Skip to main content
Log in

Nanoscale SiOx Tunnel Oxide Deposition Techniques and Their Influence on Cell Parameters of TOPCon Solar Cells

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The main goal of solar cell technology is to attain high efficiency, long durability, mass-production, cost-effectiveness, and made with eco-friendly materials. Among the various crystalline silicon solar cell technologies, Tunneling Oxide Passivated Contact (TOPCon) solar cell has its unique style in terms of the structure and carrier transport manner, which predominately decreases the metal contact recombination and gives 1-D carrier transport. A very high efficiency of 26% for TOPCon solar cells has been achieved with the industrial screen print technology and obtained high cell parameter values of Voc and fill factor as 732.3 mV and 84.3% respectively. The tunnel oxide thickness (maintaining < 2 nm) in the TOPCon has its prior impact on the efficiency and electrical parameters of the cell. To obtain the preferable thickness of the tunnel oxide layer various deposition techniques have been reported in the literature. SiOx is the most widely used tunnel oxide material for TOPCon solar cells to date. In this review, different deposition methods that were used for the SiOx tunnel oxide layer such as chemical oxidation, ozone oxidation, thermal oxidation, and plasma-enhanced chemical vapor deposition (PECVD) are elaborated. Moreover, the effect of the deposition conditions on the cell parameters in different techniques are also discussed briefly. Furthermore, the development of TOPCon solar cells and the latest reports that were used different tunnel oxide materials in finding an alternative to SiOx tunnel oxide is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. G. L., Energy Transition Outlook 2018: A Global and Regional Forecast of the Energy Transition to 2050 (2018).

  2. M. Aklin, P. Bayer, S.P. Harish, J. Urpelainen, Sci. Adv. 3, 1602153 (2017)

    Article  Google Scholar 

  3. A.B. Lovins, Science 350, 169 (2015)

    Article  CAS  Google Scholar 

  4. W.M.P.U. Wijeratne, R.J. Yang, E. Too, R. Wakefield, Sustain. Cities Soc. 45, 553 (2019)

    Article  Google Scholar 

  5. A. Shafieian, M. Khiadani, A. Nosrati, Energy Convers. Manag. 183, 307 (2019)

    Article  Google Scholar 

  6. M.A. Green, Prog. Photovoltaics Res. Appl. 17, 183 (2009)

    Article  CAS  Google Scholar 

  7. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 2, 1 (2017)

    Article  CAS  Google Scholar 

  8. T.G. Allen, J. Bullock, X. Yang, A. Javey, S. De Wolf, Nat. Energy 4, 914 (2019)

    Article  CAS  Google Scholar 

  9. Int. Energy Agency Photovolt. Power Syst. Program. (IEA PVPS), Snapshot Glob. Photovolt. Mark. 2020 (2020).

  10. D.M. Chapin, C.S. Fuller, G.L. Pearson, J. Appl. Phys. 25, 676 (1954)

    Article  CAS  Google Scholar 

  11. J. Zhao, A. Wang, M.A. Green, Prog. Photovoltaics Res. Appl. 7, 471 (1999)

    Article  CAS  Google Scholar 

  12. J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels, Prog. Photovoltaics Res. Appl. 16, 461 (2008)

    Article  CAS  Google Scholar 

  13. V. Petrova, JinkoSolar Hits 22.04% Conversionefficiency Multi-Si PV Cells. https//Renewablesnow.Com/News/Jinkosolar-Hits-2204-Conversion-Efficiencyfor-Multi-Si-Pv-Cells-585575/ (2017).

  14. M. Osborne, LONGi Sol. Has Bifacial Mono-PERC Sol. Cell World Rec. Verif. 24.06%. https://Pv-Tech.Org/News/Longi-Solar-Has-Bifacial-Mono-Perc-Solar-Cell-World-Record-Verified-at-24 (2019).

  15. J. Carolus, J.A. Tsanakas, A. van der Heide, E. Voroshazi, W. De Ceuninck, M. Daenen, Sol. Energy Mater. Sol. Cells, 200, 109950 (2019).

    Article  CAS  Google Scholar 

  16. U. Varshney, W. M. Li, X. Li, C. Chan, B. Hoex, in Conf. Rec. IEEE Photovolt. Spec. Conf. (Institute of Electrical and Electronics Engineers Inc., 2020), 0803–0806 (2020).

  17. J. Liu, Y. Yao, S. Xiao, X. Gu, J. Phys. D. Appl. Phys. 51, 123001 (2018).

    Article  CAS  Google Scholar 

  18. A. Ur Rehman, S.H. Lee, Sci. World J. 2013, 470347 (2013).

    Article  CAS  Google Scholar 

  19. D. Adachi, J.L. Hernández, K. Yamamoto, Appl. Phys. Lett. 107, 233506 (2015).

    Article  CAS  Google Scholar 

  20. F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, S.W. Glunz, Sol. Energy Mater. Sol. Cells 131, 46 (2014)

    Article  CAS  Google Scholar 

  21. Y. Tao, K. Madani, E. Cho, B. Rounsaville, V. Upadhyaya, A. Rohatgi, Appl. Phys. Lett. 110, 021101 (2017).

  22. T. Matsushita, T. Aoki, T. Otsu, H. Yamoto, H. Hayashi, M. Okayama, Y. Kawana, Jpn. J. Appl. Phys. 15, 35 (1976)

    Article  Google Scholar 

  23. A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S.W. Glunz, Sol. Energy Mater. Sol. Cells 173, 96 (2017)

    Article  CAS  Google Scholar 

  24. M. Rienäcker, A. Merkle, U. Römer, H. Kohlenberg, J. Krügener, R. Brendel, R. Peibst, in Energy Procedia (Elsevier Ltd, 2016), 412–418,(2016).

  25. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, IEEE J. Photovoltaics 4, 1433 (2014)

    Article  Google Scholar 

  26. A. Richter, R. Müller, J. Benick, F. Feldmann, B. Steinhauser, C. Reichel, A. Fell, M. Bivour, M. Hermle, S.W. Glunz, Nat. Energy 6, 429 (2021)

    Article  CAS  Google Scholar 

  27. S. W. Glunz, F. Feldmann, A. Richter, M. Bivour, S. W. Glunz, F. Feldmann, A. Richter, M. Bivour, C. Reichel, H. Steinkemper, J. Benick, M. Hermle, “31st European Photovoltaic Solar Energy Conference and Exhibition” (2015).

  28. F. Feldmann, G. Nogay, P. Löper, D.L. Young, B.G. Lee, P. Stradins, M. Hermle, S.W. Glunz, Sol. Energy Mater. Sol. Cells 178, 15 (2018)

    Article  CAS  Google Scholar 

  29. T. F. Wietler, D. Tetzlaff, J. Krügener, M. Rienäcker, F. Haase, Y. Larionova, R. Brendel, R. Peibst, Appl. Phys. Lett. 110, 253902 (2017).

  30. Z. Rui, Y. Zeng, X. Guo, Q. Yang, Z. Wang, C. Shou, W. Ding, J. Yang, X. Zhang, Q. Wang, H. Jin, M. Liao, S. Huang, B. Yan, J. Ye, Sol. Energy 194, 18 (2019)

    Article  CAS  Google Scholar 

  31. H. Steinkemper, F. Feldmann, M. Bivour, M. Hermle, IEEE J. Photovoltaics 5, 1348 (2015)

    Article  Google Scholar 

  32. F. Haase, F. Kiefer, S. Schafer, C. Kruse, J. Krügener, R. Brendel, R. Peibst, Jpn. J. Appl. Phys., 56, 08MB15 (2017).

  33. N. Folchert, M. Rienäcker, A.A. Yeo, B. Min, R. Peibst, R. Brendel, Sol. Energy Mater. Sol. Cells 185, 425 (2018)

    Article  CAS  Google Scholar 

  34. R. Peibst, U. Römer, Y. Larionova, M. Rienäcker, A. Merkle, N. Folchert, S. Reiter, M. Turcu, B. Min, J. Krügener, D. Tetzlaff, E. Bugiel, T. Wietler, R. Brendel, Sol. Energy Mater. Sol. Cells 158, 60 (2016)

    Article  CAS  Google Scholar 

  35. Z. Zhang, Y. Zeng, C.S. Jiang, Y. Huang, M. Liao, H. Tong, M. Al-Jassim, P. Gao, C. Shou, X. Zhou, B. Yan, J. Ye, Sol. Energy Mater. Sol. Cells 187, 113 (2018)

    Article  CAS  Google Scholar 

  36. Q. Wang, W. Wu, N. Yuan, Y. Li, Y. Zhang, J. Ding, Sol. Energy Mater. Sol. Cells, 208, 110423 (2020).

  37. Y. Zeng, H. Tong, C. Quan, L. Cai, Z. Yang, K. Chen, Z. Yuan, C.H. Wu, B. Yan, P. Gao, J. Ye, Sol. Energy 155, 654 (2017)

    Article  CAS  Google Scholar 

  38. M. Lenes, R. C. G. Naber, J. R. M. Luchies, “LPCVD polysilicon passivated contacts for different solar cell concepts,” in 6th Silicon PV Conf., Chambery, France (2016).

  39. G. Limodio, G. Yang, H. Ge, P. Procel, Y. De Groot, L. Mazzarella, O. Isabella, M. Zeman, Sol. Energy Mater. Sol. Cells 194, 28 (2019)

    Article  CAS  Google Scholar 

  40. Y. Wen, H. T. C. Tu, K. Ohdaira, Jpn. J. Appl. Phys., 60, SBBF09 (2021).

  41. M. Köhler, M. Pomaska, F. Lentz, F. Finger, U. Rau, K. Ding, A.C.S. Appl, Mater. Interfaces 10, 14259 (2018)

    Article  CAS  Google Scholar 

  42. H. Tong, M. Liao, Z. Zhang, Y. Wan, D. Wang, C. Quan, L. Cai, P. Gao, W. Guo, H. Lin, C. Shou, Y. Zeng, B. Yan, J. Ye, Sol. Energy Mater. Sol. Cells 188, 149 (2018)

    Article  CAS  Google Scholar 

  43. T. Matsumoto, H. Nakajima, D. Irishika, T. Nonaka, K. Imamura, H. Kobayashi, Appl. Surf. Sci. 395, 56 (2017)

    Article  CAS  Google Scholar 

  44. D. Tetzlaff, J. Krugener, Y. Larionova, S. Reiter, M. Turcu, R. Peibst, U. Hohne, J. D. Kahler, T. Wietler, in Conf. Rec. IEEE Photovolt. Spec. Conf. (Institute of Electrical and Electronics Engineers Inc., 2016), 221–224 (2016).

  45. A. Moldovan, F. Feldmann, M. Zimmer, J. Rentsch, J. Benick, M. Hermle, Sol. Energy Mater. Sol. Cells 142, 123 (2015)

    Article  CAS  Google Scholar 

  46. S. Ichimura, H. Nonaka, Y. Morikawa, T. Noyori, T. Nishiguchi, and M. Kekura, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 22, 1410 (2004).

  47. T. Nishiguchi, S. Saitoh, N. Kameda, Y. Morikawa, M. Kekura, H. Nonaka, S. Ichimura, Japan. J. Appl. Phys. 46, 2835 (2007)

    Article  CAS  Google Scholar 

  48. S.C. Chao, R. Pitchai, Y.H. Lee, J. Electrochem. Soc. 136, 2751 (1989)

    Article  CAS  Google Scholar 

  49. K. Nakamura, S. Ichimura, Japan. J. Appl. Phys. 44, 7602 (2005)

    Article  CAS  Google Scholar 

  50. A. Kurokawa, K. Nakamura, S. Ichimura, D.W. Moon, Appl. Phys. Lett. 76, 493 (2000)

    Article  CAS  Google Scholar 

  51. C. K. Fink, K. Nakamura, S. Ichimura, S. J. Jenkins, J. Phys. Condens. Matter 21, 183001 (2009).

  52. N. Kameda, T. Nishiguchi, Y. Morikawa, M. Kekura, H. Nonaka, S. Ichimura, J. Electrochem. Soc. 154, H769 (2007)

    Article  CAS  Google Scholar 

  53. A. Moldovan, F. Feldmann, G. Krugel, M. Zimmer, J. Rentsch, M. Hermle, A. Roth-Fölsch, K. Kaufmann, C. Hagendorf, Energy Procedia 55, 834–844 (2014)

    Article  CAS  Google Scholar 

  54. H. Angermann, K. Wolke, C. Gottschalk, A. Moldovan, M. Roczen, J. Fittkau, M. Zimmer, J. Rentsch, Appl. Surf. Sci. 258, 8387–8396 (2012)

    Article  CAS  Google Scholar 

  55. R. Van Der Vossen, F. Feldmann, A. Moldovan, M. Hermle, Energy Procedia 124, 448 (2017)

    Article  CAS  Google Scholar 

  56. A. Moldovan, F. Feldmann, K. Kaufmann, S. Richter, M. Werner, C. Hagendorf, M. Zimmer, J. Rentsch, M. Hermle, in IEEE 42nd Photovolt. Spec. Conf. PVSC, New Oreleans, LA, USA (2015).

  57. D. Starodub, E.P. Gusev, E. Garfunkel, T. Gustafsson, Surf. Rev. Lett. 6, 45 (1999)

    Article  CAS  Google Scholar 

  58. T. Hattori, Crit. Rev. Solid State Mater. Sci. 20, 339 (1995)

    Article  CAS  Google Scholar 

  59. A. S. Kale, W. Nemeth, S. U. Nanayakkara, H. Guthrey, M. Page, M. Al-Jassim, S. Agarwal, P. Stradins, in IEEE 7th World Conf. Photovolt. Energy Conversion, WCPEC 2018, Waikoloa Village, HI, USA, 3473–3476 (2018).

  60. N. Chandra Mandal, S. Biswas, S. Acharya, T. Panda, S. Sadhukhan, J. R. Sharma, A. Nandi, S. Bose, A. Kole, G. Das, S. Maity, P. Chaudhuri, and H. Saha, Mater. Sci. Semicond. Process., 119, 105163 (2020).

  61. C.P. Liu, M.W. Chang, C.L. Chuang, Curr. Appl. Phys. 14, 653 (2014)

    Article  Google Scholar 

  62. S.S. Liao, Y.C. Lin, C.L. Chuang, E.Y. Chang, Int. J. Photoenergy 2017, 9503857 (2017)

    Article  CAS  Google Scholar 

  63. A. ur Rehman, M. Z. Iqbal, M. F. Bhopal, M. F. Khan, F. Hussain, J. Iqbal, M. Khan, S. H. Lee, Sol. Energy, 166, 90 (2018).

  64. L. Mazzarella, S. Kolb, S. Kirner, S. Calnan, L. Korte, B. Stannowski, B. Rech, R. Schlatmann, in IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, 2955–2959 (2016).

  65. A.K. Antonenko, V.A. Volodin, M.D. Efremov, P.S. Zazulya, G.N. Kamaev, D.V. Marin, Optoelectron. Instrum. Data Process. 47, 459 (2011)

    Article  Google Scholar 

  66. A. Kh. Antonenko, M. D. Efremov, G. N. Kamaev, in Physicochem. Proces. in Conden. Media Interf. (FAGRAN-2008), Proc. IV All-Russia. Conf., Voronezh, 301–303 (2008).

  67. Y. Huang, M. Liao, Z. Wang, X. Guo, C. Jiang, Q. Yang, Z. Yuan, D. Huang, J. Yang, X. Zhang, Q. Wang, H. Jin, M. Al-Jassim, C. Shou, Y. Zeng, B. Yan, J. Ye, Sol. Energy Mater. Sol. Cells 208, 110389 (2020).

  68. T. Gao, Q. Yang, X. Guo, Y. Huang, Z. Zhang, Z. Wang, M. Liao, C. Shou, Y. Zeng, B. Yan, G. Hou, X. Zhang, Y. Zhao, J. Ye, Sol. Energy Mater. Sol. Cells 200, 109926 (2019).

  69. U. Römer, R. Peibst, T. Ohrdes, B. Lim, J. Krügener, E. Bugiel, T. Wietler, R. Brendel, Sol. Energy Mater. Sol. Cells 131, 85 (2014)

    Article  CAS  Google Scholar 

  70. D. Tetzlaff, J. Krügener, Y. Larionova, S. Reiter, M. Turcu, F. Haase, R. Brendel, R. Peibst, U. Höhne, J.D. Kähler, T.F. Wietler, Sol. Energy Mater. Sol. Cells 173, 106 (2017)

    Article  CAS  Google Scholar 

  71. A. S. Kale, W. Nemeth, H. Guthrey, E. Kennedy, A.G. Norman, M. Page, M. Al-Jassim, D.L. Young, S. Agarwal, P. Stradins, Appl. Phys. Lett. 114, 083902 (2019).

  72. L. Lu, Y. Zeng, M. Liao, J. Zheng, Y. Lin, M. Feng, Y. Zhi, H. He, W. Ding, C. Shou, G. Qin, B. Yan, J. Ye, Sol. Energy Mater. Sol. Cells 223, 110970 (2021).

  73. G. Kaur, A. Danner, R. Sridharan, R. Stangl, Z. Xin, in: 10th International Conference on Crystalline Silicon Photovoltaics (2020).

  74. G. Kaur, T. Dutta, X. Zheng, A. Danner, R. Stangl, in 47th IEEE Photovoltaic Specialists Conference (PVSC) IEEE, Calgary, OR, Canada, 0438–0442 (2020).

  75. D. Attafi, A. Meftah, R. Boumaraf, M. Labed, N. Sengouga, Optik, 229, 166206 (2021).

  76. P. Singh, A. Raman, N. Kumar, SILICON 12, 1769–1777 (2020)

    Article  CAS  Google Scholar 

  77. A. Moldovan, F. Feldmann, K. Kaufmann, S. Richter, M. Werner, C. Hagendorf, M. Zimmer, J. Rentsch, M. Hermle, In 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 1–6 (2015).

  78. H. Mehmood, H. Nasser, T. Tauqeer, R. Turan, Int. J. Energy Res. 44, 10739–10753 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the New & Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Ministry of Trade, Industry and Energy (MOTIE) (Project No. 20203030010060 and 20203040010320).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Chel Cho or Junsin Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padi, S.P., Khokhar, M.Q., Chowdhury, S. et al. Nanoscale SiOx Tunnel Oxide Deposition Techniques and Their Influence on Cell Parameters of TOPCon Solar Cells. Trans. Electr. Electron. Mater. 22, 557–566 (2021). https://doi.org/10.1007/s42341-021-00356-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00356-7

Keywords

Navigation