Skip to main content
Log in

High Prevalence of Multidrug-Resistant Bacteria in the Centre Hospitalier et Universitaire de la Mère et de l’Enfant Lagune (CHU-MEL) Reveals Implications of Poor Hygiene Practices in Healthcare

  • Medicine
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

Healthcare-associated infections represent an emerging public health issue with serious impact among hospitalized patients, including cesarized women and children with catheter. The present study determined the implications of hygiene practices and the hospital environment in wound reinfection among cesarized women and the occurrence of catheter-induced infections in children. Bacteriological analyses were performed on 100 wound swabs from cesarized women, 40 swabs from the wound dressing room, and 83 catheter tips used in children. Isolated bacteria were tested for antimicrobial susceptibility. A comparison of the resistance profile between strains isolated from wounds and those isolated from the dressing room was conducted, whereas the hygiene practices observed from the personnel during catheter removal were recorded in the case of children. The results show that 85% of wound swabs, 63% of swabs from the dressing room, and 33.7% of catheter tips were positive for bacteriological analysis. The most isolated strains in wound and environmental swabs were Staphylococcus aureus (56%) and coagulase-negative Staphylococcus (44%), followed by Klebsiella pneumoniae (30%) and Enterobacter cloacae (32%) for wounds and Escherichia coli (43%) and Klebsiella pneumoniae (28%) for the environment. The catheter tips contained mostly Klebsiella pneumoniae (32%), coagulase-negative Staphylococcus (25%), and Enterobacter cloacae (14%). All strains showed resistance to penicillin and cephalosporin. The comparison of the resistance profiles suggests an implication of the environmental strains in the reinfection of wounds in cesarized women. However, a significant correlation was recorded between poor hygiene practices and the contamination of the catheter tips. These findings allowed the authorities of this hospital to reinforce the knowledge and improve the hygiene management, in order to still hold the good label of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Haque M, Sartelli M, Mckimm J, Abu BM. Infection and drug resistance DovepressHealth care-associated infections—an overview. Infect Drug Resist. 2018;11:2322–33. https://doi.org/10.2147/IDR.S177247.

    Article  Google Scholar 

  2. Mitchell BG, Shaban RZ, MacBeth D, Wood C-J, Russo PL. The burden of healthcare-associated infection in Australian hospitals: a systematic review of the literature. Infect Dis Health. 2017;22:117–28. https://doi.org/10.1016/j.idh.2017.07.001.

    Article  Google Scholar 

  3. Jia H, Li L, Li W, Hou T, Ma H, Yang Y, et al. Impact of healthcare-associated infections on length of stay: a study in 68 hospitals in China. Biomed Res Int. 2019; Article ID:1–7.

    Google Scholar 

  4. Traore BA. Les infections nosocomiales dans le service de chirurgie générale du CHU Gabriel Toure: Université de Bamako; 2008. http://www.keneya.net/fmpos/theses/2008/med/pdf/08M381.pdf. Accessed 19 Jun 2019

  5. WHO. Prevention of hospital-acquired infections: A practical guide. 2nd edition. WHO/CDS/CSR/EPH/2002.12. World Health Organization. 2002.

  6. Nejad SB, Allegranzi B, Syed SB, Ellis B, Pittet D. Health-care-associated infection in Africa: a systematic review. Bull World Health Organ. 2011;89:757–65. https://doi.org/10.2471/BLT.11.088179.

    Article  Google Scholar 

  7. Srun S, Sinath Y, Seng AT, Chea M, Borin M, Nhem S, et al. Surveillance of post-caesarean surgical site infections in a hospital with limited resources, Cambodia. J Infect Dev Ctries. 2013;7:579–85. https://doi.org/10.3855/jidc.2981.

    Article  PubMed  Google Scholar 

  8. SF2H. Surveiller et prévenir les infections associées aux soins: recommandations. Rev Off la Société Française d’Hygiène Hosp. 2010;18:180p. www.hygienes.net. Accessed 19 Jun 2019.

  9. Marschall J, Mermel LA, Fakih M, Hadaway L, Kallen A, O’Grady NP, et al. Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35:753–71. https://doi.org/10.1086/676533.

    Article  PubMed  Google Scholar 

  10. Pronovost P, Needham D, Berenholtz S, Sinopoli D, Chu H, Cosgrove S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU Abstract. N Engl J Med. 2006;26:2725–33 www.nejm.org. Accessed 19 Jun 2019.

    Article  Google Scholar 

  11. Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc. 2006;81:1159–71. https://doi.org/10.4065/81.9.1159.

    Article  PubMed  Google Scholar 

  12. Gaynes R, Jacob JT. Intravascular catheter infection: epidemiology, pathogenesis, and microbiology—UpToDate. UpToDate. United Nation; 2019. https://www.uptodate.com/contents/intravascular-catheter-infection-epidemiology-pathogenesis-and-microbiology. Accessed 19 Jun 2019.

  13. Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol. 1992;13:606–8 http://www.ncbi.nlm.nih.gov/pubmed/1334988. Accessed 2 Sep 2019.

    Article  CAS  Google Scholar 

  14. Kumar A, Rai A. Prevalence of surgical site infection in general surgery in a tertiary care centre in India. Int Surg J. 2017;4:3101–6 https://ijsurgery.com/index.php/isj/article/view/1696/1468. Accessed 2 Sep 2019.

    Article  Google Scholar 

  15. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49:1–45. https://doi.org/10.1086/599376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lemmen SW, Häfner H, Zolldann D, Amedick G, Lutticken R. Comparison of two sampling methods for the detection of Gram-positive and Gram-negative bacteria in the environment: moistened swabs versus Rodac plates. Int J Hyg Environ Health. 2001;203:245–8. https://doi.org/10.1078/S1438-4639(04)70035-8.

    Article  CAS  PubMed  Google Scholar 

  17. Cavallo J, Antoniotti G, Baffoy N., Guignement-Coudrais S, Hajjar J, Horn C, et al. Surveillance microbiologique de l’environnement dans les établissements de santé. France; 2002. https://bdsp-ehesp.inist.fr/vibad/controllers/getNoticePDF.php?path=Ministere/Dgs/Publications/2002/recofin.pdf. Accessed 2 Sep 2019.

  18. Cleri DJ, Corrado ML, Seligman SJ. Quantitative culture of intravenous catheters and other intravascular inserts. J Infect Dis. 1980;141:781–6. https://doi.org/10.1093/infdis/141.6.781.

    Article  CAS  PubMed  Google Scholar 

  19. Dougnon TV, Bankole HS, Johnson RC, Hounmanou G, Moussa Toure I, Houessou C, et al. Catheter-associated urinary tract infections at a hospital in Zinvie, Benin (West Africa). Int J Inf Secur. 2016;3:0–7.

    Google Scholar 

  20. CA SFM. Recommandations 2019 V.2.0 du Comité de l’antibiogramme de la Sociét é Française de Microbiologie. 1st edition. 2019. www.sfm-microbiologie.org. Accessed 19 Jun 2019.

  21. Ahoyo T, Bankolé H, Adéoti F, Gbohoun A, Assavèdo S, Amoussou-Guénou M, et al. Prevalence of nosocomial infections and anti-infective therapy in Benin: results of the first nationwide survey in 2012. Antimicrob Resist Infect Control. 2014;3:17. https://doi.org/10.1186/2047-2994-3-17.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Afle FCD, Quenum KJMK, Hessou S, Johnson RC. État des lieux des infections associées aux soins dans deux hôpitaux publics du sud Benin (Afrique de l’ouest): Centre Hospitalier Universitaire de Zone d’Abomey-Calavi/Sô-Ava et Centre Hospitalier de Zone de Cotonou 5. J Appl Biosci. 2018;121:12192. https://doi.org/10.4314/jab.v121i1.9.

    Article  Google Scholar 

  23. Lemsanni M. Les infections nosocomiales en réanimation pédiatrique. Université CADI AYYAD; 2016. http://wd.fmpm.uca.ma/biblio/theses/annee-htm/FT/2016/these53-16.pdf. Accessed 19 Jun 2019.

  24. Oubihi B. Epidémiologie des infections nosocomiales en milieu de réanimation. Université CADI AYYAD; 2015. http://wd.fmpm.uca.ma/biblio/theses/annee-htm/FT/2015/these79-15.pdf. Accessed 19 Jun 2019.

  25. Zemmour H, Derbale FZ. Incidence des infections liées aux cathéters veineux centraux et périphériques et facteurs de risque attribuables au niveau du service de chirurgie générale «A» au CHU de Tlemcen. Universite Abou Bekr Belkaid Tlemcen; 2016. http://dspace.univ-tlemcen.dz/handle/112/9415?mode=full. Accessed 19 Jun 2019.

  26. Soudée S, Schuffenecker I, Aberchih J, Josset L, Lina B, Baud O, et al. Infections néonatales à entérovirus en France en 2012. Arch Pédiatr. 2014;21:984–9. https://doi.org/10.1016/j.arcped.2014.06.022.

    Article  PubMed  Google Scholar 

  27. Merrer J. Épidémiologie des infections liées aux cathéters en réanimation. Ann Fr Anesth Reanim. 2005;24:278–81. https://doi.org/10.1016/j.annfar.2004.12.015.

    Article  CAS  PubMed  Google Scholar 

  28. Schoot RA, van Dalen EC, van Ommen CH, van de Wetering MD. Antibiotic and other lock treatments for tunnelled central venous catheter related infections in children with cancer. Cochrane Database Syst Rev. 2011;1:50. https://doi.org/10.1002/14651858.CD008975.

    Article  Google Scholar 

  29. Douard MC, Clementi E, Arlet G, Marie O, Jacob L, Schremmer B, et al. Negative catheter-tip culture and diagnosis of catheter-related bacteremia. Nutrition. 10:397–404 http://www.ncbi.nlm.nih.gov/pubmed/7819651. Accessed 21 Jun 2019.

  30. SF2H, HAS. Prévention des infections liées aux cathéters veineux périphériques Novembre 2005 Service des recommandations professionnelles. France; 2005. https://www.has-sante.fr/portail/upload/docs/application/pdf/Catheters_veineux_2005_rap.pdf. Accessed 19 Jun 2019.

  31. SF2H, HAS. Avril 2Pose et entretien des cathéters veineux périphériques: Série de critères de qualité pour l’évaluation et l ’amélioration des pratiques professionnelles007. France; 2007. https://www.has-sante.fr/portail/upload/docs/application/pdf/2013-03/catheter_veineux_peripheriques_-_criteres_de_qualite.pdf. Accessed 19 Jun 2019.

  32. Faye A, Bingen É. Place des infections nosocomiales en pédiatrie. Méd Thér/Pédiatrie. 2012;15:3–11. https://doi.org/10.1684/MTP.2012.0448.

    Article  Google Scholar 

  33. Dachy A, Battisti O. Comment j’explore … les infections nosocomiales en néonatologie. Rev Med Liege. 2014;69:454–9 https://www.rmlg.ulg.ac.be/show.php. Accessed 19 Jun 2019.

    CAS  PubMed  Google Scholar 

  34. Kouchica CE. Evaluation des bonnes pratiques d’hygiène au laboratoire de l’Antenne Départemental e pour la T ransfusion S anguine Atlantique-Littoral, CNHU-HKM, COTONOU. Benin; 2014. http://196.192.25.3/bitstream/handle/123456789/299/VERSIONGERALDOERIC.pdf?sequence=1&isAllowed=y. Accessed 19 Jun 2019.

  35. Sossa CAM. Implication des germes de l’environement hospitalier dans la surinfection des plaies à l’Hopital de Menontin. Benin; 2018.

  36. Badia JM, Casey AL, Petrosillo N, Hudson PM, Mitchell SA, Crosby C. Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries. J Hosp Infect. 2017;96:1–15. https://doi.org/10.1016/j.jhin.2017.03.004.

    Article  CAS  PubMed  Google Scholar 

  37. Sievert DM, Ricks P, Edwards JR, Mph AS, Patel J, Srinivasan A, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol. 2013;34:1–14. https://doi.org/10.1086/668770.

    Article  PubMed  Google Scholar 

  38. Koutsoumbelis S, Hughes AP, Girardi FP, Cammisa FP, Finerty EA, Nguyen JT, et al. Risk factors for postoperative infection following posterior lumbar instrumented arthrodesis. J Bone Joint Surg Am. 2011;93:1627–33. https://doi.org/10.2106/JBJS.J.00039.

    Article  PubMed  Google Scholar 

  39. Coello R, Charlett A, Wilson J, Ward V, Pearson A, Borriello P. Adverse impact of surgical site infections in English hospitals. J Hosp Infect. 2005;60:93–103. https://doi.org/10.1016/j.jhin.2004.10.019.

    Article  CAS  PubMed  Google Scholar 

  40. Guetarni N. Les Infections du Site Opératoire (ISO) au CHU d’Oran: Université d’Oran; 2014. https://theses.univ-oran1.dz/document/1012014009t.pdf. Accessed 19 Jun 2019

  41. Feng W, Sun F, Wang Q, Xiong W, Qiu X, Dai X, et al. Epidemiology and resistance characteristics of Pseudomonas aeruginosa isolates from the respiratory department of a hospital in China. Integr Med Res. 2017;8:142–7. https://doi.org/10.1016/j.jgar.2016.11.012.

    Article  Google Scholar 

  42. Nathwani D, Raman G, Sulham K, Gavaghan M, Menon V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2014;3:16p. https://doi.org/10.1186/2047-2994-3-32.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the hospitals involved in the study.

Funding

This study was self-funded. The authors also thank Drs Jerrold AGBANKPE and Esther DEGUENON for their technical support. They are grateful to the whole staff from the Research unit in Applied Microbiology and Pharmacology of natural substances (University of Abomey-Calavi, Benin).

Author information

Authors and Affiliations

Authors

Contributions

VD, HK, and L B-M wrote the protocol.

KF, AO, IC, VD, and HK processed the samples.

DV did the statistical analyses.

HK and DV wrote the draft of the manuscript.

DV, HK, and L B-M reviewed the manuscript.

Corresponding author

Correspondence to Victorien Dougnon.

Ethics declarations

Ethical Approval and Consent to Participate

The Benin National Ethical Committee for Health Research has reviewed and approved this study under No 65/MS/DC/SGM/DRFMT/CNERS/SA. A written approval was taken from each patient involved in the study.

Consent for Publication

All authors have read and gave their consent for publication. Written informed consent was obtained from the patients for publication of their individual details and accompanying images in this manuscript. However, the data submitted for this publication cannot permit to reveal their identity. The consent form is held by the authors’ institution (Polytechnic School of Abomey-Calavi) and is available for review by the Editor-in-Chief.

Competing Interests

All the authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dougnon, V., Koudokpon, H., Hounmanou, Y.M. et al. High Prevalence of Multidrug-Resistant Bacteria in the Centre Hospitalier et Universitaire de la Mère et de l’Enfant Lagune (CHU-MEL) Reveals Implications of Poor Hygiene Practices in Healthcare. SN Compr. Clin. Med. 1, 1029–1037 (2019). https://doi.org/10.1007/s42399-019-00149-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-019-00149-3

Keywords

Navigation