclidean
distance among stations in traffic network or the intra-body
connections of joints can be represented by distance accord-
ing to partitioning strategies, relationships between sensors
are not provided explicitly in RUL estimation tasks. Since
the proximity of two sensors in Euclidean domain doesn’t
mean they are closely related, Euclidean distance is not the
optimal metric for relationship modeling. Hence, we con-
struct the weighted adjacency matrix based on PCCs among
sensors. The formulation of PCCs for sequence X nd Y is:
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Fig. 3 Graph structure of sensor
network

ρX ,Y � cov(X ,Y )
σX σY

� E((X−μX )(Y−μY ))
σX σY

� E(XY )−E(X)E(Y )√
E(X2)−E2(X)

√
E(Y 2)−E2(Y )

,

(7)

where cov(X ,Y ). is the covariancof X and Y ;σX and σY
are the standard deviations of X and Y ; μX and μY are the
means of X and Y ; ρX ,Y is a number between -1 and 1 that
indicates the extent to which two variables are related. Then
the weighted adjacency matrix is defined as:

Ai j � eρXi X j . (8)

Further based on the research of Li et al. [12] and Eq. (4),
GCN on sensor readings can be represented as:

Z �
K−1∑

k�0
Pk XWk, (9)

where P � A∑
j Ai j

is the transition mrix; Wk are trainable

weights.

3.3 Spatio-temporal convolutional block

The ST-Conv block takes advantages of CNNs and RNNs
as well as prevents their disadvantages. Due to the defects of
RNN-based structure, herewe choose dilated causal convolu-
tion [25] as temporal convolutional layer to extract temporal
dynamics. Dilated causal convolution can learn long-term
dependency properly in a non-recursive manner and increase
the receptive field without greatly increasing computational
cost or stacking many layers [26]. The formulation of dilated
causal convolution is:

x ∗ f (t) �
K−1∑

s�0
f (s)x(t − d × s), (10)

where x ∈ R
T is a 1D sequence input; f (·) ∈ R

K is a filter;
d is the dilation factor which controls the skipping distance.

LSTM outperforms than basic RNN in sequences mod-
eling thanks to the gating mechanism which can effectively
control the flow of information. Learning from the suc-
cess of LSTM and to enrich convolution operations with

nonlinearity, 1-D dilated causal convolution and gating
mechanism work together to extract features on time axis
[27]. Furthermore, to fuse information from both spatial
and temporal domains simultaneously, we embed GCN into
ST-Conv block. So, the formulation of ST-Conv block can
be defined as follows:

Y � tanh
(
θ1,1 ∗ X + θ1,2 ∗ Z

) 	 σ
(
θ2,1 ∗ X + θ2,2 ∗ Z

)
,

(11)

where 	 is the Hadamard product; σ(·) is the sigmoid acti-
vation function; θ1,1, θ1,2, θ2,1 and θ2,2 are convolution
parameters; Z is the output of GCN; X is the output of TCN.

4 Experiment

4.1 Dataset description

Saxena et al. [24] modeled a series of turbofan engines by
Commercial Modular Aero-Propulsion System Simulation
and recorded their run-to-failure data as C-MAPSS dataset.
As shown in Table 1, the dataset contains four subsets
covering different operating conditions and fault modes and
they are further divided into training and test subsets. Each
record includes 26 channels, involving engine id, running
time (in cycles), 3-dimensional operating condition settings
and 21-dimensional sensor readings. During training, all
available data points from all engines are used as training
samples. And for testing, only one data point corresponding
to the last recorded operational cycle for each engine is used
as the test sample [8].

4.2 Data preprocess

In practical application, degradation of a system tends to be
negligible in the initial stage and increases as it approaches
run-to-failure. Hence, we utilize a piece-wise linear degrada-
tion model to obtain RUL labels with respect to each sample,
whose maximumRUL is set as 130 according to the research
of Zheng et al. [28].
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Though each observation is 26-dimentional, some chan-
nels do not provide valuable information about degradation,
i.e. records on sensor #1, #5, #10, #16, #18, #19 and setting3.
Each selected channel is normalized by z-score normaliza-
tion:

z � x−μ
σ

, (12)

where μ is the mean; σ is the corresponding standard devi-
ation.

4.3 Experimental setting and evaluationmetrics

The experiments are conducted on a 64-bit windows server
with one Intel Core i7-7800×CPU, a 64G RAM and one
Nvidia GTX 1080Ti GPU. The default length of sliding win-
dow is 30. The selected observations are setting1, setting2,
sensor#2, #3, #4, #6, #7, #8, #9, #11, #12, #13, #14, #15,
#17, #20, #21 and cycle in turn.

In some cases, predicting failure early is better than late.
Late prediction may lead to accidents because condition-
based maintenance is too late to perform, while early failure
warning will not pose life threatening. So, an unbalanced
evaluation indicator average score (AS) is employed to penal-
ize late prediction. Its definition is denoted as:

AS � 1
n

n∑

i�1
si , (13)

where n is the number of test samples; si is the computed
score of i th sample:

si �
⎧
⎨

⎩
e
−

(
di
a1

)

− 1 for di < 0

e
di
a1 − 1 fordi ≥ 0

, (14)

where di � RULtrue
i − RULpre

i is the RUL estimation error
of the i th engine; a1 � 13 and a2 � 10 are default factors
in two cases.

We can know fromEq. (14) that if there are some instances
whose d is large enough, then the score will grow expo-
nentially. Furthermore, we also adopt another fair evaluation
index called Root Mean Square Error (RMSE), it is:

RMSE �
√

1
n

n∑

i�1
d2i , (15)

where di is the estimation error of the i th engine; n is the
number of test samples.

4.4 Experiment results

To show the effectiveness of our approach, we compare its
performance with other methods which are conducted under
the same data division way and same evaluation metrics.

Table 1 Information of C-MAPSS dataset

Sub dataset FD001 FD002 FD003 FD004

Number of training engines 100 260 100 249

Number of test engines 100 259 100 248

Operating conditions 1 6 1 6

Fault modes 1 1 2 2

The Adam optimization algorithm and RMSE loss function
are used during training. The comparison results are shown
in Table 2. We can know from Table 2 that our proposed
method has competitive performance in both RMSE and AS
especially for those operating condition is more complex.
Comparedwith previous approacheswhoseASofFD002and
FD004 is fifteen times more than it in a single environment,
our method reaches a more similar level in different environ-
ments. This proves GCN is effective for aggregating spatial
information from different orders of neighboring nodes. Fig-
ure 4 shows RUL prediction samples of four subsets.

4.5 Graph structure analysis

4.5.1 Analysis of weighted adjacency matrix

Figure 5 shows weighted adjacency matrixes of FD001 and
FD002 based on PCCs. Since data in FD001 is collected
under single operating condition, 0th and 1st observations
(i.e. setting1 and setting2) are unrelated with other sensor
readings, while in FD002 sensors are influenced by them. So,
the weighted adjacency matrixes can not only identify rela-
tions of running data but alsomodel the influence of operating
conditions.

4.6 Analysis the effectiveness of GCN

To further prove the effectiveness of our approach, we com-
pare our method with its non-GCN version. Figure 6 shows
their performance differences with respect to RMSE and AS.
We can see non-GCN method performs slightly worse on
RMSE and AS in FD001 and FD003 but much worse in
FD002 and FD004 where environments are more complex.
This demonstrates that our method can cope with multiple
operational conditions and RUL estimation tasks can benefit
from spatial information.

4.7 Effects of sequence length on performance

To explore the effect of sequence length on model perfor-
mance, here we take FD001 dataset as an example. Figure 7
shows the effect of sequence length on model performance.
The histogram represents RMSE and the line is average
training time. It can be observed that with the growth of
sequence length, average training time tends to increasewhile
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Table 2 Performance
comparisons of different
methods on C-MAPSS dataset

Method FD001 FD002 FD003 FD004

RMSE AS RMSE AS RMSE AS RMSE AS

NN [8] 14.80 4.96 25.64 70.48 15.22 5.22 25.80 82.35

DNN [8] 13.56 3.48 24.61 60.32 13.93 3.64 24.31 65.42

RNN [8] 13.44 3.39 24.03 55.00 13.36 3.16 24.02 56.17

LSTM [8] 13.52 4.32 24.42 55.83 13.54 3.47 24.21 57.75

MODBNE [29] 15.04 3.34 25.05 21.57 12.51 4.22 28.66 26.44

DCNN1 [8] 18.45 12.87 30.29 53.00 19.82 15.96 29.16 31.80

DCNN2 [8] 12.61 2.74 22.36 40.20 12.64 2.84 23.31 50.27

Our method 12.76 2.66 17.74 9.98 12.07 2.78 18.08 10.38

Fig. 4 RUL prediction samples of four subsets

the RMSE continues to decrease. Though the RMSE keeps
going down, average training time grow rapidly when the
sequence length greater than 30. So, we choose 30 as our
default sequence length in experiments.

5 Conclusion

This paper constructs the graph structure of sensor network
properly and proposes an effective method to estimate RUL,
which combines GCN and Gated-TCN to substantially fuse
spatial and temporal features. The experiments onC-MAPSS
dataset prove that our method can extract spatio-temporal
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Fig. 5 Weighted adjacency matrixes of FD001 and FD002

Fig. 6 Performance differences with respect to RMSE and AS

features adequately and improve the accuracy of RUL esti-
mation. Analysis about weighted adjacency matrix indicates
that the constructed graph is qualified for multi-environment
tasks. Furthermore, the effects of sequence length on prog-
nostic performance are investigated.

Further improvements are still available. For instance,
more precise adjacency matrix and more effective spatio-
temporal structure deserves more exploration.
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Fig. 7 The effect of sequence length on model performance. The his-
togram represents RMSE and the line is average training time
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