
COVID-19

SARS-CoV-2, an Underestimated Pathogen of the Nervous System

Shweta Jakhmola1 & Omkar Indari1 & Sayantani Chatterjee1
& Hem Chandra Jha1

Accepted: 10 September 2020
# Springer Nature Switzerland AG 2020

Abstract
Numerous clinical studies have reported neurological symptoms in COVID-19 patients since the spread of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), apart from the atypical signs of pneumonia. Angiotensin-converting enzyme-2 (ACE-2), a
potential receptor for SARS-CoV-2 entry, is expressed on various brain cells and cerebral parts, i.e., subfornical organ,
paraventricular nucleus, nucleus of the tractus solitarius, and rostral ventrolateral medulla, as well as in non-cardiovascular areas
such as the motor cortex and raphe. The resident CNS cells like astrocytes and microglia also express ACE-2, thus highlighting the
vulnerability of the nervous system to SARS-CoV-2 infection. Additionally, transmembrane serine protease 2 (TMPRSS2) and
furin facilitate virus entry into the host. Besides, the probable routes of virus entry into the nervous system include the hematogenic
pathway, through the vagus, the olfactory nerve, or the enteric nervous system. However, the trajectory of SARS-CoV-2 to the brain
needs investigation. Furthermore, a Th17-mediated cytokine storm is seen in COVID-19 cases with higher levels of IL-1β/2/7/8/9/
10/17, GM-CSF, IFN-γ, TNF-α, CXCL-10, MCP1, and MIP1α/β. Some cytokines can cross the blood-brain barrier and activate
the brain’s immune cells to produce neural cytokines, leading to neuronal dysfunctions. Nonetheless, most of the neurological
conditions developed due to viral infections may not have effective and registered treatments. Although, some antivirals may inhibit
the virus-mediated pathogenesis and prove to be suitable in COVID-19 treatment. Therefore, clinicians’ and researchers’ collective
expertise may unravel the potential of SARS-CoV-2 infection to prevent short-term and long-term CNS damage.
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Introduction

The initial cases of severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) infection appeared in December
2019 in Hubei province, China [1]. Since then, it has be-
come a global threat. Besides systemic and respiratory ail-
ments, 36.4% of coronavirus disease of 2019 (COVID-19)
patients developed neurological symptoms [2]. Additionally,
taste, smell, and visual impairments are reported in several
cases of COVID-19 [2]. SARS-CoV-2, a human CoV
(HCoV) belongs to β-coronaviruses, and various clinical
and pre-clinical studies have reported potential neurovirulent
properties of these viruses [3]. Furthermore, the presence of

SARS-CoV-2 in cerebrospinal fluid (CSF) of COVID-19
patients is confirmed through genome sequencing [4]; how-
ever, experimental evidence is needed to validate virus-
mediated neurological damage. Moreover, acute necrotizing
hemorrhagic encephalopathy (ANE) was observed in brain
computed tomography and magnetic resonance imaging of a
COVID-19 patient [5]. This rare complication is often asso-
ciated with intracranial cytokine storms and points towards
the indirect mode of SARS-CoV-2 influence on the brain
[5]. Also, a detailed study of brain tissue distribution of
angiotensin-converting enzyme-2 (ACE-2), a potential re-
ceptor for SARS-CoV-2 entry [6], may shed light on poten-
tial SARS-CoV-2-induced neurological alterations.
Elaborate ACE-2 expression studies state that the receptor
is preferentially expressed in the endothelium, vascular
smooth muscle cells, and on the surface of a variety of the
central nervous system (CNS) and peripheral nervous sys-
tem (PNS) cells [7–9]. Additional plausible entry routes to
the brain may include the hematogenic pathway, transmis-
sion through the vagus, the olfactory nerve, or the enteric
neuron (Fig. 1a) [10]. In brief, here we recapitulate varied
aspects of COVID-19-related neurological manifestations.
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Clinical Outcomes of Virus-Mediated Brain
Dysfunction: More Prevalent Than
Acknowledged?

The association of viruses with neural disorders is widely pop-
ular, although the relativity is still disputed. Neurodegenerative

diseases, affecting approximately 37 million people worldwide,
include degenerative ailments of the nervous system—the
brain, spinal cord, and nerves [11]. Numerous genomic and
proteomic studies unravel the similarities between virus-
mediated and classical neurodegeneration or neuropathies [12,
13]. Viruses introduce alterations in the functioning of neurons
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directly or indirectly. The neurotropic viruses afflict neurons
through cell lysis, necrosis, or apoptosis [14]. Indirectly, the
viruses damage the neurons by manipulating or attacking the
host immune responses. In the CNS, the virus can activate both
the adaptive and innate immune responses [15]. Common path-
ways involved in the activation of the immune responses in-
clude the TLR mostly 3, 7, and 8 mediated damage, the release
of free radicals, and inflammation [15]. Although, not always
does the CNS immune response lead to detrimental outcomes
as they usually assist in repair and regeneration [15].

Multiple studies mention the corroboration of infectious
respiratory organisms as causative agents of various neurolog-
ical diseases [16]. Respiratory syncytial virus (RSV) is known
to infect the lower respiratory tract, cause infections in the

immunocompromised patients, and target the CNS [16].
Often the virus is detected in the CSF samples of the
patients exhibiting symptoms like seizures and convulsions,
along with signs of ataxia, hormonal dysfunction, and
encephalopathies [16]. Also, in vivo studies demonstrate the
movement of the virus intranasally to the CNS [10]. Another
respiratory virus that affects the infants and has neurovirulent
abilities is the human metapneumovirus (hMPV) [17]. The
virus is substantially detected in encephalopathic patients’
CSF samples, although studies demonstrating the virus’
neuroinvasive properties are to be conducted [18].
Furthermore, Hendra virus (HeV) and Nipah virus (NiV) af-
fect humans and cause lung damage, pneumonia, along with
hemorrhagic and necrotizing alveolitis [19]. Typical signs of
neurological disturbance, including convulsions, seizures with
motor deficits, and febrile encephalitic syndrome, are ob-
served due to infection caused by these zoonotic viruses
[19]. Animal studies show the olfactory nerve to be the main
route to the CNS [20].

Also, the flu-causing influenza viruses account for nu-
merous seasonal epidemics with a severe lethality rate, ap-
proximately a million cases per year [21]. Additionally, the
viruses also affect the brain and are linked to encephalitis,
febrile seizure, acute necrotizing encephalopathy, and syn-
dromes like the Reye syndrome and Guillain–Barré syn-
drome [22]. According to some animal studies, the influenza
virus can alter the brain homeostasis by traveling to the
brain through the vagus nerve or the olfactory route [23,
24]. Intriguing, its association with Parkinson’s disease
(PD) and multiple sclerosis (MS) is also mentioned [25].
Many encephalitis lethargica and postencephalitic parkinson-
ism cases followed by the 1918 “Spanish” flu pandemic,
caused by influenza A (H1N1), make the involvement of
the flu virus evident [26]. Viruses like the enteroviruses
polioviruses (PV), coxsackieviruses (CV), echoviruses, and
human rhinoviruses (HRV) are known to invade the CNS
[27]. Studies describe HRV-induced meningitis and
cerebellitis [27]. EV-A71 (hand–foot–mouth disease
(HFMD)) and D68 outbreaks are associated with neurolog-
ical complexities like myelitis (AFM), meningitis, and en-
cephalitis [27].

The HCoVs can aggravate various neuropathologies.
HCoVs are related to the neuroinvasive animal CoVs like
porcine hemagglutinating encephalomyelitis virus, feline
CoV, and the mouse hepatitis virus, which is used to generate
MS models [28, 29]. Furthermore, a study conducted to dem-
onstrate the relation between the HCoVs (229E and OC43)
withMS and other neurological disorders involves identifying
viral RNA in human brain autopsies [30]. Importantly, CoV-
OC43 and CoV-229E are found in the CSF of PD patients
[31]. However, detailed studies are needed to differentiate
the mere presence and virus-associated disease alterations. In
addition, association of SARS-CoV is not just limited to the

�Fig. 1 aVirus entry routes into the central nervous system (CNS). (I) The
virus in the bloodstream may infect the peripheral immune cells. These
infected leukocytes may traverse the blood-brain barrier (BBB) com-
posed of specialized tight junctions, endothelial cells, pericytes,
and astrocytes. In addition, the virus may also cross the BBBwhich could
be severed due to the action of the cytokines or may enter the cerebrospi-
nal fluid (CSF) by direct interaction with the brain microvascular endo-
thelium cells. Both the mechanisms result in alterations in the brain ho-
meostasis and aggravate cytokine production within the CNS (II) Several
viruses like HSV and influenza viruses are known to infect the olfactory
epithelial membrane. SARS-CoV-2may also infect and damage olfactory
sensory neurons (OSNs) in the epithelium lining. The damage may be
direct or due to the production of cytokines produced by the accessory
cells in the olfactory system. The virus may anterogradely reach the
olfactory bulb through the cribriform plate. Finally, the virus may poten-
tially gain entry into the CNS through the mitral cells along the olfactory
tract. (III) Alpha herpesviruses (e.g. HSV-1, PRV) and polio virus (PV)
along with rabies viruses (RV) may migrate to the CNS through the
peripheral nerves. (i) Viruses may infect the mucosal epithelium follow-
ing infection of the axonal termini of the peripheral nerves. The virus may
spread to the spinal cord through retrograde axonal transport. (ii) Viruses
infect the smooth muscle cells and spread through the neuromuscular
junctions (NMJ) from muscles into the sensory/motor neurons of PNS
ganglia. (IV) The gastrointestinal epithelium expresses ACE-2 receptors.
Therefore, the cells may be easily infected by the virus. The virus may
directly invade the enteric nervous system or indirectly it may prime the
immune cells which may result in delayed neurological impairment. b
SARS-CoV-2-mediated cytokine storm. After attachment and entry into
the epithelial cells through ACE-2 receptor, the virus may activate the
pro-inflammatory pathway through TLR or NF-κB signaling followed by
the formation of inflammasome. Various pro-inflammatory cytokines and
chemokines released due to this autonomous intrinsic defensemechanism
include CCL-2, CCL-4, CXCL-10, and IL-6. These proteins attract var-
ious immune cells in the circulation like the monocytes, macrophages, T
cells, and neutrophils at the site of infection. Additionally, the situation is
worsened by production of TNF-β, IL-6, IL-4, IL-12, and IL-23 by the T
lymphocytes, which further accumulate the immune cells establishing a
pro-inflammatory feed-back loop. These cytokines may damage the BBB
and activate astrocytes and microglia, the CNS resident immune cells. In
response, the activated microglia and astrocytes produce IL-1β, IL-6,
TNF-α, and IL-8. Elevated levels of these inflammatory cytokines can
impart neurotoxic effects leading to neuronal dysfunction and various
CNS disease–associated pathologies
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lungs; instead, it is known to infect many organs, including the
CNS [7, 32–34]. The real-time quantitative PCR assay
targeting the polymerase (orf1ab) and nucleocapsid region of
the SARS-CoV confirmed the presence of SARS-CoV in CSF
and serum of the infected patients [35, 36]. A report suggests
the association of status epilepticus with SARS [35].
Hospitalized children with the acute encephalitis-like syn-
drome were positive for anti-SARS-CoV IgM [37]. SARS-
CoV is associated with demyelinating pathology and found
in the brain parenchyma of MS patients [5, 28]. Neurological
symptoms are also associated with MERS-CoV [38]. These
examples impress on the connection of HCoVs with neuro-
logical dysfunctions. Therefore, the association of neurologi-
cal complications with SARS-CoV-2 is not surprising.

According to a case report of SARS-CoV-2 infection, virus
RNA was determined in the patient’s CSF; however, the na-
sopharyngeal swabs tested negative [4]. Currently, evidence
to state the neuropathogenesis of the SARS-CoV-2 in
COVID-19 remains scarce. Nevertheless, reports suggest that
SARS-CoV-2 can cause meningitis and encephalitis [4].
Variable neurological symptoms are displayed by the
COVID-19 patients like PNS symptoms, including
hypogeusia, hyposmia, hypoplasia, and neuralgia vertigo,
and CNS dysfunct ions l ike cephalgia , impaired

consciousness, seizures, ataxia, and acute cerebrovascular dis-
ease, with headache and dizziness being the most common
[39, 40]. Neurological manifestations are common in many
COVID-19 patients like anosmia, an early COVID-19 symp-
tom [2, 41–43]. Though seizures are seldom reported in
COVID-19 patients, and usually indicate an ischemic stroke,
meningitis, or cerebral hypoxia, its association with comor-
bidities like hypocalcemia or drugs remains elusive [44].

The neurological alterations caused by the virus may result
from direct CNS/PNS attack or indirect influence on various
organs that later affect the nervous system. For example, hy-
pertension, common COVID-19 comorbidity, results in
blood-brain barrier (BBB) impairment and may enhance the
risk of COVID-19-related cerebral complexities [45, 46]. A
hypothesis relates neuronal damage to the respiratory stress
from deteriorated lung conditions [47]. The oxygen depriva-
tion may result in multiple organ failure and may affect the
brain [47]. Besides, patients considered during the earlier
studies of the SARS-CoV pandemic displayed axonal motor
sensory neuropathy and myopathy [48]. However, it remains
unclear if the illness was virus-mediated or an outcome of high
drug doses [48]. Nevertheless, the effect of the SARS-CoV-2
on PNS is noteworthy as Guillain-Barre, Miller-Fisher syn-
drome, and polyneuritis cranialis are reported in COVID-19

Fig. 1 (continued)
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[49–54]. Development of rhabdomyolysis, neuralgia, and my-
algia in SARS-CoV-2-infected patients further support the
virus’ ability to affect PNS [52–54]. A study reported elevated
creatinine kinase and muscle pain in 10.7% of patients with
severe COVID-19 [2]. Furthermore, someCOVID-19 patients
with neurological symptoms might have a prior history of
neurological complications or maybe treated for viral infec-
tions. Hence, it is necessary to treat such cases using drugs
with properties of high bioavailability in the brain. We have
summarized information like the mode of action and brain or
CSF/plasma ratio of a few antivirals, which have shown prom-
ising outcomes in COVID-19 treatment (Table 1) [70, 71].
The use of efficient BBB penetrating drugs may be preferred
during this pandemic to minimize the onset of neurological
consequences of SARS-CoV-2 infection.

Neurological Alterations Due to Cytokine
Storm: a Result of Host Immunity
and SARS-CoV-2 Combat

Indirectly the viruses may damage the neurons by manipulating
or attacking the host immunity [15]. In the CNS, SARS-CoV-2
can activate both the adaptive and innate immunity [15]. T helper
cell 17 (Th17)–mediated cytokine storm, evident in virus infec-
tions, is seen in COVID-19 with neurological manifestations
(Fig. 1b) [72, 73]. Clinical studies report systemic inflammation
involving enhanced cytokines, particularly IL-1β, IL-6, IL-10,
granulocyte colony-stimulating factor, granulocyte-monocyte
colony-stimulating factor, C-X-C motif chemokine ligand 10
(CXCL10), MCP-1, macrophage inflammatory proteins 1-α,
and tumor necrosis factor α in COVID-19. Additionally CD4+
and CD8+ T cell lymphopenia and decreased secretion of IFN-γ

in severe cases of COVID-19 are reported (Fig. 1a) [28, 37, 72].
Intriguingly, a study suggests that an MS patient undergoing
ocrelizumab (an immunosuppressive drug) therapy diagnosed
positive for COVID-19 does not display serious complications
[74]. The increased levels of cytokinesmay escalate vascular and
BBB permeability and inflammation [74, 75]. This information
supports the hypothesis that increased BBB permeability allows
virus entry into the CNS, leading to COVID-19-related neuro-
logical complexities. Some cytokines released in the circulation
can cross the BBB and activate the resident brain immune cells
likemicroglia and astrocytes to produce neural cytokines, further
worsening the condition (Fig. 1b) [76]. Astrocytes regulate a
wide variety of functions, which may aggravate neuroinflamma-
tion. Microglia mature into macrophages and may engulf the
neighboring neurons on activation [77, 78]. Furthermore, mi-
croglia are the primary source of pro-inflammatory cytokines,
nitric oxide, prostaglandin E2, and reactive oxygen and nitrogen
species [77]. Microglia express ACE-2, along with ACE and
AT1 [79]. These receptors play a significant role in microglia
activation and balance the pro-inflammatory or anti-
inflammatory effects [80]. More specifically, SARS-CoV-2 in-
fection can hamper the ACE-2-mediated signaling, creating a
glitch in the AT1 receptor-mediated path, thereby inducing a
pro-inflammatory response [80]. In vivo studies suggest induc-
tion of pro-inflammatory cytokines in microglia and the mouse
brain and spinal cord [81]. The situation becomes dreadful when
the pro-inflammatory substances produced by astrocytes and
microglia fenestrate the BBB [77, 78].

Besides, SARS-CoV infects the myeloid cells and manipu-
lates the innate immune system to ease its propagation to other
tissues (Fig. 1a) [82]. These persistently infected leukocytes act
as reservoirs of the neuroinvasive HCoV and can be held re-
sponsible for long-term neurological sequelae [83]. Therefore,

Table 1 Antiviral drugs proposed in COVID-19 treatment along with their mechanism of action, associated complications, and CSF to plasma ratio

Drug name Mechanism Viruses affected by the drug Brain/plasma ratio Neurological complications
the drug is active against

Lopinavir/ ritonavir Inhibit the viral proteases HIV 0.02%/1.23% [55] HAND [56]

Darunavir Inhibit the viral proteases HIV 0.88% [57] HAND [57]

Favipiravir Inhibit the viral proteases Influenza A and B Low [58] –

Remdesivir Nucleotide analog - blocks viral nucleotide
synthesis to stop viral replication

Ebola virus < 5% [59] –

Ribavirin Inhibit viral polymerase RSV, hepatitis C virus 70% [60] Nipah virus–associated
encephalitis [61],
neurocognitive conditions[62]

Oseltamivir Inhibit viral neuraminidase Influenza A and B 2.1%[63] Influenza-associated
encephalitis [64, 65], PD [66]

Amantadine Inhibits viral M2 protein (an ion channel) Influenza A 76% [67]* Influenza-associated
encephalitis [68], PD [69]

*CSF/serum ratio. HAND HIV-associated neurocognitive disorders, PD Parkinson’s disease, RSV respiratory syncytial virus. The brain to plasma ratio
or CSF to plasma ratio has been denoted for each drug assuming that brain penetration is similar between rodents, non-human primates, and human
patients
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the possibility of such cases of persistent SARS-CoV-2 infec-
tion may appear in the future. Notably, peripheral inflammatory
reactions observed in COVID-19 may result in symptoms of
neurological disorders [84]. Cytokine storms may influence the
CNS and enhance the severity of COVID-19 patients to devel-
op ANE, meningitis, and hemorrhage [5, 85]. Therefore, it is
necessary to identify the mechanism behind SARS-CoV-2-
induced cytokine storms and the course of release of the cyto-
kines during the infection. The contribution of the pro-
inflammatory cytokines alone and the direct tissue damage
caused by the virus needs to be addressed. The indirect influ-
ence of systemic inflammation on the CNS by targeting the pro-
inflammatory mediators will be worth investigating.

ACE-2 Dependent and Independent Infection
of the Nervous System in COVID-19

It is found that ACE-2 is expressed in various brain regions, like
the subfornical organ, the nucleus of the tractus solitarius, and
rostral ventrolateral medulla, as well as in non-cardiovascular
areas such as the motor cortex and raphe [86]. According to a
spatial distribution analysis, ACE-2 is expressed in substantia
nigra and brain ventricles [87–89]. The protein’s cell type dis-
tribution revealed both excitatory and inhibitory neurons,
pericytes and endothelial cells, and glial cells like astrocytes
and oligodendrocytes in human middle temporal gyrus and
posterior cingulate cortex express ACE-2, unlike the cells in
the region of the prefrontal cortex [9]. Additionally, the hippo-
campus has few ACE-2 expressing cells [9]. Studies report that
angiotensin II downregulates the expression of ACE-2 in neo-
natal rat cerebellar or medullary astrocytes [90]. Therefore, the
predominant expression of ACE-2 in the brain hints towards the
virus’s potential to infect the CNS.

Furthermore, brain endothelial and smooth muscle cells of
the blood vessels express ACE-2 [7]. The virus may enter into
the CNS through the hematogenic pathway, subsequently
crossing the BBB [91]. A post-mortem study of the frontal lobe
of a COVID-19 patient reports virus presence in neurons and
capillary endothelial cells [92]. Infection of endothelial cells
may allow the virus to pass from the respiratory tract to the
blood. The virus in the peripheral system can move into the
cerebral circulation, where the blood’s sluggish movement
may facilitate the viral S protein interaction with the ACE-2
expressed on the endothelial lining of the brain (Fig. 1a) [93].
Another speculated entry route for SARS-CoV-2 may be
through the enteric nervous system upon infection of
enterocytes [94, 95]. Enterocytes express high magnitudes of
ACE-2 [7]. Once inside the brain, the virus can infect the neural
cells, astrocytes, and microglia. These cells express ACE-2,
thus initiating the viral budding cycle followed by neuronal
damage and inflammation (Fig. 1a) [96].

Moreover, multiple transcriptome studies show and validate
ACE-2 expression levels in various non-neuronal cells of olfac-
tory mucosa [97]. Studies support the viral susceptibility of the
mucosal cells, sustentacular cells, Bowman’s cells, and olfacto-
ry stem cells [98, 99]. Loss of smell in COVID-19 is marked by
potential deterioration of olfactory stem cells and other acces-
sory cells [98]. Also, a high-throughput single-cell expression
study mentioned no ACE-2 expression in olfactory covering
glia, microvillar cells, and immature or mature olfactory senso-
ry neurons [100]. It is speculated that SARS-CoV-2 on binding
may stimulate olfactory receptor neurons (ORNs) to exert an
exaggerated immune response. Earlier studies with SARS-CoV
have established infection of the brain through ORNs [101].
Studies describing the transneuronal/transsynaptic movement
of the SARS-CoV already exist. Rabies viruses can take over
the vesicular axonal transport machinery to disseminate in the
brain (Fig. 1a) [102]. Human herpesvirus-6 (HHV-6) propa-
gates in olfactory endothelial (OE) cells before invading the
brain [93]. These studies enable to predict and support the
movement of SARS-CoV-2 through the vesicular axonal path-
way in an anterograde fashion through the olfactory nerve and
facilitate brain infection [102] (Fig. 1a). Also, the virus may
directly reach the CSF around the olfactory nerve fibers from
OE cells [82]. A probable trajectory of SARS-CoV-2 to the
brain may be via high-ACE-2-expressing non-neuronal OE
cells to low-ACE-2-expressing mature ORNs along the olfac-
tory axons. This mechanism highlights the ACE-2 independent
process of virus spread.

Lastly, the expression of transmembrane serine protease 2
(TMPRSS2) in human olfactory mucosa may further worsen
the case of SARS-CoV-2 infection [97]. A study demonstrates
that respiratory epithelial cells express TMPRSS2 without
ACE-2 [103]. The mosaic distribution of TMPRSS2 inmature
ORNs is reported [104]. Therefore, the virus can preferentially
gain entry into the PNS through one of the two epithelial cell
types in the nose, either the goblet cells or the ciliated cells.
TMPRSS2, in collaboration with furin, accelerates SARS-
CoV-2 entry [105]. Furin, a host serine endoprotease, is par-
ticularly of neurological relevance. In general, furin can acti-
vate neuronal growth factors and influence CNS homeostasis
[106]. However, upon attachment of SARS-CoV-2 with
ACE-2, the enzyme generates an active S protein through
irreversible cleavage of the precursor protein [105]. The pro-
tein S1/S2 subunits separate, which subsequently facilitate
virus entry into the host [105]. Thus, exploring the possible
avenues of SARS-CoV-2 entry and impact on CNS is the need
of the hour.

Conclusion

Various clinical reports have made the association of SARS-
CoV-2 with neurological dysfunction prominent. COVID-19-
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associated neurological severity is primarily associated with
cytokine storms. The earlier identified SARS-CoV is already
known to suppress the host antiviral response and activate the
pro-inflammatory pathways. Briefly, it would be crucial to
analyze the IFN-antagonizing and inflammasome-activating
properties of SARS-CoV-2. Furthermore, the interaction of
SARS-CoV-2 and ACE-2-expressing neuronal/glial cells
may facilitate virus entry into the nervous system through
different routes. Thus, the nervous system’s involvement in
COVID-19 may be more than the current situation appre-
hends, therefore referring to the virus as an underestimated
pathogen. Medical expert clinicians and researchers’ collabo-
ration may address the enhanced incidents of neural dysfunc-
tions in infected individuals. After identifying initial neurolog-
ical damages, careful monitoring of COVID-19 patients in the
long term is also necessary.
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