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Abstract
Lung transplant augmentation in the waiting list is impeded by donor lung shortage with a low percentage of procurement. Ex
vivo lung perfusion (EVLP) was recognized to have the capacity of providing a platform to preserve, assess, recondition, and
even mange existing diseases in rejected donor lungs to expand the donor pool. This review aims to provide the most advanced
experimental evidence of EVLP application and perspective as a platform providing qualified donor lungs. Literature review
using PubMed, Medscape, Clinical Trials, and Cochrane databases was performed. Data was collected and analyzed. From a
view point of publisher, current research centers with their paper contribution volume are also presented to illustrate the future
trend of EVLP academically. EVLP incubated donor lungs could have a comparable outcome with conventional transplants.
Further interventional studies have shown growing interest in and expectations on EVLP platform as pathways to determine graft
quality, to bridge a critical phase of the initial rejected organs and to predict prognosis or complications in an early stage. EVLP is
also considered as a tissue regeneration translational research environment with multidisciplinary potential to enhance the
recovery and rehabilitation after surgery and advance pulmonary medicine. Ongoing clinical trials and accelerated procedure
modulation with commercialization of EVLP are leading to Bcentralization^ organ preparation model, opening a new era of life-
change health innovation.
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Lung transplantation has been considered as the only thera-
peutic option for pulmonary failure. Donor lungs are harvest-
ed from only 15–20% compared with 30% of deceased donors
for hearts [1]. However, it is estimated that up to 40% of
rejected donor lungs may have been suitable for transplanta-
tion [2].

To overcome the acceptable donor lung pool shortage,
ex vivo lung perfusion (EVLP) was recognized to have the
capacity of providing a platform to preserve, assess, recondi-
tion, and even mange existing disease in rejected donor lungs
to expand the donor pool. EVLP has contributed to an increase
in transplantable lungs of at least 15–20% [3]. When
reviewing all the multi-organ donors (MODs) from collabora-
tive donor hospitals, lung donors are declined at 45.9%,

21.4% of the declined lung is considered to become trans-
plantable after EVLP [4].

According to the updated published data by ISHLT, 2018
[5], donor lung ischemic time (> 5 h) is among the risk factors
for 1-year mortality. Transplant center volume is one of the
continuous factors with statistical risk for long-term mortality,
which may indicate that experienced surgeons or better con-
dition of donor lungs will provide recipients a prospective
prognosis.

History of EVLP Technique Development

Carrel and Lindbergh [6] described the initial draft of
ex vivo organ perfusion in as early as 1935. In 1970,
Jirsch and colleagues [7] introduced EVLP as a method
to assess the quality of pulmonary grafts during storage
prior to transplant using a canine model. When Hardesty
tried to study normothermic EVLP in the 1980s, unsatis-
fied outcome forced him to abandon the experiment [8].
Lund protocol was the first EVLP applied to evaluate
lungs from cardiac death patient by Dr. Stig Steen from
Lund, Sweden, 2001 [9]. Steen et al. further performed
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the recondition test on rejected lung successfully [10].
Cypel, Keshavjee, and colleagues in Toronto, Canada
modified Dr. Steen’s EVLP techniques, started the first
clinical trial of EVLP, and reported excellent outcomes
in 2011; this study had a major impact on lung transplant
community [11].

In some countries where marginal lungs are being used,
such as from ECMO donors, severe infected donors as well
as controlled (cDCD) and uncontrolled (uDCD) donors,
EVLP is increasingly applicable in critical conditions, while
long-distance transportation may further call for the use of
portable device of lung perfusion [12, 13]. However, balance
of expanding pool, prolonging graft function, and medical
cost should be maintained and kept revising.

Primary Benefit of EVLP on Donor Lungs

EVLP has been recognized as a part of the general clinical
practice in Europe and USA, by improving the usage of mar-
ginal lungs. In recent years, EVLP has been considered as a
platform for moderating the organ acceptability in the way of:
molecular diagnosis for changing the quality of donor lungs
and organ repair for allowing more use [14]. Although up to
now, most results have been reported from animal models or
rejected human lungs, the prospect we havemet will lead us to
explore more approach in clinical use.

Evidence has accumulated to further explore the benefi-
cial effect which ELVP could bring up, such as mortality,
hospital stay, and rates of primary graft dysfunction, at
least reaching the same potency as conventional lung trans-
plants [15]. Further, according to the common evaluation
system of lung transplant recipient outcome, the need for
cardiopulmonary extracorporeal membrane oxygenation on
ventilation, in ICU, and in-hospital stay, 30-day, 1-year,
and 5–10-year survival rates, respectively; rates of acute
rejection and chronic lung allograft dysfunction; and peak
and 12-month lung function will be needed to demonstrate
the role of EVLP performing in the whole process. EVLP
is applied as a strategy of perioperative lung donor evalu-
ation and intervention to consider using marginal lungs to
pursue promising results [16].

Early Human Reports with Long-Term Follow-Up
of EVLP Incubated Lungs

It was from 2014 that reports on donor lungs after EVLP used
for transplantation came to be published. Experiences were
exclusively from Europe and North America (Table 1). Ratio
of lung acceptance, physiological data, and critical care re-
quirement were the main index to compare and follow-up.
During the relative long-term observation, acute rejection

and chronic rejection, together with 1-year and 5-year survival
rates were discovered, but not fully presented.

Earlier, Denmark’s experience roughly showed that
rejected marginal donor lungs could bring the recipients alive
with normal graft function at the end of registration period
[26]. An Italy report was one of the earliest cohort studies
concentrating on primary graft dysfunction (PGD) occur-
rence. Rate of PGD 3 in EVLP-incubated lungs and conven-
tional lungs was similar, while all EVLP patients suffering
from severe PGD early after transplant recovered with normal
lung function at 72 h [17]. This brought enormous hope for the
recipients and transplant surgeons.

Single center from Toronto reported 403 lung transplants
with 15.6% EVLP-assistance, until 5-year analyzing, no dif-
ference has been shown on survival, freedom fromCLAD and
functional outcomes [19]. Another 32 rejected donor lungs
after EVLP and were used to do transplantation surgery, com-
paring to those transplant lungs without EVLP, there was no
difference in extubation time, intensive care unit stay length,
PGD rate, and 1-year survival rate. Further, 4-year cumulative
survival, freedom from retransplantation, and chronic rejec-
tion rate were still comparable [20]. It thus concluded that
EVLP could assist more high-risk donor lungs rather than
conventionally selected donor lungs.

After evaluating the primary comparable efficiency of
EVLP on marginal or rejected donor lungs, more focus was
applied to the post-surgery lung function with physiological
parameters and functional outcomes. Data from the University
of Alberta [21] showed that 64% DCD lung transplant
underwent portable EVLP, with a significantly shorter cold
ischemic time and lower grade of primary graft dysfunction;
there was no difference between the groups on mechanical
ventilation time, hospital length of stay, functional outcomes,
and life quality at 1-year follow-up. During the 3-months and
6-months follow-up, FEV1%, FVC%, FEV1/FVC, 6MWT
distance, and Borg dyspnea score were further compared with
significant difference. A report from Brazil showed that 4 h
EVLP on extended-criteria donor lungs could recover the
mean PaO2 and oxygenation capacity, and static compliance
improved especially in the first 2 h but failed in next 2 h. No
change in pulmonary vascular resistance was observed. Thus
these lungs were precluded transplantation due to complex
physical conditions [27].

Effect of EVLP on Marginal Lungs and more
Complicated Cases

Some more complicated cases, such as donors as brain-dead
patients implanted with mechanical circulatory support sys-
tem or bilateral lungs procured and transplanted after using
of portable normothermic perfusion device, reaching the aim
of reducing ischemic injury while assessing the marginal do-
nor lungs for suitability [28].
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A large and non-randomized trial DEVELOP-UK, showed
that 34% untransplantable lung could be put into procedure
after EVLP. Survival at 12 months was 0.67 comparing to
0.80 after EVLP [22]. Not only the comparison was done on
ventilation period, stay intensive care, PGD3, ECMO applica-
tion, hospital stay, chest infection, lung function, or rejection
by 12 months, but also, further cost predictors including life
quality on joining the waiting list, type of transplant and num-
ber of lungs transplanted were stated. EVLP transplant cost is
approximately £35,000 more and is likely to be acceptable by
means of increasing the number of transplantable donor lungs
and reduce waiting.

Toronto, Swedish, and UK experience, followed by Paris,
Madrid, Vienna, Milan, etc., together showed a good early
survival for EVLP lungs, including from unusable to usable
donor organs. For a center like Toronto, large volume of DCD
donors reserved EVLP as an assessment tool rather than a
reconditioning. EVLP is becoming a technique not only to
expand the limited donor pool, but more important, to provide
more hope by prolonging the perfusion times with better re-
condition based on Toronto’s experience.

Thus, an impetus to conduct a prospective randomized
clinical trial compared patients who underwent transplantation
with or without EVLP, including 193 lung Tx were initiated at
the Medical University of Vienna. Total cold ischemic time
was significantly longer in EVLP group and with lower inci-
dence of primary graft dysfunction > 1 at all time. Thus,
EVLP is believed to indicate excluding lungs with functional
impairment, while extending total preservation time for usable
ones [23].

People also wondered if EVLP could help ameliorate a
seemingly worse early outcome exhibited by the data collect-
ed in a short period after surgery. In a review of EVLP used in
two Scandinavian centers, arterial oxygen tension/inspired ox-
ygen fraction ratio at arrival in ICU, median time to
extubation, median ICU length of stay were significantly
worse and longer in EVLP groups. No difference in
FEV1.0% at 1 year, 1-year survival rate, and 5-year survival
between EVLP group and non-EVLP group. Although com-
parable results could be reached, it, in other words indicated
that EVLP could ameliorate a worse early outcome immedi-
ately after transplantation, possibly due to the poor condition
of organs or the receivers [25]. Experience from French re-
searchers showed that after recovery procedure of EVLP, ini-
tially rejected lungs were used to perform double lung trans-
plant with similar rate of PGD, survival and 30-day mortality
comparing to conventional donors [18]. No definitive conclu-
sion of EVLP could be reached based on the limited data from
human, due to different levels of donor lung condition, pres-
ervation methods, and inconsistent data collection.

However, a higher conversion rate (total number of lungs
transplanted to the total number of lungs placed on EVLP)
requires abundant experience of manipulating acceptable

lungs in the center, which is not quite conservative on the
standard application. Further, some preliminary results also
showed that time of ventilation and ICU stay might be longer
than conventional transplantation without EVLP, this could be
attributed to the less optimal organ selection and incubation
time varied of EVLP in different centers. By splitting one long
cold ischemic time into two shorter ones, for more than 12 h of
preservation time, Toronto EVLP technique was used to com-
pare mean lung preservation time, median hospital and ICU
length of stay, PGD grade and survival rate with any signifi-
cance. Increasing recipient age was showed to be a significant
variable affecting survival [24]. Immediate graft function or
lungs on long preservation time (> 12 h) in recipients were not
the cause of death, but the early lung injury showed an asso-
ciation with death cause of infection or chronic rejection.
Optimizing the time and condition of incubation, finding a
precise condition for a specific group will hold the future
promise.

Experimental Intervention on Donor Lungs
Based on the EVLP Platform

In the recent 10 years, EVLP has been proved to be valuable
as a reassessment tool to increase donor utilization [29]. EVLP
began to be applied in combination with regenerative medi-
cine advancement, such as stem cell biology in these 2–
3 years [30]. Animal models of EVLP have been developed
and helped to explore more novel experimental platforms that
can be used to do translational research on pulmonary physi-
ology and transplant medicine [31].

To Find Optimized Markers of Quality Determination

Assessment and optimization of donor lungs are recognized to
be necessary for reducing both early and late post-
transplantation morbidity and mortality, as well as reduce
overall costs and resource utility. In vivo prior to organ pro-
curement and EVLP circuits synergistically enhance the donor
lung quality. EVLP may facilitate assessment and/or
reconditioning of borderline lungs, with a conversion rate of
46% and good short-term survival with 100% survival at
3 months [32].

Extracellular microvesicles (EVs) have been testified
for diagnostic potential to study the kinetics and tissue-
related profiles of pulmonary EVs with EVLP. Monocytes
(CD14), endothelium (platelet endothelial cell adhesion
molecule 1), and pulmonary parenchyma (epithelial cell
adhesion molecule) have been shown to contribute to per-
fusate exchange with Steen Solution. EV protein cargoes
also showed differences, providing insights to pulmonary
pathologic processes [33]. Particle flow in exhaled air
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helped online assessment of the impact of ventilation be-
fore tissue change presentation [34].

Another research pathway is to focus on lung function pa-
rameters. The pressure of arterial oxygen to the fraction of
inspired oxygen concentration (PaO2/FiO2, P/F) ratio has been
recognized as a gold standard for assessing the transplantable
lungs. Fluctuation of P/F ratio at different FiO2 might affect
decision-making [35]. A comparing of swine and human
rejected lungs was performed after 2 h EVLP, partial pressure
of oxygen/fraction of inspired oxygen (PF) ratio was related to
airway and parameters, static compliance and vascular resis-
tance in both groups. Thus, difference in all the parameters
would further have the value of judgment for suitability for
transplantation [36].

Further, dynamic change of functional data related to
inflammation status of lung, thus affected the short-and
long-term prognosis of the transplantation. Porcine lung
samples were collected and subdivided into in vivo cold
static preservation group and EVLP group. Acute lung
injury-related gene expression was measured and peaking
time with continual period analyzed. Six hours would be
the utmost change in gene-level, which affects P/F ratio
and interstitial inflammation [37]. Lungs recovered from
uDCDDs were assessed by 4 h EVLP and CT scan. Lungs
receiving EVLP included immediate edema (pulmonary
embolism, long ischemic time, and ruptured aneurysm)
and myocarditis. Logistical challenges concerning the
consent procedure and donor medical profile might con-
tribute to the hindering of lung acceptance [38]. Special
case was reported that a donor with medical history of
hemolytic anemia and known cold agglutinin, whose
lungs had a total cold ischemia t ime of 6.5 h.
Established clots and aggregates could be observed from
the initiation of EVLP, leading to florid pulmonary edema
and cessation of EVLP. Impact of hypothermic preserva-
tion on cold agglutinin donors should be consulted before
assessment [39].

To Manage Unacceptable Lungs with Initial Refusal
Due to Critical Conditions

Some experimental trials have been ongoing to find potential
repair methods, which will change the initial assessment de-
termination. Lungs from brain-dead donors rejected for trans-
plantation were stored 10 h 4 °C and performed 1 h normo-
thermic EVLP with Steen Solution. EVLP improved oxygen-
ation capacity and protected the lung tissue structure [40].
Longer cold ischemic period of 10 h low-potassium dextran
flush (Perfadex) at 4 °C and 6 h EVLP with short cold ische-
mic time (2 h) or long time (10 h) preservation of lungs did not
affect lung function after transplantation [40, 41]. Thus, a
combination of cold and warm preservation techniques could

have the promise to improve lung transplantation logistics and
outcomes (Table 2).

Thrombosis

Donor lung thrombosis is a big challenge for transplantation
result. Donor lungs from DCD Swedish pigs were perfused
with Perfadex® solution with alteplase. Better blood gas re-
sults and slightly lower PVR could be reached in antithrom-
botic treatment group [43]. A report of case showed pre-treat-
ment–donated lung with acute pulmonary embolism by a fi-
brinolytic agent, urokinase, during EVLP, which made a suc-
cessful transplant [55]. Thermography could help to detect a
mal-perfused region by surface temperature during EVLP
[56]. Donor lung thrombus is also recognized as cause of
PGD. Plasmin treatment during EVLP could see fewer signs
of histologic injury with lower caspase-3 and -7 activity, thus
reducing the IR injury [42].

Ventilator-Induced Lung Injury

Ventilator-induced lung injury (VILI) could also happen in
EVLP with fixed ventilator settings and under the monitoring
of compliance, which is indicated by airway pressure-time
curve (stress index). An increase in cytokine concentrations
after 4 h EVLP in the non-protected lungs with longer dura-
tions of mechanical ventilation, ICU, and hospital lengths of
stay could be seen, which are significantly correlated by stress
index [44]. Normothermic cellular EVLP has been put into
research scenario. Agonal hypoxia and 1–2 h warm ischemia
with or without ventilation lungs could reach normalized he-
modynamics and compliance after 24-h EVLP. Only DCD
lungs showed impaired oxygen [45]. Early donor postmortem
ventilation and timely procurement lead to better graft
function.

Ischemia-Reperfusion Injury

Due to the multiple steps of organ procurement procedure,
ischemia and reperfusion periods are varied in different set-
tings and have major effect on the donor lung function.
Various monitor methods and intervention approaches have
been investigated, which are still demanding more clinical
evidence to confirm.

To reflect the increase of ischemia reperfusion mechanism,
endogenous production of exhaled carbon monoxide (eCO) is
used in the selection of lung grafts. A porcine model and laser
eCO spectrometer measurement gave primary result that 24-h
cold ischemia would have higher systematical eCO [46].
Apart from physiologic variables such as pulmonary mechan-
ics, gas exchange, and pulmonary vascular resistance during
the practice of reassessing and reconditioning of marginal
lungs, real-time computed tomographic (CT) imaging has also

SN Compr. Clin. Med. (2019) 1:287–303 291
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been reported to be used [57]. MRI was reported to have the
capability of assessing the organ function in ischemic injury.
Higher wet/dry ratios and IL-8 tissue levels with prolonged
oxygen washout could be seen in ischemic lungs. Oxygen-
enhanced imaging showed promise in detection of affected
lung segments in advance [58].

Volatile anesthetics have been shown to have protection
effect against reperfusion injury in series of experimental set-
tings [48]. Reduced LDH, protein carbonyl, 3-nitrotyrosine,
cytokine-induced neutrophil chemoattractant factor, 1 and
TNF-α could been seen in drug treatment group. Lungs also
had less perivascular edema and improved static pulmonary
compliance and peak airway pressure. Argon (Ar) is also
known as organ-protective gas, but no beneficial effects of a
high concentration of Ar on cold pulmonary ischemia-
reperfusion injury had been detected [59].

Several anti-oxidants or inflammation-related pathway reg-
ulators are selected to act as therapeutic methods with EVLP,
providing preliminary results.Α1-Anti-trypsin (A1AT) is used
to treat emphysema in A1AT-deficient disease, which has
been shown that it also had anti-inflammatory properties to
attenuate ischemia-reperfusion injury. Pig lungs with treat-
ment showed reduced pulmonary arterial pressure, pulmonary
vascular resistance, and airway pressure; improving both dy-
namic and static pulmonary compliance, reducing pulmonary
edema (wet-to-dry ratio), pulmonary cell apoptosis and pro-
inflammatory cytokine levels (interleukin-1α and − 8) in the
perfusate [49]. Inhaling ofN-acetylcysteine could also be used
to treat ischemia-reperfusion injury by inhibited
inflammation-related myeloperoxidase activity during EVLP
and nuclear factor-κB activation at the end of reperfusion
could be observed [47].

Trimetazidine (TMZ) has been used clinically in ameliorat-
ing ischemia reperfusion injury, which has also been shown to
improve immediate post-transplant lung function. Better oxy-
genation and gas exchange as well as lower tissue thiobarbi-
turic acid levels, myeloperoxidase activity, and protein con-
centrations could be reached [60]. Ascorbic acid adding to
perfusate, prolonged lung viability by 80%, and increased
the hyperpolarized 13C bicarbonate signal [61], which was to
increase the lung’s energy charge, slowing the decline of the
perfused lung’s mitochondrial activity ex vivo. More com-
monly used in clinic, β2-adrenoreceptor agonist inhalation
ameliorated the lung function and compliance, enhancing
cAMP and total adenosine nucleotide (TAN) levels with more
cystic fibrosis transmembrane conductance regulator (CFTR)
gene expression [62].

Human mesenchymal stromal cells (MSCs) and MSC-
derived extracellular vesicles (EVs) have been used long term
for immunomodulation and repair of ischemia reperfusion in-
jury. MSC-/EV-treated lung had attenuation of dysfunction
status and injury (decreased edema, neutrophil infiltration,
and myeloperoxidase levels). Proinflammatory cytokinesT
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(IL-17, TNF-α, CXCL1, and HMGB1) were decreased and
upregulation of keratinocyte growth factor, prostaglandin E2,
and IL-10 could be seen. Downregulated iNKT cell-produced
IL-17, macrophage-produced HMGB1, and TNF-α after
hypoxia/reoxygenation as well as transendothelial migration
might contribute the recondition mechanism [63]. In the pro-
tocol of 18 h cold preservation and 12 h normothermical
EVLP, mesenchymal stromal cells (MSCs) were administered
endobronchially or via pulmonary artery. It was only through
intravascular administration that MSCs could be retained in
lung parenchyma. Expression of vascular endothelial growth
factor (VEGF) was increased and IL-8 was decreased [50].

Pulmonary Vascular Remodeling

Pulmonary vascular resistance is one of the most important
function parameters to be monitored during and post-surgery.
Better graft oxygenation, dynamic pulmonary compliance,
and reduced pulmonary vascular resistance were observed in
the bronchodilator-treated group after 4 h transplantation, with
higher adenosine 5′-triphosphate and cyclic adenosine
monophosphate levels [52]. Using 24 h of cold ischemia as
defined organ stress and 12 h EVLP on the basis of an acel-
lular or a cellular perfusate composition, results showed that
there were no significant difference on aerodynamic parame-
ters but higher pulmonary artery pressure and vascular resis-
tance in the cellular group [51], which showed an un-
ignorable consideration of perfusate composition on pulmo-
nary vascular physiology. Accordingly, different pre-
condition of lungs before EVLP, incubation time, as well as
model species all contributed to various pulmonary physiol-
ogies. Pulmonary artery pressure, pulmonary vascular resis-
tance, and compliance are fundamental factors to be analyzed
in vascular remodeling research. However, more common his-
tology or biomarkers are needed to be explored as supplemen-
tary to set-up difference.

Gastric Acid Aspiration

Adding surfactant before EVLP improved the function of do-
nor lungs injured by gastric juice aspiration [53]. Donor lungs
with gastric aspiration injurymodel were constructed and after
retrieval, if exogenous surfactant administrated, IL-1β, IL-6,
IL-8 and secretory phospholipase A2 levels were reduced,
minimum surface tension was recovered to normal, and lung
function was better in post-transplant monitor [54].

To Predict Graft Function and Complications
Post-Surgery

Time and function are the two main factors which are believed
to have serious effect on the long-term potential of the trans-
plantable lung (Table 3).

Prediction of Respiratory Mechanics

Exceeding 12 h EVLP has not been taken into clinical practice
previously. EVLP management could get another 44%
rejected lungs to be transplantable with lower expression of
vascular injury markers. Perfusate IL-1β concentrations con-
tributed to a model for predicting final EVLP outcome after
2 h with inverse correlation to 24 h post-transplant recipient
oxygenation [64].

Organ Care System (OCS) using STEEN’s solution
enriched with erythrocytes has been shown the most favorable
PAWP and PVR, which were considered as early and late
predictors of transplant outcome [65]. After 10-h EVLP with
autologous blood and STEEN solution, assessed lungs
showed robust increase in PVR (ΔPVR) up to 4 h of perfu-
sion. Decreased HPV (hypoxic pulmonary vasoconstriction)
response inversely correlated to cytokine concentrations of
Interleukin-6 and tumor necrosis factor-α, which indicated
that there was a subclinical deterioration of lung function [66].

Prediction of PGD Occurrence

Prediction of possibility of primary graft dysfunction (PGD)
will provide great help during the assessment procedure.
Metabolomics of EVLP perfusate helped further to testify
the function of donor lungs, which was associated with early
transplantation outcomes. Palmitoyl-sphingomyelin, 5-
aminovalerate, and decanoylcarnitine were related to 1-h
EVLP group on PGD3; while N2-methylguanosine, 5-
aminovalerate, oleamide, and decanoylcarnitine were among
the 4-h EVLP group on PGD3. These could be considered as
potential biomarkers to improve selection of marginal lungs
on EVLP, however the specificity needs to be further explored
[67].

To find some biomarkers for the purpose of prediction
might help for pre-transplantation evaluation. M30 (indicating
epithelial apoptosis) was much higher in the PGD Group at 1-
h EVLP and 4-h EVLP perfusate. High mobility group box 1
(HMGB-1, related to cell death and inflammation) from 1-h to
4-h EVLP was significantly greater in the PGD Group. Both
markers showed higher mortality correlation [68]. According
to Hashimoto’s report [69], 11/100 EVLP lungs developed
PGD grade 3 within 72 h post-surgery. Levels of sICAM-1
(soluble intercellular adhesion molecule 1) at 1 h and
sVCAM-1 at 1 and 4 h were significantly higher in the PGD
group compared with the non-PGD group, correlating with
endothelial activation. Thus, adhesion molecules may help
identify donor lungs at higher risk of PGD during EVLP.

It was stated that perfusate protein expression during EVLP
could differentiate lungs with good outcome from lungs
PGD3 after transplantation. High expression of stem cell
growth factor-β expression for 1 h helped exclude
nonacceptable lungs, while 4 h IL-8 and growth-regulated
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oncogene-α expression marked PGD3 high incidence [70].
Lung edema measurement could also contribute to PGD hap-
pening. Single transpulmonary thermodilution with extravas-
cular lungwater index (EVLWI) is discovered to be a new tool
to assess lung graft edema during EVLP. Donor lungs with
EVLWI > 7.5 ml/kg were likely associated with a higher inci-
dence of Grade 2 or 3 PGD at Day 3 [71]. Data from animal
models and human beings have shown some difference,
whether due to experimental set-up or observational index.
Biomarkers or extreme conditions in animal models and lon-
ger follow-up in human trails should be complementary to
demonstrate the value of ELVP further.

To Deliver Novel Strategies on Lung Repair
and Rehabilitation Before Transplantation

Preclinical studies have also shown a great potential of EVLP
as a platform of delivery of novel therapies to repair organs or
even initiate rehabilitation before the surgery [72]. Several
therapeutic approaches began to initiate administering drugs,
such as antibiotics, fibrinolytics, and vasodilators, aiming to
avoid systemic toxicity. Nowadays, animal models are used to
break through the contraindication barrier for lung transplan-
tation unprecedentedly.

Anti-Inflammatory Strategy

Assess emerging therapeutics on organ function in ARDS is
an unmet need in drug research for ARDS. EVLP has shown
promise as a unique human platform for preclinical study of

chemical small molecules [73] as well as anti-inflammatory
effect of aspirin in ARDS treatment [74]. In terms of
expanding the organ pool for transplantation, neutrophil ad-
hesion markers were shown to be reduced by 12 h EVLP with
high-dose antibiotics (ciprofloxacin 400 mg or azithromycin
500 mg, vancomycin 15 mg/kg, and meropenem 2 g) [75, 76].
High-dose antibiotic therapy in EVLP followed by
autotransplantation has been reported to be a new method to
treat multidrug-resistant lung infections. Overall mortality rate
could be cut off by 50% comparing to the control group [77].
For a septic lung, 4 h EVLP has shown improvements in
oxygenation and dynamic compliance of donor lung [78].
Prolonged EVLP incubation, different systems with different
antibiotics, and time or temperature controlled ventilation
have shown promising results (Fig. 1).

Drugs directly targeted to inflammation pathways in EVLP
were also explored, such as AdhIL-10 gene therapy [79, 80],
NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) [81],
methylprednisolone [82], and neutrophil elastase inhibitors
[83]. EVLP could further make donor lung less immunogenic,
however, most experimental design put the management as a
precondition, which should be further discussed in ethical
context.

Nowadays, a leukocyte filter (LF) is routinely incorporated
into the EVLP circuit [84]. Removed passenger leukocytes
could reduce pyroptotic reactions [85] and pro-inflammatory
cytokines [86]. Another way to modify EVLP in order to
reach a better post-transplant functional outcome is to opti-
mize the level of perfusate oxygenation, such as 40% O2

[87] or ventilated with 2% hydrogen [88, 89], through

Fig. 1 EVLP set-up on novel strategies on lung repair and rehabilitation
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upregulation of heme oxygenase-1 and promoting mitochon-
drial biogenesis [90] and innate mechanisms of repair [91].
NPV could also reduce lung edema and lower composite acute
lung injury [92].

Recovery of lungs followed the stages of cellular death,
cellular preservation, reorganization, and invasion. Steen so-
lution was believed to possess antioxidant properties via
downregulation of NADPH oxidase activity and enhanced
production of NO [93], exerting antioxidant effects on paren-
chymal cells [94]. Releasing of medium-high molecular
weight hyaluronan and transcription of hyaluronan synthases
were also induced by EVLP [95]. ATL802, an adenosine A2B
receptor antagonist could augment reconditioning of EVLP
with significantly improved lung function and attenuated
pro-inflammatory cytokine production, such as IL-12, neutro-
phil infiltration, vascular permeability, and edema [96, 97].

Microbial Niche in airway and lung is an arising focus for
lung immunology in transplantation research, which would
have a direct relationship with infection, one of the most in-
tractable problems post-surgery. EVLP provides an isolated
platform to study interaction of lung tissue and microbiota.
Initial report showed that EVLP could decrease bacterial loads
and receivers were survived to hospital discharge [98]. It was
confirmed that microbiota signal in airway could remodel the
transplanted lung immune characteristics [99, 100] and also

play a role in development of bronchiolitis obliterans syn-
drome (BOS) [101]. Dynamic observation of lung
microbiome transfer and alteration will be an upgrade of study
interest [102, 103] and EVLP might become an intermittent
bridging environment, providing a timely control of dysbiosis
and subsequent persistent infection, as well as rejection, by
manipulating microbiome directly. Further assumption in-
spired by xenogeneic transplantation study, is that genome
editing tool CRISPR-Cas9, will not only help to induce im-
mune tolerance [104], but also to engineer some genetic mod-
ifications, such as resistance to infection by way of EVLP-
based research.

Anti-Rejection Treatment

Passenger leukocyte transfer could result in acute rejection
with mechanism of alloantigen expression on donor cells.
Three hours of EVLP could reduce donor leukocyte transfer
into the recipient and migration to lymph nodes, as well as
diminished recipient T cell infiltration [105]. EVLP could fur-
ther reduce inflammatory reaction related to a following PGD
occurrence [106], although some extracorporeal life support is
being used early in patients who have PGD [107]. Inhaled
noble gases such as argon and xenon, based on their organ
protective effects have been recognized to have effect of

a

b c d

Fig. 2 Statistics from the perspective of the publisher. Numbers of centers
are involved in performing clinical researches (a) and publications are
continuously increasing every year (b) from top centers distributed all

over the world (c) with clinical trials (number in a). Further, top
journals have taken over most papers on EVLP (d)
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reducing primary graft dysfunction incidence [108]. This is
also a promising area to be explored, as lung rehabilitation
would be initiated in EVLP pre-transplantation, aiming to re-
duce the rejection or graft failure rate.

Anti-Ventilation Injury Management

When procuring lungs from an uncontrolled donor after cir-
culatory determination of death following an extended period
of warm ischemia, EVLP with continuous positive airway
pressure, and protective mechanical ventilation could get a
satisfactory result after 6 months of surgery [109]. Pressure-
directed airway pressure release ventilation strategy showed to
have more benefit for rehabilitation of severe injury [110].

Anti-pulmonary Edema Performance

An open left atrium (LA) (pressure of 0 mmHg) or closed LA
(pressure of 5 mmHg) was used in EVLP settings. Several
open atrium cases got severe pulmonary edema in 7 h
EVLP; however, the closed atrial technique leads to signifi-
cantly less edema and superior lung physiology [111]. But in
another report, an acellular perfusate and a closed left atrium
resulted to a more pronounced lung edema and lower lung
compliance [112], confirming a previous thought that alterna-
tive perfusion solution might contribute to lung edema forma-
tion [113].

Modulation and Merchandising of EVLP
Platform Leading to Organ BReady-to-Use^
Era

Modulation of Existing EVLP Procedure
and Application Model

Basic devices of all the commercialized EVLP platforms com-
monly include a ventilator, an endotracheal tube, a lung cham-
ber, a blood reservoir, pump, heater, membrane lung, leuko-
cyte filter, and cannula. Steen™ solution is the mostly used
perfusate with modifying of the solutes nowadays. For the
transportable EVLP device OCS™, cold storage was signifi-
cantly shortened with all the way of physiological temperature
during transportation. Mainstream techniques in application
nowadays include the Toronto technique, the Lund technique,
and Hannover-Madrid technique. Modification of EVLP pro-
cedure are from the aspects of flow control [114], various
perfusion time [115], cooling or hypothermic preservation
[116], as well as alter the work flow of the transplantation,
staged model to do liver-after-lung transplantation [117] and
split lung transplantation in two centers with a distance of
2250 km by running EVLP [118]. The technique of EVLP-

based lung split, preservation and transportation adopted in
smaller children, is currently under discussion [119].

Merchandizing of the EVLP as a Practical System

There are up-to-date commercialized devices for clinical
EVLP use including: Organ Care System™ Lung (OCS,
Transmedics, MA); Lung Assist® (Organ Assist ,
Netherland); Vivoline® LS1 (acquisition by XVIVO) +
XPS™ (XVIVO Perfusion AB, Sweden); and Toronto EVLP
system (XOR Labs Toronto, Canada-invested by Xenios AG,
Germany). The two most clinically relevant and commercially
available devices currently in clinical trials are XVIVO
Perfusion System (XPS Perfusion, Goteborg, Sweden) and
Organ Care System (Transmedics, Andover, MA). Our review
focuses on the needs met by ex vivo lung perfusion, and the
clinical literature on both devices [120]. Semiautomated sys-
tems with disposable kits, such as XVIVO Perfusion System,
aims at making EVLP procedure more standardized. Numbers
of centers are involved in performing clinical researches
(Fig. 2a) and publications are continuously increasing every
year (Fig. 2b) from top centers distributed all over the world
with clinical trials (number in Fig. 2a). Further, top journals
affiliated to famous publishers have taken over most papers on
EVLP (Fig. 2c).

It is believed that machine perfusion of pulmonary allo-
graft is mandatory in uncontrolled DCD lung transplantation
[121]. Preservation, resuscitation, assessment, repair, and
conditioning are essential points that EVLP provided thus
making lung transplantation plannable. Portable normother-
mic EVLP has been evaluated in clinical trials using standard
and extended-criteria donor lungs [122, 123]. Reconditioning
with the OCS™ Lung could improve PaO2/FiO2 ratio,
reaching a comparable 1-year survival rate and living condi-
tions [124]. Using 24-h EVLP with autologous whole donor
blood circulating on OCS, only whole blood and red blood
cell incubation lungs could meet clinical standards for trans-
plantation at 8 h; acellular perfusion with Steen solution was
limited to 6 h due to high vascular resistance, edema, and
worsening compliance [125]. Some large scale of prospec-
tive, randomized multicenter trials are onsite recruiting
(Table 4), focusing on expandability application of EVLP,
will demonstrate the precise analysis of EVLP on organ
transporting, and expanding pursuit.

Portable EVLP Nurturing the Cost-effective Organ
Transportation

Initial experience of EVLP showed that it could be an effec-
tive method to increase suitable lung [126] and allowing dis-
tant organ allocation [127], but more cost-effective alterna-
tives need advisable effort to seek for. A debate issue arising,
concerning both medical and economical aspects, is whether

298 SN Compr. Clin. Med. (2019) 1:287–303



EVLP will be beneficial and valuable for all donor lungs, or
will work as a tool to evaluate and recondition sub-optimal
donor lungs. These two approaches might lead to diverged
pathways: use EVLP to reduce comorbidities and increase
the long-term survival, or expand the transplant organ pools,
or could get both done under various conditions [128].

EVLP-Based BReady-to-Use^ Organ Transplant Era
Opening

An organ reconditioning hub model aiming for disseminating
EVLP to small and large transplant centers showed promise to
increase lung utilization. New paradigm of organ preservation
and evaluation will shape the organ allocation processes aris-
ing regulatory issues calls for more attention from all parts of
stakeholders [129]. BCentralization of lungs on EVLP^

guided PERFUSIX trial [clinical trial ID: NCT02234128]
launched in the USA aims to construct an EVLP center to
repair the rejected lungs and then shipped acceptable lungs
to transplant centers. Further, centralizing the lungs from all
available processes (including donation declined, autopsied)
will expedite therapeutic discoveries on diseases and continu-
ously monitored and data-sharing through cloud-based ana-
lyzing. Most importantly, financial burden of EVLP conduc-
tion which relies on special solutions or refined disposables is
in need of reduction.

Advancement of EVLP translational research has involved
multi-discipline teams, including transplantation,
pulmonology, oncology, anesthesiology, intensive care tho-
racic surgery and rehabilitation, and ranking in topnotch re-
search field in pulmonary medicine. Some obstacles brought
by EVLP, such as immune- and infection-related

Table 4 EVLP clinical trials (data collected from ClinicalTrials and CHICTR)

On board trail title Sponsor Initial
recruitment

Device

Increasing Lung Transplant Availability Using Normothermic Ex Vivo
Lung Perfusion (EVLP) at a Dedicated EVLP Facility
(ClinicalTrials)

Lung Bioengineering Inc. 2018 Centralized Lung
Evaluation System

Application and promotion of normothermic ex-vivo lung perfusion for
extended criteria lungs in lung transplantation (ChiCTR)

Shanghai Pulmonary Hospital,
China

2018 XVIVO Perfusion System
(XPS) with STEEN so-
lution

Ex Vivo Lung Perfusion in Bergamo Lung Transplant
Program(ClinicalTrials)

Papa Giovanni XXIII Hospital,
Italy

2017 Not specified

The University of Alberta Negative Pressure Ventilation Ex-Vivo Lung
Perfusion (ClinicalTrials)

University of Alberta 2017 NPV-EVLP

Trial to Evaluate the Safety and Effectiveness of the Portable Organ
Care System (OCS™) Lung System for Recruiting, Preserving and
Assessing Non-Ideal Donor Lungs for Transplantation
(ClinicalTrials)

TransMedics (including centers in
USA)

2017 OCS lung preservation

Lung Transplantation Using Hepatitis C Positive Donors to Hepatitis C
Negative Recipients: A Pilot Study (ClinicalTrials)

University Health Network,
Toronto Gilead Sciences

2017 Not specified

Finding New Criteria for a Revised Primary Graft Dysfunction Score in
Lung Transplantation - a Pilot Study (ClinicalTrials)

Medical University of Vienna,
Toronto General Hospital

2017 Not specified

Ex Vivo Lung Perfusion: Effect of Cellular Perfusate on Mechanical
Properties and Gas Exchange Function of Donor
Lungs(ClinicalTrials)

Postgraduate Institute of Medical
Education and Research, India

2016 Not specified

Pharmacokinetics of Imipenem During Ex Vivo Lung Perfusion
(ClinicalTrials)

University of Turin, Italy 2016 Not specified

EVLP to Evaluate the Eligibility for Transplantation of DCD-Lungs
(ClinicalTrials)

Policlinico Hospital, Italy 2014 Not specified

Extending Preservation and Assessment Time of Donor Lungs Using
the Toronto EVLP System™ at a Dedicated EVLP
Facility(ClinicalTrials)

Lung Bioengineering Inc.
(including centers in USA)
(Phase 2)

2014 Toronto EVLP System™

Use of Ex Vivo Lung Perfusion (EVLP) in Reconditioning Marginal
Donor Lungs for Transplantation (ClinicalTrials)

Centre hospitalier de l’Université de
Montréa, Montreal, Quebec,
Canada

2014 Not specified

Rule of Carbone Monoxyde in the Ex Vivo Lung Perfusion
Reconditioning (ClinicalTrials)

University Hospital of
Mont-Godinne, Belgium

2014 Not specified

Novel Lung Trial: Normothermic Ex Vivo Lung Perfusion As An
Assessment Of Extended/Marginal Donor Lungs (ClinicalTrials)

XVIVO Perfusion (including
centers in USA)

2011 XPS™ with Steen
Solution™

Evaluation and Reconditioning of Marginal Lung Donors to
Transplantation by ex Vivo Lung Perfusion(ClinicalTrials)

InCor Heart Institute, São Paulo,
Brazil

2011 Not specified
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inflammation balance, hypoxia and reperfusion injury, and
metabolic abnormalities in lung microenvironment, are still
unsolved but also provide opportunities to further explore up-
date pathways of EVLP platform. More importantly, which
should not be omitted, rodent models we used in frontier re-
searches, having their inherent limitation when imitating hu-
man condition, such as lower perfusion flow in rat, are hyper-
sensitive to perfusate. Thus we should find more efficient way
to use declined human lungs [130] or lungs from cadavers for
research upon overcoming the ethical barriers by organ pro-
curement organizations with cross-border multi-center
cooperation.
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