Skip to main content
Log in

A Review on Reverse-Bias Leakage Current Transport Mechanisms in Metal/GaN Schottky Diodes

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

GaN and related nitride semiconductors have attracted considerable interest for use in solid-state light and high-power/-frequency devices. Fabrication of high-quality metal/GaN Schottky contacts is essential to ensure that GaN-based devices perform well. However, GaN Schottky contacts suffer from abnormally high reverse leakage currents that significantly reduce device performance. Hence, a comprehensive understanding of the reverse current transport mechanisms associated with GaN Schottky diodes is essential for reproducible and reliable fabrication of GaN-based devices. In this paper, several possible leakage current transport mechanisms in GaN Schottky devices are briefly reviewed. Poole–Frenkel and thermionic field emissions are generally responsible for the reverse leakage currents of metal/GaN Schottky diodes. In real-world devices, two transport mechanisms can simultaneously contribute to the reverse leakage current, and they must be distinguished to fully understand device performance. In particular, the temperature- and metal electrode-dependent current characteristics require careful and systematic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted from Ref. [42] with permission from Springer Nature

Fig. 4

Reprinted from Ref. [49] with permission from AIP Publishing

Fig. 5

Reprinted from Ref. [58] under the terms of the Creative Commons CC BY NC ND 4.0 license

Fig. 6

Reprinted from Ref. [65] with permission from AIP Publishing

Fig. 7

Reprinted from Ref. [78] with permission from Elsevier

Fig. 8

Similar content being viewed by others

References

  1. F. Zeng, J. An, G. Zhou, W. Li, H. Wang, T. Duan, L. Jiang, H. Yu, A comprehensive review of recent progress on GaN high electron mobility transistors: devices, fabrication and reliability. Electronics 7, 377 (2018)

    Article  CAS  Google Scholar 

  2. R. Sun, J. Lai, W. Chen, B. Zhang, GaN power integration for high frequency and high efficiency power applications: a review. IEEE Access 8, 15529–15542 (2020)

    Article  Google Scholar 

  3. G. Li, W. Wang, W. Yang, Y. Lin, H. Wang, Z. Lin, S. Zhou, GaN-based light-emitting diodes on various substrates: a critical review. Rep. Prog. Phys. 79, 056501 (2016)

    Article  PubMed  Google Scholar 

  4. H. Morkoç, A. Carlo, R. Cingolani, GaN-based modulation doped FETs and UV detectors. Solid State Electron. 46, 157–202 (2002)

    Article  Google Scholar 

  5. J. Speck, S. Rosner, The role of threading dislocations in the physical properties of GaN and its alloys. Physica B 273–274, 24–32 (1999)

    Article  Google Scholar 

  6. P. Kozodoy, J. Ibbetson, H. Marchand, P. Fini, S. Keller, J. Speck, S. DenBaars, U. Mishra, Electrical characterization of GaN p-n junctions with and without threading dislocations. Appl. Phys. Lett. 73, 975–977 (1998)

    Article  CAS  Google Scholar 

  7. X. Ke, W. Feng, R. Qiang, Progress in bulk GaN growth. Chin. Phys. B 24, 066105 (2015)

    Article  Google Scholar 

  8. F. Xie, H. Lu, X. Xiu, D. Chen, P. Han, R. Zhang, Y. Zheng, Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate. Solid State Electron. 57, 39–42 (2011)

    Article  CAS  Google Scholar 

  9. J. Hsu, M. Manfra, R. Molnar, B. Heying, J. Speck, Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates. Appl. Phys. Lett. 81, 79–81 (2002)

    Article  CAS  Google Scholar 

  10. J. Kotani, T. Hashizume, H. Hasegawa, Analysis and control of excess leakage currents in nitride-based Schottky diodes based on thin surface barrier model. J. Vac. Sci. Technol. B 22, 2179–2189 (2004)

    Article  CAS  Google Scholar 

  11. L. Chen, N. Jin, D. Yan, Y. Cao, L. Zhao, H. Liang, B. Liu, E. Zhang, X. Gu, R. Schrimpf, D. Fleetwood, H. Lu, Charge transport in vertical GaN Schottky barrier diodes: a refined physical model for conductive dislocations. IEEE Trans. Electron Dev. 67, 841–846 (2020)

    Article  CAS  Google Scholar 

  12. E. Miller, D. Schaadt, E. Yu, C. Poblenz, C. Elsass, J. Speck, Reduction of reverse-bias leakage current in Schottky diodes on GaN grown by molecular-beam epitaxy using surface modification with an atomic force microscope. J. Appl. Phys. 91, 9821–9826 (2002)

    Article  CAS  Google Scholar 

  13. K. Kim, D. Liu, J. Gong, Z. Ma, Reduction of leakage current in GaN Schottky diodes through ultraviolet/ozone plasma treatment. IEEE Electron Dev. Lett. 40, 1796–1799 (2019)

    Article  CAS  Google Scholar 

  14. J. Sheu, M. Lee, W. Lai, Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes. Appl. Phys. Lett. 86, 052103 (2005)

    Article  Google Scholar 

  15. H. Lu, R. Zhang, X. Xiu, Z. Xie, Y. Zheng, Z. Li, Low leakage Schottky rectifiers fabricated on homoepitaxial GaN. Appl. Phys. Lett. 91, 172113 (2007)

    Article  Google Scholar 

  16. E. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 578168 (2014)

    Article  Google Scholar 

  17. S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  18. B. Akkal, Z. Benamara, H. Abid, A. Talbi, B. Gruzza, Electrical characterization of Au/n-GaN Schottky diodes. Mater. Chem. Phys. 85, 27–31 (2004)

    Article  CAS  Google Scholar 

  19. S. Pearton, J. Yang, P. Cary, F. Ren, J. Kim, M. Tadjer, M. Mastro, A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 5, 011301 (2018)

    Article  Google Scholar 

  20. A. Agrawal, N. Shukla, K. Ahmed, S. Datta, A unified model for insulator selection to form ultra-low resistivity metal-insulator-semiconductor contacts to n-Si, n-Ge, and n-InGaAs. Appl. Phys. Lett. 101, 042108 (2012)

    Article  Google Scholar 

  21. U. Karrer, O. Ambacher, M. Stutzmann, Influence of crystal polarity on the properties of Pt/GaN Schottky diodes. Appl. Phys. Lett. 77, 2012–2014 (2000)

    Article  CAS  Google Scholar 

  22. M. Allen, M. Alkaisi, S. Durbin, Metal Schottky diodes on Zn-polar and O-polar bulk ZnO. Appl. Phys. Lett. 89, 103520 (2006)

    Article  Google Scholar 

  23. H. Zhang, E. Miller, E. Yu, Analysis of leakage current mechanisms in Schottky contacts to GaN and AlGaN grown by molecular-beam epitaxy. J. Appl. Phys. 99, 023703 (2006)

    Article  Google Scholar 

  24. L. Cheng, J. Yang, W. Zheng, Bandgap, mobility, dielectric constant, and Baliga’s figure of merit of 4H-SiC, GaN, and β-Ga2O3 from 300 to 620 K. ACS Appl. Electron. Mater. 4, 4140–4145 (2022)

    Article  CAS  Google Scholar 

  25. E. Heltemes, H. Swinney, Anisotropy in lattice vibrations of zinc oxide. J. Appl. Phys. 38, 2387–2388 (1967)

    Article  CAS  Google Scholar 

  26. B. Liu, M. Gu, X. Liu, Lattice dynamical, dielectric, and thermodynamic properties of β-Ga2O3 from first principles. Appl. Phys. Lett. 91, 172102 (2007)

    Article  Google Scholar 

  27. J. Pankove, H. Schade, Photoemission from GaN. Appl. Phys. Lett. 25, 53–55 (1974)

    Article  CAS  Google Scholar 

  28. S. Davydov, On the electron affinity of silicon carbide polytypes. Semiconductors 41, 696–698 (2007)

    Article  CAS  Google Scholar 

  29. M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, R. Fornari, Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl. Phys. Lett. 101, 132106 (2012)

    Article  Google Scholar 

  30. P. Hacke, T. Detchprohm, K. Hiramatsu, Schottky barrier on n-type GaN grown by hydride vapor phase epitaxy. Appl. Phys. Lett. 63, 2676–2678 (1993)

    Article  CAS  Google Scholar 

  31. Y. Negoro, K. Katsumoto, T. Kimoto, H. Matsunami, Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC (0001). J. Appl. Phys. 96, 224–228 (2004)

    Article  CAS  Google Scholar 

  32. R. Rouzbahani, M. Ara, B. Efafi, S. Mousavi, A comprehensive optimization of aluminum concentration in ZnO nanocrystals by novel simple methods. Electron. Mater. Lett. 11, 931–937 (2015)

    Article  CAS  Google Scholar 

  33. D. Khan, D. Gajula, S. Okur, G. Tompa, G. Koley, β-Ga2O3 thin film based lateral and vertical Schottky barrier diode. ECS J. Solid State Sci. Technol. 8, Q106–Q110 (2019)

    Article  CAS  Google Scholar 

  34. F. Roccaforte, F. Via, V. Raineri, R. Pierobon, E. Zanoni, Richardson’s constant in inhomogeneous silicon carbide Schottky contacts. J. Appl. Phys. 93, 9137–9144 (2003)

    Article  CAS  Google Scholar 

  35. V. Reddy, V. Janardhanam, C. Leem, C. Choi, Electrical properties and the double Gaussian distribution of inhomogeneous barrier heights in Se/n-GaN Schottky barrier diode. Superlattices Microstruct. 67, 242–255 (2014)

    Article  Google Scholar 

  36. M. Reddy, W. Park, K. Im, J. Lee, Dual-surface modification of AlGaN/GaN HEMTs using TMAH and piranha solutions for enhancing current and 1/f-noise characteristics. IEEE J. Electron Dev. Soc. 6, 791–796 (2018)

    Article  CAS  Google Scholar 

  37. V. Janardhanam, I. Jyothi, S. Lee, V. Reddy, C. Choi, Rectifying and breakdown voltage enhancement of Au/n-GaN Schottky diode with Al-doped ZnO films and its structural characterization. Thin Solid Films 676, 125–132 (2019)

    Article  CAS  Google Scholar 

  38. V. Reddy, P. Reddy, I. Reddy, C. Choi, Microstructural, electrical and carrier transport properties of Au/NiO/n-GaN heterojunction with a nickel oxide interlayer. RSC Adv. 6, 105761 (2016)

    Article  CAS  Google Scholar 

  39. J. Ren, W. Mou, L. Zhao, D. Yan, Z. Yu, G. Yang, S. Xiao, X. Gu, A comprehensive study of reverse current degradation mechanisms in Au/Ni/n-GaN Schottky diodes. IEEE Trans. Electron Dev. 64, 407–411 (2017)

    Article  CAS  Google Scholar 

  40. W. Ha, S. Chhajed, S. Oh, S. Hwang, J. Kim, J. Lee, K. Kim, Analysis of the reverse leakage current in AlGaN/GaN Schottky barrier diodes treated with fluorine plasma. Appl. Phys. Lett. 100, 132104 (2012)

    Article  Google Scholar 

  41. P. Fiorenza, M. Vivona, F. Iucolano, A. Severino, S. Lorenti, G. Nicotra, C. Bongiorno, F. Giannazzo, F. Roccaforte, Temperature-dependent Fowler-Nordheim electron barrier height in SiO2/4H-SiC MOS capacitors. Mater. Sci. Semicond. Process. 78, 38–42 (2018)

    Article  CAS  Google Scholar 

  42. H. Kim, H. Lee, B. Choi, Barrier inhomogeneity and leakage current transport mechanism in vertical Pt/Gd2O3/GaN Schottky diodes. Appl. Phys. A 127, 647 (2021)

    Article  CAS  Google Scholar 

  43. J. Yeargan, H. Taylor, The Poole-Frenkel effect with compensation present. J. Appl. Phys. 39, 5600–5604 (1968)

    Article  CAS  Google Scholar 

  44. J. Simmons, Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems. Phys. Rev. 155, 657–660 (1967)

    Article  CAS  Google Scholar 

  45. R. Angle, H. Talley, Electrical and charge storage characteristics of the tantalum oxide-silicon dioxide device. IEEE Trans. Electron Dev. 25, 1277–1283 (1978)

    Article  Google Scholar 

  46. R. Gould, C. Bowler, DC electrical properties of evaporated thin films of CdTe. Thin Solid Films 164, 281–287 (1998)

    Article  Google Scholar 

  47. F. Iucolano, F. Roccaforte, F. Giannazzo, V. Raineri, Influence of high-temperature GaN annealed surface on the electrical properties of Ni/GaN Schottky contacts. J. Appl. Phys. 104, 093706 (2008)

    Article  Google Scholar 

  48. E. Miller, E. Yu, P. Waltereit, J. Speck, Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy. Appl. Phys. Lett. 84, 535–537 (2004)

    Article  CAS  Google Scholar 

  49. J. Kotani, J. Yaita, A. Yamada, N. Nakamura, K. Watanabe, Impact of n-GaN cap layer doping on the gate leakage behavior in AlGaN/GaN HEMTs grown on Si and GaN substrates. J. Appl. Phys. 127, 234501 (2020)

    Article  CAS  Google Scholar 

  50. Y. Lin, D. Chao, J. Liang, Y. Shen, C. Huang, S. Hall, I. Mitrovic, Ultra-low turn-on voltage quasi-vertical GaN Schottky barrier diode with homogeneous barrier height. Solid State Electron. 207, 108723 (2023)

    Article  CAS  Google Scholar 

  51. X. Shen, D. Zhao, Z. Liu, Z. Hu, H. Yang, J. Liang, Space-charge-limited currents in GaN Schottky diodes. Solid State Electron. 49, 847–852 (2005)

    Article  CAS  Google Scholar 

  52. Y.R. SonPeterson, The effects of localized tail states on charge transport mechanisms in amorphous zinc tin oxide Schottky diodes. Semicond. Sci. Technol. 32, 12LT02 (2017)

    Article  Google Scholar 

  53. C. Zhou, Q. Jiang, S. Huang, K. Chen, Vertical leakage/breakdown mechanisms in AlGaN/GaN-on-Si devices. IEEE Electron Dev. Lett. 33, 1132–1134 (2012)

    Article  CAS  Google Scholar 

  54. H. Fu, X. Zhang, K. Fu, H. Liu, S. Alugubelli, X. Huang, H. Chen, I. Baranowski, T. Yang, K. Xu, F. Ponce, B. Zhang, Y. Zhao, Nonpolar vertical GaN-on-GaN p–n diodes grown on free-standing m-plane (10 \(\bar{1}\) 0) GaN substrates. Appl. Phys. Express 11, 111003 (2018)

    Article  Google Scholar 

  55. Y. Zhang, M. Sun, D. Piedra, M. Azize, X. Zhang, T. Fujishima, T. Palacios, GaN-on-Si vertical Schottky and p-n diodes. IEEE Electron Dev. Lett. 35, 618–620 (2014)

    Article  CAS  Google Scholar 

  56. H. Luo, H. Jiang, Z. Chen, Y. Pei, Q. Feng, H. Zhou, X. Lu, K. Lau, G. Wang, Leakage current reduction in β-Ga2O3 Schottky barrier diodes by CF4 plasma treatment. IEEE Electron Dev. Lett. 41, 1312–1315 (2020)

    Article  CAS  Google Scholar 

  57. B. Prasannanjaneyulu, S. Bhattacharya, S. Karmalkar, Mechanism and enhancement of the near-threshold low OFF-state breakdown voltage in gallium nitride high electron mobility transistors. Jpn. J. Appl. Phys. 58, SCCD01 (2019)

    Article  CAS  Google Scholar 

  58. R. Yin, C. Li, B. Zhang, J. Wang, Y. Fu, C. Wen, Y. Hao, B. Shen, M. Wang, Physical mechanism of field modulation effects in ion implanted edge termination of vertical GaN Schottky barrier diodes. Fundam. Res. 2, 629–634 (2022)

    Article  CAS  Google Scholar 

  59. Y. Zhang, A. Dadgar, T. Palacios, Gallium nitride vertical power devices on foreign substrates: a review and outlook. J. Phys. D Appl. Phys. 51, 273001 (2018)

    Article  Google Scholar 

  60. H. Lin, P. Ye, G. Wilk, Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs. Appl. Phys. Lett. 87, 182904 (2005)

    Article  Google Scholar 

  61. J. Ren, D. Yan, G. Yang, F. Wang, S. Xiao, X. Gu, Current transport mechanisms in lattice-matched Pt/Au-InAlN/GaN Schottky diodes. J. Appl. Phys. 117, 154503 (2015)

    Article  Google Scholar 

  62. H. Wu, X. Kang, Y. Zheng, K. Wei, L. Zhang, X. Liu, G. Zhang, Optimization of recess-free AlGaN/GaN Schottky barrier diode by TiN anode and current transport mechanism analysis. J. Semicond. 43, 062803 (2022)

    Article  Google Scholar 

  63. S. Turuvekere, D. Rawal, A. DasGupta, N. DasGupta, Evidence of Fowler-Nordheim tunneling in gate leakage current of AlGaN/GaN HEMTs at room temperature. IEEE Trans. Electron Dev. 61, 4291–4294 (2014)

    Article  Google Scholar 

  64. J. Chen, M. Zhu, X. Lu, X. Zou, Electrical characterization of GaN Schottky barrier diode at cryogenic temperatures. Appl. Phys. Lett. 116, 062102 (2020)

    Article  CAS  Google Scholar 

  65. L. Xia, A. Hanson, T. Boles, D. Jin, On reverse gate leakage current of GaN high electron mobility transistors on silicon substrate. Appl. Phys. Lett. 102, 113510 (2013)

    Article  Google Scholar 

  66. A. Yu, Electron tunneling and contact resistance of metal-silicon contact barriers. Solid State Electron. 13, 239–247 (1970)

    Article  Google Scholar 

  67. J. Suda, K. Yamaji, Y. Hayashi, T. Kimoto, K. Shimoyama, H. Namita, S. Nagao, Nearly ideal current-voltage characteristics of Schottky barrier diodes formed on hydride-vapor-phase-epitaxy-grown GaN free-standing substrates. Appl. Phys. Express 3, 101003 (2010)

    Article  Google Scholar 

  68. M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, S. Yamakoshi, Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n–Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl. Phys. Lett. 108, 133503 (2016)

    Article  Google Scholar 

  69. K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, M. Higashiwaki, 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl. Phys. Lett. 110, 103506 (2017)

    Article  Google Scholar 

  70. F. Padovani, R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid State Electron. 9, 695–707 (1966)

    Article  Google Scholar 

  71. K. Ueda, K. Kawamoto, H. Asano, High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes. Diamond Rel. Mater. 57, 28–31 (2015)

    Article  CAS  Google Scholar 

  72. K. Isobe, M. Akazawa, Effects of surface treatment on Fermi level pinning at metal/GaN interfaces formed on homoepitaxial GaN layers. Jpn. J. Appl. Phys. 59, 046506 (2020)

    Article  CAS  Google Scholar 

  73. F. Roccaforte, G. Greco, P. Fiorenza, S. Di Franco, F. Giannazzo, F. La Via, M. Zielinski, H. Mank, V. Jokubavicius, R. Yakimova, Towards vertical Schottky diodes on bulk cubic silicon carbide (3C-SiC). Appl. Surf. Sci. 606, 154896 (2022)

    Article  CAS  Google Scholar 

  74. T. Hatakeyama, T. Shinohe, Reverse characteristics of a 4H-SiC Schottky barrier diode. Mater. Sci. Forum 389, 1169–1172 (2002)

    Article  Google Scholar 

  75. H. Imadate, T. Mishima, K. Shiojimam, Electrical characteristics of n-GaN Schottky contacts on cleaved surfaces of free-standing substrates: Metal work function dependence of Schottky barrier height. Jpn. J. Appl. Phys. 57, 04FG13 (2018)

    Article  Google Scholar 

  76. S. Yang, S. Han, K. Sheng, Vertical GaN power rectifiers: interface effects and switching performance. Semicond. Sci. Technol. 36, 024005 (2021)

    Article  CAS  Google Scholar 

  77. B. Wang, M. Xiao, X. Yan, H. Wong, J. Ma, K. Sasaki, H. Wang, Y. Zhang, High-voltage vertical Ga2O3 power rectifiers operational at high temperatures up to 600 K. Appl. Phys. Lett. 115, 263503 (2019)

    Article  Google Scholar 

  78. Y. Ren, Z. He, B. Dong, C. Wang, Z. Zeng, Q. Li, Z. Chen, L. Li, N. Liu, Analysis of electrical properties in Ni/GaN Schottky contacts on nonpolar/semipolar GaN free-standing substrates. J. Alloys Compd. 898, 162817 (2022)

    Article  CAS  Google Scholar 

  79. H. Yamada, H. Chonan, T. Takahashi, M. Shimizu, Electrical properties of Ni/n-GaN Schottky diodes on freestanding m-plane GaN substrates. Appl. Phys. Express 10, 041001 (2017)

    Article  Google Scholar 

  80. H. Yamada, H. Chonan, T. Takahashi, M. Shimizu, Impact of substrate off-angle on the m-plane GaN Schottky diodes. Jpn. J. Appl. Phys. 57, 04FG01 (2018)

    Article  Google Scholar 

  81. J. Cha, T. Lee, T. Seong, Using a NiZn solid solution layer to produce high-barrier height Schottky contact to semipolar (20–21) n-type GaN. J. Alloys Compd. 852, 157003 (2021)

    Article  CAS  Google Scholar 

  82. G. Yang, Y. Gu, Y. Liu, F. Xie, Y. Li, X. Zhang, N. Lu, C. Zhu, Reverse leakage current transport mechanisms in Ni/Au Al0.58Ga0.42N Schottky type photodetectors. IEEE Photonics J. 13, 1–5 (2021)

    Google Scholar 

  83. N. Tanaka, K. Hasegawa, K. Yasunishi, N. Murakami, T. Oka, 50 A vertical GaN Schottky barrier diode on a free-standing GaN substrate with blocking voltage of 790 V. Appl. Phys. Express 8, 071001 (2015)

    Article  Google Scholar 

  84. X. Guo, Y. Zhong, X. Chen, Y. Zhou, S. Su, S. Yan, J. Liu, X. Sun, Q. Sun, H. Yang, Reverse leakage and breakdown mechanisms of vertical GaN-on-Si Schottky barrier diodes with and without implanted termination. Appl. Phys. Lett. 118, 243501 (2021)

    Article  CAS  Google Scholar 

  85. S. Matsumoto, M. Toguchi, K. Takeda, T. Narita, T. Kachi, T. Sato, Effects of a photo-assisted electrochemical etching process removing dry-etching damage in GaN. Jpn. J. Appl. Phys. 57, 121001 (2018)

    Article  Google Scholar 

  86. B. Ren, M. Liao, M. Sumiya, L. Wang, Y. Koide, L. Sang, Nearly ideal vertical GaN Schottky barrier diodes with ultralow turn-on voltage and on-resistance. Appl. Phys. Express 10, 051001 (2017)

    Article  Google Scholar 

  87. L. Sang, M. Liao, Y. Koide, M. Sumiya, High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator. Appl. Phys. Lett. 98, 103502 (2011)

    Article  Google Scholar 

  88. R. Mahapatraa, A. Chakraborty, N. Poolamai, A. Horsfall, S. Chattopadhyay, N. Wright, K. Coleman, G. Coleman, C. Burrows, Leakage current and charge trapping behavior in TiO2/SiO2 high-k gate dielectric stack on 4H-SiC substrate. J. Vac. Sci. Technol. B 25, 217–223 (2007)

    Article  Google Scholar 

  89. H. Kim, H. Yun, B. Choi, Characteristics of atomic layer deposited Gd2O3 on n-GaN with an AlN layer. RSC Adv. 8, 42390 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. F. Mirkhosravi, A. Rashidi, A.T. Elshafiey, J. Gallagher, Z. Abedi, K. Ahn, A. Lintereur, E. Mace, M. Scarpulla, D. Feezell, Effects of fast and thermal neutron irradiation on Ga-polar and N-polar GaN diodes. J. Appl. Phys. 133, 015704 (2023)

    Article  CAS  Google Scholar 

  91. J. Chen, Z. Liu, H. Wang, X. Song, Z. Bian, X. Duan, S. Zhao, J. Ning, J. Zhang, Y. Hao, Determination of the leakage current transport mechanisms in quasi-vertical GaN-on-Si Schottky barrier diodes (SBDs) at low and high reverse biases and varied temperatures. Appl. Phys. Express 14, 104002 (2021)

    Article  CAS  Google Scholar 

  92. Z. Shi, X. Xiang, H. Zhang, Q. He, G. Jian, K. Zhou, X. Zhou, C. Xing, G. Xu, S. Long, Leakage current suppression and breakdown voltage enhancement in GaN-on-GaN vertical Schottky barrier diodes enabled by oxidized platinum as Schottky contact metal. Semicond. Sci. Technol. 37, 065010 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Program funded by the Seoul National University of Science and Technology (Seoultech).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hogyoung Kim.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H. A Review on Reverse-Bias Leakage Current Transport Mechanisms in Metal/GaN Schottky Diodes. Trans. Electr. Electron. Mater. 25, 141–152 (2024). https://doi.org/10.1007/s42341-024-00512-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-024-00512-9

Keywords

Navigation