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Abstract
We consider the evolution and kinematics during dispersive focussing, for a group
of waves propagating atop currents varying with depth. Our analysis assumes long-
crested linear waves propagating at arbitrary angles relative to the current. Although
low steepness is assumed, the linear model is often a reasonable approximation for
understanding rogue waves. A number of analytical approximate relations are derived
assuming different sub-surface current profiles, including linearly varying current,
exponentially varying current, and currents of arbitrary depth profile which are weakly
sheared following the approximation of Stewart and Joy (DeepSeaRes.Abs.21, 1974).
The orbital velocities are likewise studied.While shear currents have modest influence
on the motion of the envelope of the wave group, they significantly change wave kine-
matics. Horizontal orbital velocities are either amplified or suppressed depending on
whether the shear is opposing or following, respectively. To illustrate these phenomena
we consider a real-world example using velocity profiles andwave spectrameasured in
the Columbia River estuary. Near the surface at the point where focusing occurs, hori-
zontal orbital velocities are, respectively, increased and decreased by factors of 1.4 and
0.7 for focusing groups propagating on following and opposing shear (respectively,
upstream and downstream in the earth-fixed reference system). The implications for
the forces a focusing wave group can exert on vessels and installations are profound,
emphasising the importance of considering current profiles in maritime operations.
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1 Introduction

Rogue waves, characterised as enormous and abrupt waves appearing on the sea’s sur-
face, pose a significant threat to maritime activities. These waves which are defined by
being far higher than the waves around them, can emerge without warning, occurring
both in deep and shallow waters, and they result from various physical mechanisms
that concentrate the energy ofwaterwaves into a small area. Their occurrence has led to
numerous fatalities, injuries, and extensive damages to ships and maritime structures.
Among themechanisms responsible for their formation are dispersive focusing, refrac-
tion influenced by variable currents and bottom topography, modulational instability,
constructive wave interference enhanced by second-order interactions, cross-sea inter-
actions, and soliton interactions. For a comprehensive review of these mechanisms,
refer to the works by Kharif and Pelinovsky [1], Dysthe et al. [2], and Onorato et al.
[3].

The main objective of this paper is to analyse the effect of depth-dependent under-
lying currents on the dispersive focusing of water waves in deep water. Extreme wave
events resulting from dispersive focusing or spatiotemporal focusing phenomena can
be described as follows: when initially shorter wave packets are positioned in front of
longer wave packets with higher group velocities, the longer waves eventually catch up
and overtake the shorter waves during the dispersive evolution process. At a fixed loca-
tion (known as the focus point) and time, the superposition of all these waves leads to
the formation of a large-amplitude wave. Subsequently, the longer waves move ahead
of the shorter waves, resulting in a decrease in the amplitude of the wave train. In the
absence of vorticity, giant waves created by dispersive focusing have been frequently
studied experimentally [4–7] and theoretically [8, 9], but studies in the presence of a
shear current are very scarce. Kharif et al. [10] investigated the effect of a constant
vorticity underlying current on the dispersive focusing of a one-dimensional nonlinear
wave group propagating in shallow water. Their findings revealed that the presence of
constant vorticity increases the maximum amplification factor of the surface elevation
as the shear intensity of the current increases. The duration of extreme wave events
follows a similar behaviour. In narrowband assumption Xin et al. [11] report the dif-
ferent effects of following and opposing shear current on both the extreme and fatigue
loads on fixed-bottom offshore slender structures in extreme wave events. The work
has shed light on the shear-current modified wave kinematics in the design of offshore
structures, which will be explored further in this work as explained below.

This study is the first part of an investigation of waves focusing dispersively on
vertically sheared currents. The, in some respects, simplest case is treated in this
first part, where the theory is linearised with respect to wave steepness; a second-
order theory is found in part two [12]. Although nonlinear wave effects are significant
for rogue wave situations, a linear approximation has been found to give reasonable
results [13]. Our focus is on investigating the behaviour of focusing wave groups
propagating obliquely to the current direction, as well as wave groups travelling in the
same direction as the current, in deep water (see Fig. 1). By analysing the impact of
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Fig. 1 Geometry: a quasi-2D wave propagating along the x axis. A sub-surface shear current makes an
angle θ with the direction of wave propagation. Here U(z) = SzeU . Currents with opposing and following
shear are denoted by θ ∈ [0, π/2) and (π/2, π ], respectively

these depth-dependent underlying currents on the dispersive focusing of water waves,
we aim to enhance our understanding of the formation and characteristics of rogue
waves, contributing to improved safety measures for maritime activities as highlighted
in [11].

We consider a range of vertically sheared currents, and of wave shapes at focus,
deriving a series of closed-form approximate results. The currents we consider include
the linear and exponential depth dependence—cases for which closed-form solutions
exist for the linear velocity field—and arbitrary current profileswhich satisfy theweak-
shear approximation (fundamentally that required for the celebrated approximation
of Stewart and Joy [14]). Wave groups focusing to a δ-function singularity, and a
narrowband Gaussian packet, are considered. The approximate formulae derived are,
we propose, useful for their relative simplicity and analytical tractability, for instance
for the creation of focusing waves on sheared currents in numerical and laboratory
experiments (see, e.g., [15]).

A main conclusion of our work, illustrated and quantified through many examples,
is the following: within a linear framework, the presence of shear has modest effect
on the focusing and defocusing of the wave-group envelope, but a large effect on the
wave kinematics. The component of the orbital velocities near the surface at the point
of focus can be strongly enhanced.

2 Theoretical Background

In this section, we review the necessary background theory and phrase it in the formal-
ism we use herein. While not in a strict sense novel, the reexamination of the basics
sheds important light on the mechanisms in play which we will refer extensively to in
later sections. After defining the problem and geometry, the linear initial-value solu-
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tion is provided in a suitable form, and standard current profiles and highly useful
approximations are briefly recapitulated.

2.1 Problem Definition

We consider a body of water with a free surface which, when undisturbed, is at z = 0,
and sustaining a shear current which depends arbitrarily on depth. The depth is infinite
(some results are generalised to allow finite depth in Appendix A.1), and we ignore
the effects of surface tension. The geometry is sketched in Fig. 1. The background
current has the form

U(z) = {Ux (z),Uy(z)} = U (z)eU ; (1)

eU = {cos θ, sin θ}, (2)

where eU is a unit vector in the xy plane. Without loss of generality we choose the
coordinate system which follows the surface of the water so that U (0) = 0. As well
as simplifying the formalism this choice emphasises that the effects studies are due
to shear rather than surface current. A nonzero surface current is easily worked back
into solutions by adding a Doppler shift to frequencies. The angle between wave
propagation and current is θ and we shall assume without loss of generality that the
wave propagates along the x axis so that k · U = kUx = kU (z) cos θ . In derivations
we shall often retain a general wave vector k = {kx , 0}. We allow kx to take both
signs in derivations, eventually arriving at expressions for waves propagating only in
the positive x direction, whereupon we may consider only positive wave numbers.
We assume long-crested waves, so the surface elevation is ζ(r, t) = ζ(x, t) where
r = (x, y). We assume here that the current does not change direction with depth, but
generalisation to a z-dependent θ is straightforward.

As is well known (e.g. [16]), the surface elevation and dispersion relation depend
only on U in the combination k · U = kUx , whereas Uy has no influence on ζ . The
angle θ thus only plays the role of varying Ux through values between −U and U .
We shall see in Sect. 4 that the same is not the case for the velocity field beneath the
waves.

In this paper, we linearise equations and boundary conditions with respect to ζ

and its derivatives, as well as orbital velocities—a companion paper considers weakly
nonlinear extensions.

2.2 Linear Initial-Value Problem, and Solution

We will solve initial value problems in this set-up, a simpler, long-crested version of
the theory presented in [17]. The general linear solution can be written in Fourier form
with the 3D formulae in Ref. [17] assuming translational symmetry in the y direction,
as

ζ(r, t) =
∫ ∞

−∞
dkx
2π

[
b+(kx )e

−iω+(kx )t + b−(kx )e
−iω−(kx )t

]
eikx x , (3)
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where ω±(k) are the two solutions of the linear dispersion relation for a general wave
vector k, and b±(k) = b±(kx ) are spectral weights determined by initial conditions.

In the reference system following the surface current (i.e.,U (0) = 0), the dispersion
relation always has one positive and one negative solution, corresponding to waves
propagating in direction k and −k, respectively, implying that ω+ ≥ 0 and ω− ≤ 0.

Our initial condition is that the shape of the packet is prescribed at focus, t = 0,
and propagates only in the positive x direction. Let the Fourier transform of ζ at focus
be

ζ(x, 0) =
∫ ∞

−∞
dkx
2π

ζ̃0(kx )e
ikx x ; ζ̃0(kx ) =

∫ ∞

−∞
dx ζ(x, 0)e−ikx x , (4)

which with the general linear solution (3) implies

b+(kx ) + b−(kx ) = ζ̃0(kx ). (5)

To obtain the appropriate initial shape with only plane waves propagating in the
+x direction, we couple the kernel exp(ikx x) to exp(−iω−t) when kx < 0 and
to exp(−iω+t) when kx > 0:

b±(kx ) = ζ̃0(kx )�(±kx ), (6)

where � is the Heaviside unit step function, explicitly

ζ̃0(kx , t) = ζ̃0(kx )
[
e−iω−(kx )t�(−kx ) + e−iω+(kx )t�(kx )

]
. (7)

Substituting kx → −kx for the b− term and noticing the well-known symmetry

ω−(−kx ) = −ω+(kx ), (8)

the solution may be written

ζ(x, t) =
∫ ∞

0

dk

2π

[
ζ̃0(−k)e−iψ + ζ̃0(k)e

iψ
]
, (9)

where we now simplify the notation, kx → k and ω+(kx ) → ω(k) is the positive-
valued frequency. As shorthand, we define the wave phase

ψ = ψ(x, t; k) ≡ kx − ω(k)t, (10)

frequently written without arguments for succinctness. Since (9) is real-valued, it
follows that ζ̃0(−k) = ζ̃ ∗

0 (k), so we finally write

ζ(x, t) = 2Re
∫ ∞

0

dk

2π
ζ̃0(k)e

iψ. (11)
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In the following we shall use this form and therefore assume kx = k > 0, with
the exception of derivations where it is sometimes necessary to return to the more
fundamental form.

In particular, if the shape at t = 0 is symmetrical around x = 0, ζ̃0(k) is real, hence

ζ(x, t) = 2
∫ ∞

0

dk

2π
ζ̃0(k) cosψ(x, t; k). (12)

2.3 Vertically Sheared Currents

We here introduce the classic linear and exponential shear profiles used as canonical
examples, and approximate linear theories for arbitrary shear.Known results are briefly
reviewed and framed in the formalism we use herein.

2.3.1 Current with Constant Shear

First we quote well-known results for the simple, linearly depth-dependent current

U(z) = SzeU = Sz{cos θ, sin θ} (13)

with S the constant shear.
Due to the symmetry (8) it is sufficient to consider the positive-valued ω(k) assum-

ing positive k, which we write in the form

ωσ (k) = kcσ (k) = √
gκ − σ (14)

where the shear-modified wave number is

κ(k) = k + σ 2/g, (15)

and

σ ≡ 1
2 S cos θ. (16)

The group velocity is

cgσ (k) = 1

2

√
g

κ

. (17)

Note for future reference that cgσ (k) is symmetrical under σ → −σ while cσ is not.
In the spirit of [17, 18] we may define a Froude-shear number for the linear-shear

current based on velocity S/k and length 1/k,

FSlin. = S

2
√
gk

(18)
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so that the shear-modifiedwave number isκ = k(1+FS2lin. cos
2 θ). This is particularly

instructive in narrow-band cases (e.g., long groups with Gaussian envelope) where
there is a dominating carrier wave number; see Sects. 3.4 and 4.1 for further details.
Here and henceforth a subscript ‘lin.’ indicates the subscribed quantity pertains to the
linear current.

2.3.2 Current with Exponential Shear

We will frequently make use of the model current with exponential depth profile,
which we define

Uexp(z) = U0(e
αz − 1)eU = {Ux0,Uy0}(eαz − 1), (19)

where α > 0 is a shear strength and Ux0 a current strength. This model has been
considered for the purposes of wave-current interactions for a very long time, thanks
to its similarity to a wind-driven shear-layer (Ekman current) [19].

An explicit, exact solution to the linear problem with the exponential current can
be found in terms of hypergeometric functions, which we review in Sect. 4.4. The
dispersion relation in this case is, however, implicit but easily calculated numerically.

The exponential profile is a particularly useful model in combination with the
weak-shear approximation (see Sect. 2.4.1), an approximation which is excellent in
the vastmajority of oceanographic and coastal flows.Near-surface flows, such aswind-
driven Ekman layers or estuarine plumes, are typically reasonably approximated by
an exponential, and in this case the linearised weak-shear theory yields a wealth of
explicit analytical results, a number of which we derive in this article.

2.4 Weak-Shear andWeak-Curvature Theory

We will summarise the results of theories for dispersion relations and flow fields
for an arbitrary current U(z) satisfying criteria of weak shear and weak curvature,
respectively. We emphasise that although the former approximation is termed ‘weak
shear’ due to the formal requirements for it to be asymptotically accurate, in fact in
an oceanic setting the shear can be very strong as in the case of the Columbia River
Estuary considered in Sect. 4.5.1, and still give results fromweak-shear theory accurate
to within a few percent or less.

The weak-shear approximation underlies the celebrated approximation of Stewart
and Joy [14], typically sufficient in practice while in cases of extremely strong shear
(as effectively felt by a wave of the wavelength in question), the strong-shear-weak-
curvature expressions [20] could be necessary.

As discussed in Ref. [20], a suitable measure of the effective strength of the current
shear is a dimensionless depth-integrated shear, or “directional shear-Froude number”,
δ(k), defined as

δ(k) ≡ 1

c0(k)

∫ 0

−∞
dz U ′

x (z)e
2kz ≡ FSgen. cos θ. (20)
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with c0(k) = √
g/k as usual. We use the symbol δ as well as FS to make contact

with previously published theory [17, 18, 20], despite the slight redundancy. The x
component of U is taken, being the component aligned with the waves, k · U = kUx .

That the parameter δ(k) is a direct generalisation of the shear-Froude number (18)
for linear shear based on the along-wave (here: x) current component, is easily seen
by inserting Ux (z) = Sz cos θ = 2σ z which gives δ(k) = δlin.(k) with

δlin.(k) = 2σ

√
k

g

∫ 0

−∞
dz e2kz = σ√

gk
= FSlin. cos θ. (21)

For ease of comparison to the linear-shear case above, it is also instructive for us
to define the shear-induced Doppler shift for a wave propagating at an angle θ :

σδ(k) = ω0(k)δ(k) = k
∫ 0

−∞
dz U ′

x (z)e
2kz (22)

a generalisation of σ for the linear current in Eq. (16). We defined ω0 = √
gk.

2.4.1 Weak Shear

A sufficient criterion for the approximate theory of Stewart and Joy [14] and its gen-
eralisations [21, 22] to be accurate is δ(k) � 1 for all k which contribute significantly
(we follow the convention of [23] that � and � refer to the absolute values of the
quantities compared). The results in references [14, 22] were derived assuming weak
current, U � c, yet it is shown in ref. [20] that the true condition of validity is that
the shear is weak. (This was suspected by Kirby and Chen [22] and in fact obliquely
discussed already by Skop [21]). After a partial integration of the original form of the
much-used approximation due to Stewart and Joy [14], it can be written

ω(k) ≈ √gk − σδ(k) = ω0(k)[1 − δ(k)]. (23)

We mention in passing that although (20) performs excellently for most typical ocean
and coastal currents concentrated in the near-surface region (e.g.[20, 24]), such as the
exponential current profile, it does not perform particularly well for the linear shear
case even when shear is moderate [24]; for currents which are close to linear, the
strong-shear approximation in the next section should be used.

Further formulae in the weak-shear approximation will be quoted or derived later,
as they are needed. Explicit expressions for the exponential current in the context of
surface motion are found in Sect. 3.2.1, and weak-shear theory for the kinematics and
orbital velocities may be found in Sect. 4.2.

2.4.2 Strong Shear, Weak Curvature

A similar theory allowing U (z) to have arbitrarily strong shear, but weak curvature,
was developed by Ellingsen and Li [20]; the explicit limitation on curvature may be



Dispersive Wave Focusing on a Shear...

found therein. Now δ(k) can be arbitrarily large compared to unity. The approximate
dispersion relation derived in [20] (equation 18) is

ω(k) ≈ ω0(k)(
√
1 + δ2 − δ) =

√
gk + σ 2

δ − σδ. (24)

Ellingsen and Li finds no practical situations where (24) performs significantly worse
than (23), and it fares far better when δ is not small compared to unity. Notice that
when the linear current (13) is inserted, one finds σδ(k) = σ as defined in (16) and the
dispersion relation (14) is regained exactly. The formalism thus bears a close similarity
to that with constant shear, in Sect. 2.3.1. Moreover, δ � 1 returns the weak-shear
dispersion relation (23) to leading order.

The close resemblance in form to the constant shear case makes it natural to define
a generalised function analogous to Eq. (15),

κδ(k) = k + σδ(k)
2/g. (25)

whereby (24) can be written ω(k) ≈ ωδ(k) = √
gκδ(k) − σδ(k).

3 Surface Motion

In this section we analyse the moving free surface of a focusing wave groups.
For purposes of analytical treatment, there are two challenges to contend with

when a vertical shear current is present: the dispersion relation is not in general given
in closed form, and the waves are described by Fourier integrals with no closed-form
solutions. We consider in the following a number of special cases and/or simplifying
assumptions which allow useful, closed-form expressions to be derived.

3.1 General Dispersion Considerations

We briefly argue why the dispersion relation predicts that vertical shear of U (z) has
little effect on the group envelope, but can greatly affect the phase velocity and hence
the wave kinematics. We focus now on the simplest case of a linear shear current (13)
which is sufficient to illustrate the overall effect of shear.

If now σ is not small compared to
√
g, the phase velocity in Eq. (14) depends

strongly on θ ; for cos θ > 0 (opposing shear) the two terms in (14) tend to cancel
each other while for cos θ < 0 (following shear) they add to each other, giving a phase
velocity which can be far higher. In contrast, the group velocity is identical under
θ → θ + π since cgσ depends on |cos θ | only.

Bearing in mind that the envelope of a focusing group of waves is governed by the
group velocity and its k derivative, the evolution of the group as a whole is largely
independent of whether propagation is upstream or downstream. The kinematics of
the wave patterns within the focusing group, however, are related to the phase velocity
which can be very different depending on the direction θ . To wit, the ratio between
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phase velocity for opposite directions θθ + π and θ = π is

c(θ = π)

c(θ = 0)
=
√
1 + FS2lin. + FSlin.√
1 + FS2lin. − FSlin.

=
(√

1 + FS2lin. + FSlin.

)2
(26)

which very significant indeed when FSlin. ∼ O(1). In section 4 we study the closely
related amplification of horizontal velocities at focus depending on θ .

The situation becomes particularly pointed for strong shear, |σ | � 1, in which case
the phase and group velocities in Eqs. (14) and (17) are

cσ (k) =1

k
(|σ | − σ) + g

2|σ | + ... (27a)

cgσ (k) = g

2|σ | + ... (27b)

For cos θ > 0 the group and phase velocities become asymptotically equal and the
wave becomes nondispersive, whereas for cos θ < 0 phase velocity can bemany times
greater than group velocity.

The effect is illustrated in Fig. 2wherewe plot η(x, t) at a series of equidistant times
as the wave group focusses and defocuses. A short Gaussian packet with carrier wave
number k0 and length L is chosen for improved illustration, as defined and discussed
in Sect. 3.4. We plot time in units of Tref = √

L/g. The surface elevation ζ(x, t) was
evaluated numerically from Eq. (12). The shear S is constant and made strong for
clarity of illustration, FSlin. cos θ takes the values − 1

2 , 0 and
1
2 at k = k0. When θ = 0

focusing is characterised by a wave group which slowly varying phase as the group
passes through focus. When θ = π on the other hand, crests and troughs move so
rapidly that they appear almost chaotic at this time resolution. (An illustration of the
shallow water case is given in A.1.3.)

Another case suitable for illustration is the wave which takes the form of a Gaussian
soliton at focus,

ζ(x, 0) = ae−x2/2L2; ζ̃0(k) = √
2πaLe− 1

2 k
2L2

, (28)

the width of the Gaussian focussed shape. The shape is considered by [25], where
an explicit solution is found in the shallow-water case without shear. The surface
elevation according to Eq. (12) is

ζ(x, t) =
√

2

π
aL Re

[∫ ∞

0
dk e− 1

2 k
2L2+ikx−iω(k)t

]
. (29)

The time evolution of a group focusing into a Gaussian soliton with constant shear in
deepwater is shown in Fig. 3. The behaviour is once again that thewave group focusing
on following shear (cos θ = −1) and that on opposing shear (cos θ = 1), while sharing
the same averaged envelope, behave quite differently in a kinematic sense, the former
appearing as a single soliton rising slowly to its maximum and declines again, whereas
the latter draws a hectic picture of crests and troughs rapidly replacing each other as
the focus is approached.
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Fig. 2 Illustration of the different kinematic behaviour for waves focusing into a short group, k0L = 3 with
a Gaussian envelope of standard deviation L in deep water for opposing, zero and following linear shear. a,
b, c ζ(x, t)/a for t̃ from −30 to 30 in steps of 0.25 with graphs growing progressively lighter in colour for
increasing |t |, and the t = 0 (focussed) wave group drawn as thicker white lines. The dashed lines are plots
of the maximum group height, ±L(L4 + B2

0 tg(x)
2)−1/4, using Eqs. (56), (54) and tg(x) = x/cg(k0). d, e,

f same, with ζ as shades from darkest to lightest (ζ/a = −1 and ζ/a = 1, respectively), varying in space
and time

3.2 Stationary Phase Approximations

Before considering particular cases we derive a general expression for the stationary
phase approximation of the shape of the wave packet sufficiently far from focus.
Assume therefore that x, t � 1. Formally we write ψ = t(kξ − ω(k)) where

ξ ≡ x/t, (30)
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Fig. 3 Illustration of the different kinematic behaviour for waves focusing into a Gaussian soliton of
nondimensional width 1 in deep water. The solid graphs show ζ(x, t)/a for t/Tref from −20 to 20 in steps
of 0.5. Here Trefσ = 1, 0 and−1 (top to bottom). The abscissa is x/L , and ζ(x, 0)/a is shown with thicker,
red line

and we assume ξ is moderately large, in the order of cg(k), then take the asymptotic
solution as |t | → ∞ [23].

Equation (12) is rapidly oscillating and dominated by its stationary points when
|t | → ∞. We presume for simplicity that only one such exists, which is the case for
gravity waves except very special and extreme cases; should several stationary points
exist, the procedure is simply repeated for each one. Equation (12) has its stationary
point at k = ksp which solves ψ ′(ksp) = 0 where a prime here denotes differentiation
w.r.t. k. This implies cg(ksp) = ξ with cg(ksp)being the stationary-point groupvelocity.
In general the stationary point must be found numerically, for example with the Direct
Integration Method [26] which we will employ later.

Now let a subscript ‘sp’ indicate the quantity is evaluated at k = ksp. To connect
with formalism in following sections [Eq. (54) in particular], we define

Asp = dω

dk

∣∣∣∣
k=ksp

; Bsp(ξ) = d2ω

dk2

∣∣∣∣
k=ksp

. (31)

Clearly, Asp = ω′
sp = cg(ksp) = ξ , and ψ ′′

sp = −ω′′
spt = −Bsp(ξ)t (note that Bsp is a

function of ξ because ksp is). With the stationary phase approximation (e.g., §6.5 of
[23])

ζ(x, t) =Re

{
1

π

∫ ∞

0
dk ζ̃0(k)e

iψ(x,t;k)
}
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Fig. 4 Wave surface elevation on an exponential shear current (19) with U0/
√
gL = 0.2, αL = 2.5 and

θ = 0. The red dashed line is the stationary phase approximation (32) with the weak exponential shear
approximation using Eqs. (35b), (36) and (37). The black solid line is the numerical solution using the Direct
IntegrationMethod [26]. The initial wave surface is a Gaussian group ζ(x, 0) = a exp(− 1

2 x
2/L2) cos(k0x)

with k0L = 1 The focusing occurs at t = 0. From bottom to above, t/Tr e f = 0, 50, 100, 200, 400 (color
figure online)

≈
√

2

π |Bsp(ξ)t |Re
{
ζ̃0(ksp) exp

[
i(ψsp + π

4 Sg(x))
]}

�(ξ ≥ cg,min), (32)

where ‘Sg’ denotes the sign function, � is the unit step function, and cg,min is the
smallest value cg(k) can take. In particular, solutions only exist for ξ > 0 (bear in
mind the assumption ξ/cg ∼ 1).

In all cases in the following, Sg[ψ ′′
sp] = Sg(x) = Sg(t) when a stationary point

exists, which we therefore assume henceforth.

3.2.1 Stationary Phase Approximation, Exponential Shear

Consider next the case of an exponential current, Eq. (19). The weak-shear approx-
imation is sure to be accurate in any direction θ if δ(k) � 1 where, from Eq. (20),
δ(k) = δα(k) with

δα(k) = Ux0

c0(k)

α

α + 2k
. (33)

We might equally refer to δα as the Froude-shear number for the exponential case
(notation FSexp cos θ = δα , although we will use δα in the following). For a particular
propagation direction θ it is sufficient that δ(k) � 1 for all significant values of k.
The maximum absolute value of δα is at k = α/2 where

δα,max = |Ux0|
√

α/8g. (34)
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Note that the global maximum of δα does not depend on the lengthscale L , i.e.,
δmax � 1 guarantees the accuracy of weak-shear theory independently of the size and
shape of the wave group at focus, as should be expected. However, note that this is a
sufficient, not a necessary condition: if αL is much greater or smaller than unity, δα

could remain far smaller than its maximal value for all k which contribute significantly.
We note in passing the correspondence with the assumption in Stewart and Joy’s

theory of weak current compared to the phase velocity; at k = α/2 the condition
δmax � 1 can be written Ux0/2c � 1 since the phase velocity is approximately√
2g/α. This is a (reference system invariant) weak current assumption: the maximum

difference in Ux0(z) over the water column is much smaller than twice the phase
velocity.

The weak-shear approximation, Eq. (23), yields

ω(k) ≈√gk − Ux0αk

2k + α
; (35a)

Asp =ξ = 1

2

√
g

ksp
− Ux0α

2

(2ksp + α)2
; (35b)

Bsp = − 1

4ksp

√
g

ksp
+ 4Ux0α

2

(2ksp + α)3
= − ξ

2ksp
− Ux0α

2(α − 6ksp)

2ksp(2ksp + α)3
. (35c)

We wish to solve (35b) with respect to ksp. The assumption behind the weak-shear
approximation is that δ � 1 as defined in Eq. (20). In this spirit we write αU0k →
γαU0k with γ a “smallness” parameter for bookkeeping we will eventually take to 1.
We expand ksp = k(0)

sp + γ k(1)
sp and solve (35b) in orders of γ and insert into (35c) to

obtain

ksp = g

4ξ2
− 2gUx0α

2ξ

(g + 2αξ2)2
+ O(γ 2); (36)

Bsp(ξ) = − 2ξ3

g
− 8Ux0α

2ξ6(g − 6αξ2)

g(g + 2αξ2)3
+ O(γ 2). (37)

The frequency in the weak-shear stationary phase approximation is found by inserting
(36) into (35a) and retaining terms to O(γ ),

ωsp = g

2ξ
− Ux0gα(g + 6αξ2)

2(g + 2αξ2)2
+ O(γ 2), (38)

while the applicability of weak-shear theory is well indicated by the Froude-shear
number at the stationary point,

δα,sp = αξUx0

g + 2ξ2α
+ O(γ 2) (39)

which has its maximum at ξ = √
g/2α where the result (34) is regained.



Dispersive Wave Focusing on a Shear...

We test the stationary phase surface elevation solution in Fig. 4. The black line
indicates the arbitrary-accuracy numerical solution using the method of reference
[26], whereas the red is the weak-shear stationary phase solution, found by inserting
(38) and (37) into Eq. (32). We observe a very slight phase shift over time because the
frequency ωsp is only approximate, whereas the ‘exact’ and approximate envelope of
the group are virtually indistinguishable.

3.2.2 Stationary Phase Approximation for Linear Shear

In the special case of linear shear, an explicit formula is readily derived. Rather than
use Eq. (32) we substitute � = √gk + σ 2 into the dispersion relation (14), ω =
ωσ = � − σ , from which it follows that k(�) = (� 2 − σ 2)/g; dk = (2�/g)d�,

and according to equation (12) ζ(x, t) is,

ζ(x, t) = 2Re
∫ ∞

0

dk

2π
ζ̃0(k)e

ikx−iωσ t

= 2

πg
Re

[
e−i xσ 2g+iσ t

∫ ∞

|σ |
d� �ζ̃0(k(�))ei x�

2/g−i� t
]

. (40)

Formally we write the exponent as i tφ(�) with φ(�) = � 2x/gt − � , and
consider the asymptote t → ∞ while assuming x/t ∼ O(1). The stationary phase
� = �sp is

φ′(�sp) =
(
2x

gt
�sp − 1

) ∣∣∣∣
�=�sp

= 0, (41)

or, in other words, �sp = gt/2x . (Introduction of the symbol ξ = x/t is not equally
handy as in the previous section, and we retain x and t here.) With the stationary phase
approximation the integral is (e.g., §6.5 of [23])

∫ ∞

|σ |
d� �ζ̃0(k(�))ei x�

2/g−i� t

≈
√

πg

|x |
t ζ̃0(ksp)

2x
exp i

[
−gt2

4x
+ π

4
Sg(x)

]
�(ksp) (42)

with

ksp = � 2
sp − σ 2

g
= gt2

4x2
− σ 2

g
. (43)

There is no stationary point unless t/2x > |σ |, hence the unit step function �. Thus,
taking the real part, the stationary phase approximation to ζ(x, t) is
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ζ(x, t) ≈
√

g

π |x |
t

x
Re

{
ζ̃0(ksp) exp i

[
−σ 2x

g
− gt2

4x
+ σ t + π

4
Sg(x)

]}
�(ksp).

(44)

The approximation is only nonzero when x and t are either both negative or both
positive, as is reasonable since we have assumed propagation towards positive x . In
the symmetrical case where ζ(x, 0) = ζ(−x, 0), ζ̃0(k) is real and the exponential
becomes a cosine.

3.3 Waves Focusing to ı-Function Singularity

Assuming the wave form at focus is a Dirac δ function is the most extreme form of
focusing. As is conventional, we overlook the obvious fact that linear theory cannot
describe such a wave packet close to its maximum, and regard the solution some time
before and after focusing. The case is particular in the sense that the wave shape at
focus has no intrinsic length scale. We write the elevation at focus with the delta
function in the limit form [e.g., 27, §7.2]

ζ(x, 0) = aδ(x/L) = lim
μ→0+

a

π

μ

x2/L2 + μ2 (45)

where L is some arbitrary, finite lengthscale for dimensional reasons (in later sections
it will play the role of characteristic width of the wave packet at focus). It obtains
physical meaning only when this singular model flow is compared to whatever real
flow it models. The Fourier transform is

ζ̃0(k) = aL lim
μ→0+ e−μL|k|. (46)

Using (12) we have

ζ(x, t) = 2aL lim
μ→0+

∫ ∞

0

dk

2π
cos[kx − ω(k)t]e−μLk . (47)

The role of μ is to render the integral well defined.
For an integral with rapidly oscillating integrand of form

∫
dq f (q)ei Xφ(q) (48)

with φ(q) ∼ O(1), the stationary phase approximation is accurate for X � 1 assum-
ing f (q) is significant for q ∼ O(1). Substituting q = μk into (47), we observe that
X = x/μ, which is arbitrarily large for any nonzero x . Thus the stationary phase
approximation is accurate every where except the point x = 0.
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Fig. 5 Surface elevation ζ/a (x in units of L , t in units of Tref = √
L/g) for a wave group focusing to

a δ-function singularity on a linear shear current. a t = −25 Tref , b t = −5 Tref . Three different shear
strengths: Trefσ = −0.5 (blue, solid), Trefσ = 0.5 (black, dashed), and Trefσ = 0 (red, dotted); circular
markers show the stationary phase approximation (49) (color figure online)

From Eq. (44) the stationary phase approximation for linear shear is

ζ(x, t) = aL

√
g

π |x |
t

x
cos

[
σ 2x

g
+ gt2

4x
− σ t − π

4
Sg(x)

]
�

(
gt2

2x
− |σ |t

)
.

(49)

Corresponding expressions for ζ(x, t) on other shear currents, including the special
case of an exponential currents, are obtained by inserting ζ̃sp = aL into the results in
Sect. 3.2.

The surface elevation for a linear wave focusing towards a δ-function singularity is
shown inFig. 5. Lines showadirect calculation of integral (47)with the integration path
rotated slightly into the complex k plane (closedwith a non-contributing arc at infinity),
ensuring exponential convergence. Let σ̃ = σTref and t̃ = t/Tref with reference time
Tref = √

L/g. Three different shear strengths are shown: σ̃ = −0.5, 0 and 0.5. The
circular markers are the values obtained using Eq. (49); these are indistinguishable
from the exact integral in all cases. As discussed in connection with Eq. (44), the cases
σ̃ = −0.5 and 0.5 are nearly indistinguishable at t̃ = −25, but differences manifest
at the later time t̃ = −5.

In stark contrast, the behaviour of the wave phase for case σ̃ = 0 is always quite
distinct from the others, as should be obvious from inspection of the argument of the
cosine in Eq. (49), where the term σ 2x/g is highly significant when t/x ∼ σ/g. This
observation has consequences for creating a focusing wave in a laboratory with a shear
current.

An approximate solution in the shallow-water limit, which generalises results in
Ref. [25, 28], is found in appendix A.1.2.
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3.4 LongWave Group with Gaussian Envelope

Wenext consider a groupwith Gaussian envelope of characteristic length L and carrier
wave number k0 > 0, i.e.,

ζ(x, 0) = ae−x2/2L2
cos(k0x). (50)

We allow the shear currentU (z) in Eq. (1) to be arbitrary and assume ω(k) and its first
and second derivatives are known. Note that k0L now acts as a bandwidth parameter:
The higher k0L , the narrower the bandwidth: k0L is approximately the number of
wavelengths of the carrier wave within the group. We will assume in derivations that
the group is long (i.e., narrowband), k0L � 1, yet we will see in the following that
narrowband (long-group) approximations are excellent for many practical purposes
already at k0L = 3 - 5 which would not in most cases be considered a ‘long’ group.

Taking the Fourier transform of the Gaussian group we obtain with Eq. (11)

ζ(x, t) = aL√
2π

∫ ∞

0
dk
[
e− 1

2 (k−k0)2L2 + e− 1
2 (k+k0)2L2

]
cos[kx − ω(k)t]. (51)

When k0L � 1, only the first term in the brackets makes a significant contribution,
so, ignoring a term of order exp(− 1

2k
2
0 L

2), we may simplify (51) to

ζ(x, t) ≈ aL√
2π

∫ ∞

0
dk e− 1

2 (k−k0)2L2
cos[kx − ω(k)t]. (52)

This simplification becomes suspect for k0L � 3, depending on the required level of
accuracy.

This is the Gaussian group in the sense of [15], prescribing the spatial shape of the
wave at focus, slightly different from the definition used in, e.g., [29, 30] where the
time series of the wave elevation is specified in the time domain.

The integral (52) gets its significant contributions from near k = k0. Following [15]
we expand the dispersion relation in a Taylor series around k = k0,

ω(k) = ω(k0) + A0(k − k0) + 1
2 B0(k − k0)

2 + ... (53)

where

A0 = dω

dk

∣∣∣∣
k=k0

; B0 = d2ω

dk2

∣∣∣∣
k=k0

(54)

are found from the dispersion relation, either analytically or numerically using, e.g.,
the Direct Integration Method [26].
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Since k0L is large the resulting integral is of Laplace type and is approximated as
such (see, e.g.,§ 6.4 of [23]) whereby ζ tends asymptotically to

ζ(x, t)

a
≈ L√

2π
Re

{
eik0x−iω(k0)t

∫ ∞

−∞
dq e− 1

2 (L2+i B0t)q2+iq(x−A0t)
}

(55a)

= Re

{
L√

L2 + i B0t
exp

[
ik0x − iω(k0)t − (x − A0t)2

2(L2 + i B0t)

]}
(55b)

with q = k − k0. Taking the real part readily yields

ζ(x, t)

a
≈
(

L4

L4 + B2
0 t

2

) 1
4

exp

[
− L2(x − A0t)2

2(L4 + B2
0 t

2)

]

× cos

[
k0x − ω(k0)t − 1

2
arctan

( B0t

L2

)
+ (x − A0t)2B0t

2(L4 + B2
0 t

2)

]
. (56)

This is the very general result of Ref. [15]. The effect of currents (and other factors
affecting the dispersion, such as finite depth) is only to modify the expressions for
A0 and B0 through the more general dispersion relation. For gravity waves, A0 is
typically positive and B0 negative. In the cases we consider, the approximation (56)
is reasonable already at k0L ∼ 3, adequate for many purposes.

3.4.1 Linear Shear

Turning to our special case of constant shear and deep water, A0 and B0 are easily
found from Eq. (14) and may be instructively written in terms of a shear-modified
wave number [see Eq. (15)]

κ0 = k0 + σ 2/g (57)

as

A0,lin. = 1
2c0(κ0); B0,lin. = − 1

4c0(κ0)/κ0 (58)

with c0(k) = √
g/k as usual. Insertion into (56) gives the approximation of ζ(x, t)

for a long Gaussian focusing group. Expressions for arbitrary water depth are derived
in A.1.3.

Figure6 compares the approximation (56) to the exact linear solution (52) for
Gaussian groups of two different lengths and strong following and opposing shear,
σ̃ = −0.5 and σ̃ = 0.5 for the left and right group on each horizontal line, respectively.
In Fig. 6b a moderately long packet (k0L = 10) is considered, and the approximation
(56) is excellent in all cases, out to having propagated 50 times the initial group width.
Surprisingly, Fig. 6a shows how even for a short package k0L = 3 performs reasonably
well especially in the central region of the group. In accordance with our discussion
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Fig. 6 Comparison of exact and approximate linear solution for a defocusing Gaussian wave group on
linear currents with σ̃ = −0.5 and σ̃ = 0.5 for the packets to the left and right on each horizontal line,
respectively, as a function of x measured in number of “widths” L of the Gaussian envelope at focus. The
first time (bottommost line of graphs) is at focus, whereupon defocusing is illustrated with time increasing
from bottom to top in each panel by intervals �T = 10L/cg with cg(k0) = A0,lin. from Eq. (58) (i.e., the
group travels 10 times the ‘envelope width’ between subsequent times). Thin black line: full linear solution
(52), thick red graph: approximation (56). a Short group, k0L = 3, focusing at x = 0 and x = 60L . b Long
group, k0L = 10 focusing at x = 0 and x = 30L , respectively (color figure online)

in Sect. 3.1, the development of the envelopes in time is indistinguishable for the two
opposite, strong shear currents, making still images of surface elevations such as these
qualitatively indistinguishable.

3.4.2 Arbitrary Current with Weak Shear

The first two derivatives of σδ(k) from Eq. (22) are

σ ′
δ(k) =

∫ 0

−∞
dz (1 + 2kz)U ′

x (z)e
2kz; (59a)

σ ′′
δ (k) =4

∫ 0

−∞
dz z(1 + kz)U ′

x (z)e
2kz, (59b)

from which we obtain, by insertion into Eq. (54), the coefficients A0 and B0 for use
in equation (56)
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A0δ = 1
2c0(k0) − σ ′

δ0(k0); B0δ = − 1
4c0(k0)/k0 − σ ′′

δ0(k0). (60)

Comparison with Eq. (58) shows that the first term on the right-hand sides of Eq. (60)
are the no-shear expressions, and the remaining terms are corrections due to theweakly
sheared current.

The quantities σδ, σ
′
δ and σ ′′

δ can be written in closed form for a number of different
profilesUx (z) including the linear current (a special case where the weak-shear theory
does not perform particularly well [24]) and the exponential which we consider next.

Note in passing that with a partial integration of (22) we may write

σδ(k) = 1
2U

′
x (0) − 1

2

∫ 0

−∞
dz U ′′

x (z)e2kz; (61a)

σ ′
δ(k) = −

∫ 0

−∞
dz zU ′′

x (z)e2kz; (61b)

σ ′′
δ (k) = − 2

∫ 0

−∞
dz z2U ′′

x (z)e2kz; (61c)

in other words, σδ represents the first-order correction to the wave-averaged shear
compared to the surface shear because Ux (z) has nonzero curvature. This is an indi-
cation why the weak–curvature theory in Sect. 2.4.2 becomes exact for the linear
current which has U ′′(z) = 0, and also why the linear current is a special case where
weak–shear theory does not perform very well: the shear correction to A0 and B0
for linear shear in Eq. (58) (which is exact for the linear-current case) is symmetrical
under σ → −σ , but (60) does not have this symmetry under σδ → −σδ . Another way
of putting it is that when shear-current corrections in the surface-following system
may be treated perturbatively, the first-order correction to the phase velocity is due to
mean shear, but for the group velocity it is due to mean curvature. When the curvature
vanishes, however, the leading group-velocity correction becomes second order in the
average shear. For further discussions, see [20].

3.4.3 Exponential Shear: Weak-Shear Approximation vs Numerical Solution

As a particular example consider the exponential current (19). We will see that a
number of useful approximate expressions can be found assuming weak shear and
exponential current. Note that even the Columbia River delta shear current, considered
to be a very strongly sheared current in this context [31], theweak-shear approximation
is sufficient for most practical purposes as we detail in Sect. 3.4.4.

We find A0 = A0α and B0 = B0α with

A0α = 1
2c0(k0) − Ux0α

2

(2k0 + α)2
; B0α = −c0(k0)

4k0
+ 4Ux0α

2

(2k0 + α)3
. (62)

In Fig. 7 the approximate solution (56) with coefficients (62) inserted is compared
with the ‘exact’ numerical solution of the linear-wave initial value problem. It is strik-
ing that although the derivation assumes k0L � 1, the approximation is reasonable
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Fig. 7 Surface elevation of aGaussian-envelope groupon an exponential current (19),whereUx0 = 0.2Uref
and −0.2Uref for the wave packets to the left and right, respectively, and αL = 2.5. Here Uref = √

gL .
Red lines refer to the combined narrow-band and weak-shear approximation solution, Eqs. (56) and (62).
Black lines are the arbitrary-accuracy numerical solution from the DIM algorithm [26]. a k0L = 3 focusing
at x/L = 0 and 60, b k0L = 10 focusing at x/L = 0, 30. In both panels, ζ is plotted at times (bottom to
top) t = 0, 20L/cg and 40L/cg

already for k0L = 3. Moreover, the shear is here not extremely weak; from Eq. (33)
we find that for maximally opposing shear (θ = 0), δ(k0) = 0.10 and δ(k0) = 0.07
for k0L = 3 and 10, respectively, the former of which is slightly higher than that for
the Columbia River scenario we consider in Sects. 3.4.4 and 4.5.1. This demonstrates
the wide applicability of the simple closed-form approximation, Eqs. (56) and (62).
A slight phase shift with propagation is observed in both cases in Fig. 7 due to the
approximate dispersion relation, from Eqs. (23) and (33). In both cases in Fig. 7 the
envelope is excellently approximated; we quantify this in Fig. 8 where the decaying
height of the defocusing wave group is plotted. Even for k0L = 2 the agreement is
reasonable although this can in no way be called a ‘narrowband’ wavegroup.

3.4.4 Measured Current Profiles: The Columbia River Estuary

The flow conditions in the estuary of the Columbia River have been much studied
for a long time (e.g., [32–34]) due to its strong, and strongly sheared, tidal current,
severe wave climate and high shipping traffic. It is also a much used case for studies
of waves interacting with sheared currents in various contexts (examples include [24,
26, 35–37]).

In their study of the Columbia River delta, Zippel and Thomson [38] (ZT)measured
simultaneouswave spectra and shear current profiles in the delta of theColumbiaRiver.
An even more strongly sheared current is found among the measurements of Kilcher
and Nash (KN) from the same area [39] (another set of measurements is described and
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Fig. 8 The decay of envelope amplitude for increasing wave group length k0L (decreasing spectral band-
width) on the same exponential shear current as in Fig. 7. Each point is calculated as the maximummodulus
of the Hilbert transform of the analytic surface elevation. Red solid lines: narrow-band weak-shear approx-
imation. Black dash-dot lines: ‘exact’ numerical solution (color figure online)

Fig. 9 Shear current profiles of the Columbia River delta current. Measured data by Zippel and Thomson
(blue dots) and Kilcher and Nash (red crosses), the lines are exponential functions of form (19) fitted to the
data (color figure online)

used in refs. [33, 35, 37]). Their respective current profiles are shown in Fig. 9. In Sect.
4.5.1 we also make use of the measured wave spectrum in reference [38], while here
we shall use a model wave group which at focus is slightly more narrowband than the
one measured; this would represent the situation where only the part of the spectrum
near the peak is involved in the focusing, the remainder forming a small-amplitude
random-phase background which we presently ignore.

The velocity profiles shown were shifted to the reference frame following the mean
(Eulerian) surface velocity and fitted to an exponential profileU (z) = U0[exp(αz)−1]
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Fig. 10 Same illustration as in Fig. 2, but with an exponential current representative of the Columbia River,
shown inFig. 9; seemain text for further details. The exponential profile (19) is usedwith k0L = 3,αL = 6.5
and U0 = 0.107Uref with θ = 0, π/2 and π first, second and third panel from the top, respectively. The
nondimensional time t̃ runs from −50 to 50 in steps of 0.4. The dashed lines are plots of the maximum
height, ±L(L4 + B2

0α tg(x)
2)−1/4 with tg(x) = x/A0α

(see Fig. 9c) which gives U0 = 1.6m/s, α = 0.26m−1 for current ZT and U0 =
1.4m/s, α = 0.39m−1 for current KN.

To study an example of a focusing group we choose reasonable values for a disper-
sively focusing wave group in this location—see also Sect. 4.5.1: k0 = 0.15 rad/m,
L = 20m, which gives k0L = 3.0. We choose for our example the average of the two
values for U0 and α, respectively.

It is worth pointing out at this stage that these parameters give a shear Froude
number of δ0α = 0.11 (KN) and 0.080 (ZT), respectively, when inserted into Eq. (33)
(δ0α = 0.090 with the chosen model parameters); in other words, even though the
Columbia River current is frequently used as an example of a very strongly sheared
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current where the effect of shear on the waves is highly significant, we can safely
employ weak-shear theory with errors no greater than a few percent, less than those
from typical measurement uncertainty from field measurements. Moreover, although
k0L = 3 is not what one would refer to as a narrowband wave group, we see from
Fig. 7 that narrow-band weak-shear theory gives a more than adequate approximation
of the surface. Thus we may confidently approximate ζ(x, t) with the approximate
formula (56) with coefficients (62) inserted.

With the mentioned approximation we plot a focusing and defocusing wave group
representative of the Columbia River flow conditions, in Fig. 10. Albeit less extreme
than for the model linear current, the trend is once again clear: in the case of opposing
shear (the focusing group propagates ‘downstream’ in the river, in an earth-fixed
system) the crests and troughs focus and defocus more gently than for the case of
following shear (‘upstream’) where individual crests and troughs within the group
move faster and live shorter. The corresponding increase in orbital velocities in the
latter case is considered and quantified in Sect. 4.5.1. Once again we notice that the
group envelope, represented by the change in maximum group height with time, varies
modestly.

3.4.5 Arbitrary Current with Strong Shear

Inserting dispersion relation (24) into formula (54) now gives the coefficients A0 and
B0 for strong shear in the strong shear, weak curvature approximation (SSWCA) of
Ellingsen and Li [20],

A0,EL = 1
2c0(κδ0)(1 + 2σδ0σ

′
δ0/g) − σ ′

δ0 (63a)

B0,EL = − (g + 2σδ0σ
′
δ0)

2

4ω0(κδ0)3
+ σ ′2

δ0 + σδ0σ
′′
δ0

ω0(κδ0)
− σ ′′

δ0, (63b)

where we use the shorthand κδ0 = κδ(k0) and ω0(κδ0) = √
gκδ0 = κδ0c0(κδ0);

κδ was defined in Eq. (25). If the Froude-shear number δ is small we obtain (60) to
leading order, while assuming linear shear (κδ(k) → κ, and σ ′

δ = σ ′′
δ = 0) yields

expressions (58). The SSWCA should replace the weak-shear approximation when
the shear as seen by the significant waves is very strong (by oceanographic standards),
i.e., when δ is not significantly smaller than 1, and/or the current shear appears close
to constant with depth. For the exponential current representative of the Columbia
River, Fig. 9, using expressions (63) instead of (62) gives practically identical results.
Deriving explicit formulae for A0,EL and B0,EL with the exponential current (19)
is straightforward, but the resulting expressions are sufficiently bulky that we do not
quote themhere. Several realistic situationswhere theweak-shear theory is insufficient
are mentioned and discussed in reference [20], although these are not currents which
normally occur in ocean or coastal waters.
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4 Wave Kinematics and Orbital Velocities

We proceed now to considering the shear-affected wave orbital motion. We consider
three cases, a weakly sheared current in the approximation of [14] (see Sects. 2.4.1
and 3.4.2), and two cases where an exact solution to the linear problem exists: currents
with constant shear and with exponential shear.

Taking a step back to the more general formalism of Sect. 2, we set k = {kx , 0} (kx
once again takes either sign) and write the orbital velocities of a linear plane wave as

⎡
⎣ u(x, z, t)

v(x, z, t)
w(x, z, t)

⎤
⎦ = Re

∫ ∞

0

dk

2π

⎡
⎣ ũ(z, t; k)

ṽ(z, t; k)
w̃(z, t; k)

⎤
⎦ eikx + c.c., (64)

where as beforeweused that if some functionϕ(x) is real, its Fourier transform satisfies
ϕ̃(−kx ) = ϕ̃∗(kx ), to only retain positive values of k, Solving the 3-dimensional,
linearised Euler equation in Fourier form produces the well-known Rayleigh equation
(e.g. [16, 40])

[
∂2z − k2 + k · U′′(z)

ω − k · U(z)

]
w̃(z, t;k) = 0 (65)

(note that k = |k| = |kx | here). Once w̃ is found, the horizontal velocity components
ũ⊥ = {ũ, ṽ} are obtained using the general relation [26]

k2(ω − k · U)ũ⊥ = i[k · U′w̃ + (ω − k · U)w̃′]k − ik2U′w̃, (66)

where the arguments of ũ⊥(z, t;k), w̃(z, t;k),U(z) and ω(k) are understood, and a
prime denotes derivative with respect to z. Note in particular that when k = {k, 0},
one finds

ũ = iw̃′/k; (67a)

ṽ = −iU ′
y(z)

ω − kUx (z)
w̃. (67b)

The eigenvalues of ω(k) are real provided the denominator in (65) is not zero [41].
We shall assume this to be the case, physically implying that no critical layers occur.

Equation (67b) shows how the orbital velocities are modified by the shear current
also for θ = π/2 (i.e., k ·U = kUx = 0), even though the surface elevation is equal to
that without current in that case. Equation (3) shows that ζ is affected by the current
only via the dispersion relation ω(k), in turn obtained as eigenvalues of the Rayleigh
Equation, (65), which depends only on k · U.)

We now define

w̃(z, t; k) = w̃(0, t; k)ekz f (z; k) (68)
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with f (0; k) = 1. The function f differs from 1 when Ux (z) has curvature (i.e.,
nonzero second derivative) [20]—see e.g., Eq. (82) below. Thus, from equation (67a),

ũ(z, t; k) = iw̃(0, t; k)ekz[ f (z; k) + f ′(z; k)/k]. (69)

The kinematic boundary condition gives

w̃(0, t; k) = −iω(k)ζ̃0(k)e
−iω(k)t (70)

where we used (7), whereby we obtain the general expressions

w(x, z, t) =2 Im
∫ ∞

0

dk

2π
ω(k)ζ̃0(k) f (z; k)ekzeiψ(x,t;k); (71a)

u(x, z, t) =2Re
∫ ∞

0

dk

2π
ω(k)ζ̃0(k)[ f (z; k) + f ′(z; k)/k]ekzeiψ(k)t ; (71b)

v(x, z, t) = − 2Re
∫ ∞

0

dk

2π

ω(k)U ′
y(z)

ω(k) − kUx (z)
ζ̃0(k) f (z; k)ekzeiψ(k)t . (71c)

We define the surface velocity amplification as the ratio of the horizontal orbital
velocity at the (linearised) surface at the point of focus, u(0, 0, 0), with vs without
shear;

amp0 = Re
∫∞
0 dk ω(k)ζ̃0(k)[1 + f ′(0; k)/k]

Re
∫∞
0 dk ω0(k)ζ̃0(k)

(72)

with ω0(k) = √
gk as usual, and noting that f ′(z; k) → 0 without shear.

In the presence of following shear whereU ′
x (z) is primarily positive, the maximum

of the horizontal velocity at focus u(0, z, 0) can lie below the surface. In this case, we
define a maximum amplification

ampmax = max
z

{
u(0, z, 0)

u0(0, 0, 0)

}
, (73)

where u0 is the horizontal velocity of the no-current case.

4.1 Long Gaussian Group (Narrow-Band)

Assume now as in Sect. 3.4 the initial shape ζ̃0(k)/aL = √
π/2 exp[− 1

2 (k − k0)2 L2]
with k0L � 1.Wemay restrict ourselves to the upper range of the water column |z| �
k0L2, which is no significant limitation since velocities, which decay exponentially as
exp(k0z), are negligible when |z| ∼ k0L2 � L . The Laplace integral approximation
becomes identical as in Sect. 3.4 with expansion around k = k0, giving the orbital
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velocities as the real parts of

u ≈ ac(k0)L√
L2 + i B0t

exp

[
ik0x − iω(k0)t − (x − A0t)2

2(L2 + i B0t)

]
d

dz

[
f (z; k0)ek0z

]
;
(74a)

v ≈ − ac(k0)k0L√
L2 + i B0t

exp

[
ik0x − iω(k0)t − (x − A0t)2

2(L2 + i B0t)

]
U ′

y(z) f (z; k0)ek0z
ω(k0) − k0Ux (z)

;
(74b)

w ≈ −iac(k0)k0L√
L2 + i B0t

exp

[
ik0x − iω(k0)t − (x − A0t)2

2(L2 + i B0t)

]
f (z; k0)ek0z, (74c)

with A0, B0 as in Eq. (54). We leave it to the reader write out the real part along the
lines of Eq. (56) if desired. Correction terms of order (x − A0t)/k0L enter far from
the centre of the group at x = A0t .

In the narrowband case it is opportune to also define a surface-shear number

ϒ0 = U ′
x (0)

ω0(k0)
(75)

as well as a current strength number

U0 = max[Ux ] − min[Ux ]
c0(k0)

. (76)

Hereω0(k0) = k0c0(k0) = √
gk0 as usual, and the functionsmax andmin find extrema

with respect to z.
In particular, for linear shear (13)

ϒ0,lin. = 2σ√
gk0

= 2 FSlin. cos θ = 2δlin.,

[σ was defined in Eq. (16)] whereasU0 is not defined in deepwater. For the exponential
current profile in the Stewart and Joy weak-shear approximation, see Sect. 4.2.1.

4.2 Wave Kinematics with Arbitrary,Weakly Sheared Current

In this section we derive expressions for the orbital velocities under a focusing wave
group on an arbitrary, weakly sheared current. Special cases of the final expressions,
Eq. (83), will be simplified further in the following.

Consider a focusing wave group on a current U(z) = {Ux ,Uy}(z) which is well
described by the approximate theory first put forward by Stewart and Joy [14, 42] as
described in Sect. 3.4.2. This is typically a very good approximation even in strongly
sheared oceanic flows (e.g. [20, 24, 26]). The orbital velocities of a linear plane wave
of wave number k of either sign in the xz-plane for such a situation have been found
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using assumptions of weak current [14, 42], although as discussed in Sect. 2.4.1 these
approximations are in fact valid for weakly sheared current, usefully measured via the
small-shear parameter (or Froude number) δ(k) [see Eq. (20)].

The vertical orbital velocity to O(δ) is [20, 42]

w̃(z, t; k) =w̃0(0, t; k)ekz
[
1 − �(z;k)

]
(77)

plus terms of O(δ2), w̃0 is the vertical velocity without current [which can be related
to ζ̃0 via Eq. (70)], and

�(z;k) ≡ 1

c0

∫ z

−∞
dz̃ U ′

x (z̃)e
2k(z̃−z). (78)

Comparison with (20) reveals that

�(0;k) = δ(k), (79)

hence �(z;k) is a generalisation of the small-shear Froude number δ(k) but with
contributions only from the wave-aligned current component Ux (z) at depths greater
than |z|. (Note: � must not be confused with the quantity of the same name in ref
[20]). Clearly � ∼ O(δ). The dependence of � and δ on k will often be suppressed.
We will need the derivative

�′(z) = −2k�(z) +U ′
x (z)/c0. (80)

The corresponding horizontal velocities, obtained via equation (67), are

ũ(z, t;k) =iw̃0(0, t; k)ekz
[
1 + �(z;k) −U ′

x (z)/ω0
]
, (81a)

ṽ(z, t;k) = − iw̃0(0, t; k)ekzU ′
y(z)/ω0 (81b)

plus terms of order δ2.
In the formalism of equation (68),

f (z; k) = 1 − �(z;k)

1 − δ(k)
. (82)

The function only occurs in equations (71) in the constellation ω(k) f (z; k) =
ω0(k)[1 − �(z;k)], using the weak-shear dispersion relation in Eq. (23). We shall
also require the derivative ω f ′(z) = 2kω0�(z;k) − kU ′

x (z) so that ω f ′(0) =
2ω0kδ − kU ′

x (0).
For a group which at t = 0 focusses to a shape ζ(x, 0) the velocity fields are found

by insertion into (71):

u(x, z, t) = 2Re
∫ ∞

0

dk

2π
ω0(k)ζ̃0(k)

[
1 + �(z;k) − U ′

x (z)

ω0

]
ekz+iψ ; (83a)
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v(x, z, t) = −2U ′
y(z)Re

∫ ∞

0

dk

2π
ζ̃0(k)e

kz+iψ ; (83b)

w(x, z, t) = 2 Im
∫ ∞

0

dk

2π
ω0(k)ζ̃0(k)[1 − �(z;k)]ekz+iψ, (83c)

plus corrections of order δ2; here, ψ = ψ(x, t; k).
The surface velocity amplification for an arbitrary U(z) satisfying δ(k) � 1 for all

significantly contributing k, from Eq. (72), is now

ampw.s.,0 = 1 +
∫∞
0 dk Re{ζ̃0(k)}[ω0δ(k) −U ′

x (0)]∫∞
0 dk ω0Re{ζ̃0(k)}

. (84)

4.2.1 Gaussian Wave Group on Exponential Weak Shear

Consider the same situation as in Sect. 3.4.3: a Gaussian wave packet with carrier
wave number k0 considerably greater than L−1 i.e., the group is fairly narrowbanded.
The current profile is exponential, (19) in the now familiar weak-shear approximation.
A subscript ‘α’ will refer to the exponential current as before, and a subscript 0 means
evaluation at k = k0. The velocity fields are readily found from (83) by inserting
{U ′

x ,U
′
y}(0) = α{Ux0,Uy0}eαz and �(z) = �α(z) where

�α(z) = δαe
αz (85)

with δα(k) from Eq. (33). We define the shorthand

a ≡ α/k0. (86)

and note that for the exponential current the definitions (75) and (76) yield

U0α = Ux0

c0(k0)
; ϒ0α = αUx0

ω0(k0)
= aU0α; δα0 = aU0α

a + 2
. (87)

We find from Eqs. (74) and (85)—with (82) and noting that c(k0) = ω0(k0)(1 −
δα0)/k0 in the Stewart and Joy approximation (23)—that the orbital velocities are
approximated by

u(x, z, t) ≈ Re

{
aω0(k0)L√
L2 + i B0αt

[
1 − (1 + a)δα0e

αz] e�0(x,z,t)
}
; (88a)

v(x, z, t) ≈ −Re

{
aU ′

y(z)L√
L2 + i B0αt

e�0(x,z,t)
}
; (88b)

w(x, z, t) ≈ Im

{
aω0(k0)L√
L2 + i B0αt

[
1 − δα0e

αz] e�0(x,z,t),

}
(88c)
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with the shorthand

�0(x, z, t) = k0z + ik0x − iω(k0)t − (x − A0αt)2

2(L2 + i B0αt)
, (89)

and ϒ0α from Eq. (87). A0α and B0α were given in Eq. (62). The approximate expres-
sion (88a) is compared to the exact analytical expression presented in Sect. 4.4.2 in
Fig. 13.

The surface amplification is now easily found from equation (88a),

amp0 = 1 − (1 + a) δα0. (90)

Equation (88) demonstrates a striking observation mentioned above: when shear is
opposing, i.e., ϒ0 > 0, the maximum value of u is not necessarily at z = 0 but can
be positioned below the surface. With the approximate expression (88a), the criterion
for the maximum to lie below the surface—that u′(z) < 0 at z = 0—is readily found
to be

(a + 1)2δα0 > 1 (91)

or alternatively

U0α >
a + 2

a(a + 1)2
∼ a−2 + ... (92)

with the current strength parameter U0α from equation (87). The last form is the
asymptotic expansion as a � 1, which is good to better than 10% for a � 3.5. A
sufficient criterion for (92) to hold valid asymptotically as a → ∞ is thus simply that
the maximum lies beneath the surface if

a2U0α > 1. (93)

Note that the large-a limit is not in contradiction to the weak-shear approximation if
U0α � 1 since lima→∞ δα0 = U0α .

For Ux0 > 0 the maximum value of u is located where u′(z) = 0, provided this
occurs at a negative z, otherwise it is at z = 0. Differentiating (88a) we find the
maximum value at focus to be at level zmax,α and give amplification ampmax,α as
follows,

zmax,α =min

{
0,− 1

α
ln[(a + 1)2δα0]

}
; (94)

ampmax,α =
{

a
1+a

[
(a + 1)2δα0

]−1/a
, if (a + 1)2δα0 > 1,

1 − (a + 1)δα0, otherwise
(95)
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Fig. 11 Velocity amplification for an exponential current. Marker shapes indicate values of δα0 as quoted
in the legend of panel (a), and graphs and markers are colour coded as the legend in panel (b) shows
both legends are common to all panels; we defined c00 = c0(k0). The solid lines show the maximum
amplification, while the dashed lines of the same colour show the surface amplification (visible only when
the two are different). The small black dots show the weak-shear narrowband approximation of Eq. (95).
The insets show the shape of the wave group at focus
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with δα0 from Eq. (87). Asymptotes for a → ∞ are

ampmax,α ≈
{
1 − 1+ln(U0αa

2)
a + ..., U0α > 0;

−aU0α + 1 + U0α + O(a−1) U0α < 0,
(96)

while

ampmax,α ≈ 1 − 1
2aU0α + ..., a → 0. (97)

Equation (95) is a main result of this paper. Although derived assuming a narrow-
band wave package, it approximates the velocity amplification to within a few percent
already for relatively broadband (short) wave groups, k0L = 2. As the inset of Fig. 11
shows, this Gaussian group is so short as to hardly be referred to as a “group" at all.

The close similarity between the four panels of Fig. 11 shows with clarity that the
amplification factor is essentially determined by two nondimensional groups, the rel-
ative current strength U0α and the relative shear parameter a. Moreover, it is striking
how closely the simple formulae (95) approximate the numerically calculated ampli-
fication for a wide range of parameters of the Gaussian wave group on an exponential
profile, even when the underlying assumptions (k0L � 1 and δα0 � 1) are clearly
violated.

4.3 Wave Kinematics with Arbitrary Strongly Sheared,Weakly Curved Current

When the current Ux0(z) is not weakly sheared, i.e., δ(k) ∼ O(1), an approximate
solution for the vertical velocity is found by applying the method of dominant balance
to the Rayleigh Eq. (65) [20]

w̃(z, t;k) = w̃0(0, t;k)

[
ekz − 1

k

∫ z

−∞
dz̃

U ′′
x (z̃)

c(k) −Ux (z̃)
ekz̃ sinh k(z − z̃)

]

(98)

with c approximated by Eq. (24). With (67a) it follows that

ũ(z, t;k) = iw̃0(0, t;k)

[
ekz − 1

k

∫ z

−∞
dz̃

U ′′
x (z̃)

c(k) −Ux (z̃)
ekz̃ cosh k(z − z̃)

]
.

(99)

When Ux (z)/c � 1 these expressions can be reduced to Eqs. (77) and (81a), respec-
tively, in the latter case noting that cosh ξ = − sinh ξ + 2 exp(ξ).

When an exponential current (19) is inserted, the integral can be evaluated in closed
form and expressed in terms of a hypergeometric function. However, the resulting
expression is no simpler than the exact solution in this case with no restrictions on
shear or curvature, presented in 4.4.2. Due to the relative complexity of the analyti-
cal expressions we will not pursue the weak-curvature approximation further for the
purposes of kinematics.
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Fig. 12 Horizontal velocity profiles with linear shear current. The shear profile is expressed asUx (z) = 2σ z
with, left to right, σ̃ = {0.75, 0.5, 0.25, .0.125, 0, −0.125,−0.25,−0.5,−0.75}. The wave shape at focus,
shown as inset, is ζ(x, 0, t)/a = exp(− 1

2 x
2/L2) cos(k0x) with k0L = 3, i.e., a maximum Froude-shear

number |FSlin.| = 0.43 according to equation (18)

4.4 Exact Linear Solutions

Exact solutions to the Rayleigh Equation (65) exist for nonzero ω only in special
situations [16]. We consider two cases: U being a linear or exponentially decaying
function of z.

4.4.1 Current with Linear Shear

Consider linear shear, U(z) = {Ux ,Uy} = Sz{cos θ, sin θ} and ω = √
κ − σ , κ =

k + σ 2/g and σ = 1
2 S cos θ as before. The linear-theory orbital velocities for a wave

with wave vector k = {k, 0} on such a current are well known. Since U ′′
x (z) = 0, the

Rayleigh Equation (65) becomes near trivial and following [43] (after a rotation of the
coordinate system) gives the simple result

w̃(z, t;k) = w̃(0, t;k)ekz; ũ(z;k) = iw̃(0, t;k)ekz . (100a)

This is ostensibly the potential wave solution, which one obtains for a strictly 2-
dimensional flow with constant vorticity [43], but note that ṽ is not zero; instead

ṽ(z, t;k) = − i S sin θ

ω(k) − kUx (z)
w̃(0, t;k)ekz . (101)

This accords with [43] and describes a shifting and twisting of vortex lines as the plane
wave passes. ṽ vanishes when shear is zero or the current is parallel or antiparallel to
the wave (θ = 0 or π ).
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Thus for the focusing wave group one obtains (notice that with our convention,
k = {k, 0} with k > 0)

w(x, z, t) =2 Im
∫ ∞

0

dk

2π
ω(k)ζ̃0(k)e

kzeiψ ; (102a)

u(x, z, t) =2Re
∫ ∞

0

dk

2π
ω(k)ζ̃0(k)e

kzeiψ ; (102b)

v(x, z, t) = − 2Re
∫ ∞

0

dk

2π

Sω(k) sin θ

ω(k) − kUx (z)
ζ̃0(k)e

kzeiψ. (102c)

At first glance it might seem as if u and w are not much affected by the shear,
having as they do the same structure as the expressions sans current. However, the
quantitative effect is highly significant, because as previously discussed the frequency
ω contained inψ varies very significantly with the sign of σ when the latter is not very
small compared to

√
gk. Thus, being proportional to ω(k), the orbital velocities u, w

can be very significantly greater for σ < 0 compared to σ > 0. Secondly an oblique
angle between wave and current makes for significant horizontal motion across the
wave plane [also true for currents of more general depth profile, provided vertical
shear is non-zero, according to equation (67b)].

For the linear profile the velocity is always highest at the surface, hence the velocity
amplification is

amplin =
∫∞
0 dk ω(k)Re{ζ̃0(k)}∫∞
0 dk ω0(k)Re{ζ̃0(k)}

(103)

with ω(k) from equation (14). The case of a narrowband wave group is considered in
section 4.5, in which case the amplification becomes particularly simple.

The qualitative difference in behaviour during focusing and defocusing was illus-
trated in Figs. 2 and 3. Figure12 shows the horizontal velocity profiles beneath the
focus point, u(0, z, 0) for linear shear currents of different strengths, for a Gaussian
wave group with k0L = 3. The qualitative shape of u remains the same when shear is
introduced, except amplified. The surface amplification varies between approximately
0.65 and 1.52 for the strongest opposing and following shear, respectively.

4.4.2 Current with Exponential Shear

In the case of an exponential current (19), Hughes and Reid [44] showed that the
Rayleigh equation (65) permits the exact solution (see also [45] and Appendix B of
[46])

w̃(z, t; k) = W̃ (t; k)2F1(A−,A+;R;W(z))ekz (104)
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Fig. 13 Horizontal orbital velocity profiles at focus, u(0, z, 0), normalised by the surface value without
shear, for a medium-bandwidth focusing wave, k0L = 3 (a) and k0L = 5 (b) on an exponential current, Eq.
(19). Insets show the wave group shape at focus. Here Ux0 = 0.2Uref (solid lines) and −0.2Uref (dashed
lines). Comparison of exact solution [Eqs. (67a) and (106)] (black lines) and the weak-shear narrowband
approximation (red lines), Eq. (88). The values on the top of each curve refer to α/k0 (color figure online)

with 2F1 being the hypergeometric function, W̃ (t, k) follows from free-surface bound-
ary conditions, and

A± = (k ±
√

α2 + k2)/α; R = 1 + 2k/α; W(z) = kUx0eαz

ω + kUx0
. (105)

The horizontal velocity ũ(z, t; k) is found from equations (67), u = iw̃′/k, giving

w̃′(z) = kw̃(z) − αkUx0W̃ (t; k)
(ω + kUx0)R

e(k+α)z
2F1(A− + 1,A+ + 1;R + 1,W(z))

(106)

The dispersion relation to find ω(k) is implicit, given by the combined free-surface
boundary condition (see [26])

ω2w̃′(0) − k(gk − ωαUx0)w̃(0) = 0. (107)

whose solution ω(k) is readily found numerically. Alternatively we may apply the
Direct Integration Method [26] directly.

The solutions (104) and (106) are exact for linear waves regardless of how strongly
sheared the current is. The comparison of the exact solution using the theory in this
section and the approximate solution in Sect. 4.2.1 is shown in Fig. 13. The results
demonstrate that the approximate expression gives fairly accurate solution given a
relatively weak shear current. Although the exact solution (106) can be used without
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Fig. 14 a Power energy spectrum measured in the Columbia River delta [38], b intial-value spectrum ζ̃0(k)
based on S( f ). Circular markers: measured data. Solid line: fitted function

difficulty, the computation of the hypergeometric function can be time consuming and
cumbersome for analytical purposes. Therefore, one may consider the approximate
expression instead.

4.5 Surface Velocity Amplification for Long, Gaussian Groups

Consider the case of a long, or narrowbanded,Gaussian groupwith carrierwavenumber
k0, as considered in Sect. 3.4, i.e., ζ̃0(k)/a = √

π/2L exp[ 12 (k − k0)2 L2], where
k0L � 1 (as we have seen, k0L ∼ 5 is sufficiently large). At x = z = t = 0 the
integrals in Eq. (72) now particularly simple in the Laplace approximation, and we
obtain

amp0 ≈ c(k0)

c0(k0)

[
1 + 1

k0
f ′(0; k0)

]
. (108)

In other words a typical value of the amplification is, to leading order, the ratio of
phase velocities at the carrier frequency with and without shear, which as discussed in
Sect. 3.1 can vary greatly for realistic shear currents, with a correction term playing a
role if the profile Ux (z) has significant curvature.

In particular, for linear shear Ux (z) = Sz, we have f ′(z) = 0 (e.g.[17]) and with
(14),

amplin.shear ≈
√
1 + σ 2

ω2
0

− σ

ω0
=
√
1 + FS2lin. cos

2 θ − FSlin. cos θ (109)

where the shear-Froude number was defined in (18), taken here at k = k0. This accords
with Eq. (26) which was based on the difference in phase velocity only.
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4.5.1 Velocity and Amplification in Real Conditions: the Columbia River Estuary

Weconsider now the current andwave climatemeasured in the estuary of theColumbia
River, as detailed in Sect. 3.4.4. To make the study as realistic as possible, we devise
a focusing wave based on the wave spectrum reported in reference [38] and generate
a wave field from this. The power spectrum we use is shown in Fig. 14(a).

We devise a smooth initial-value spectrum ζ̃0(k) based on the measured wave
spectrum S( f )with f = ω/2π is the wave frequency in cycles per second. Unlike for
generating a random sea state [47], for a focusing wave group we can obtain an initial
wave elevation spectrum ζ̃0(k) which resembles that which is measured, as follows.
The discrete measured values { fi , Si } are transformed to a set of discrete value pairs
{ki , ζ̃i },

√
2Si� f = ζ̃i�k (110a)

ζ̃i =
√
2Si� f

�ω

(
dω

�k

)
i
=

√
2Si� f

4π2 � f

g

2 fi
, (110b)

where we used �ω/�k ≈ dω/dk, � f is the distance between frequency values fi ,
and we used ω = √

gk. We finally fit the set of points {ki , ζ̃i } to the spectrum of a
broadband Gaussian group, (51), ζ̃0(k) = ∑± a exp[−L2(k ± k0)2/2], which gives
k0 = 0.13 rad/m and 1/L = 0.087/m The measured spectrum S(ω) is shown in
panel (a) of Fig. 14, and the smooth ζ̃0(k) is plotted along with the measurements,
transformed with Eq. (110b) in Fig. 14(b).

The governing nondimensional parameters are thus U0α = 0.18, a = 2.03 (ZT)
and U0α = 0.16, a = 3.05 (KN). The shear-Froude number for current ZT and KN
are δα0 = 0.092 and 0.095, respectively, so although these currents are frequently
referred to as very strongly sheared in the context of natural flows [31, 34, 35], the
conditions lie safely in the weak-shear regime where Stewart and Joy’s approximation
(Sects. 2.4.1 and 4.2) can be used. Moreover, although the wave shape at focus is
so broadband as to hardly be called a group (resembling the shape in the inset of
Fig. 11a), the narrow-band approximation (88a) is an excellent approximation to the
velocity profiles at focus.

The resulting horizontal orbital velocity profile u(z, 0, 0) at focus is shown in
Fig. 15(a) for the wave group propagating downstream, across and upstream on the
Columbia River current as seen by an earth-fixed observer, corresponding to, respec-
tively, maximally opposing, zero and maximally following shear, i.e., θ = 0, θ = π/2
and θ = π . (Bear in mind that velocities in our formalism are measured in the system
following the mean surface velocity; see Fig. 9).

The surface shape at focus is identical by construction, and the envelope of the
focusing and defocusing groups are virtually indistinguishable, yet the difference in
maximum orbital velocity is dramatic. The wave-induced orbital velocity beneath the
focus point, u(0, 0, 0), is increased and reduced by factors of approximately 1.4 and
0.7 compared to the no-shear case for groups propagating upstream and downstream
on the river in the earth-fixed system, respectively. This corresponds to the wave-
induced dynamic pressure, at x = t = 0, pdyn = 1

2ρu
2, being approximately doubled
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Fig. 15 Top:Horizontal orbital velocity u(0, z, 0) beneath the focus of amedium-bandwidthGaussian group
(k0L = 1.48) in the presence of measured currents in the Columbia River Estuary, as measured by Zippel
and Thomson (ZT, [38]) and Kilcher and Nash (KN, [39]), shifted so that U (0) = 0 and approximated by
exponentialsU (z) = U0[exp(αz)−1]. Values for |Ux0|, α, a and δα0 for ZT and KN are found in the main
text. Black lines show ‘exact’ numerical solutions, red lines are the weak-shear-narrowband approximation,
Eq. (88a). Solid, thick, and dashed lines refer to cos θ = 0, π/2 and π , respectively. Bottom: velocity
amplification as a function of the angle θ between wave propagation direction and current for the same two
velocity profiles (color figure online)

and halved, respectively, very significantly affecting the force exerted on vessels and
constructions. (For balance is worth bearing in mind that waves propagating against
the current are typically higher than those propagating downstream in this location
[38]).

5 Conclusions

We have considered the linearised theory of focusing long-crested wave groups on
shear currents of arbitrary vertical depth dependence, allowing an arbitrary angle
between the current and wave propagation. Although limited in steepness, a number
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of insights into the way groups of waves focus and defocus can be gained. We derive
a large number of approximate relations which can explicitly reveal the underlying
physics, while at the same time being useful tools in their own right, for instance for
the generation of focusing wave groups in a wave tank along the lines of [15].

Particular attention is paid to two groups of currents: the current varying linearly
with depth, and currents of arbitrary depth dependence whose effect on waves may be
approximated using the theory by Stewart and Joy’s [14] and others, the criterion for
which is that the depth-averaged shear is, in the appropriate sense, sufficiently weak.
For the linear current, exact and readily tractable solutions exist, allowing several
classical results without shear to be generalised. The “weak-shear” assumption behind
the latter class of currents is not a significant limitation in practice, since the vast
majority of oceanographic currents and wave spectra satisfy the appropriate criterion
of validity. For instance in the Columbia River delta which we consider as an example,
the shear is frequently described as beingvery strongly sheared [31, 34, 35], yet remains
safely within the weak-shear assumption’s range of validity. The assumption is already
in widespread use in ocean modelling (e.g. [35]).

For the much used model of a current profile varying exponentially with depth—
modelled as U (z) = U0[eαz − 1] with α > 0—the weak-shear approximation yields
a number of broadly applicable, simple and closed-form approximate relations for the
surface elevation of a progressing wave group, and its concomitant orbital velocity
field.

Particular attention is paid to Gaussian wave groups which at focus takes the shape
of a carrier wave (wavenumber k0) with a Gaussian envelope of width L: ζ0(x) ∝
exp(− 1

2 x
2/L2) cos k0x . Assuming a long group—i.e., narrowband in Fourier space—

we may derive a wealth of relations which can describe a wide range of realistic
situations. Strikingly, the group does not need to be particularly long (or narrowband):
the narrowband results are excellent for most practical purposes already k0L = 3,
a group which at the point of focus mainly consists of a single tall crest with deep
troughs either side.

A key observation from studying the developing wave group is that while the shear
current has modest effect on the evolution of the group envelope, the behaviour inside
the group is far more affected. In opposing shear individual crests rise slowly and
take longer to traverse the length of the group, while following shear causes the wave
behaviour inside the group to appear more volatile, with individual crests and troughs
rising and falling more rapidly.

Regarding the orbital wave motion beneath the surface, this difference in behaviour
depending on the direction of sub-surface shear becomes even more important. For
following shear, horizontal orbital velocities are significantly amplified compared to
the case sans shear, and reduced in opposing shear. The amplification can significantly
alter the wave forces acting on a body encountering the focusing group.

We derive a simple approximate relation for the velocity amplification beneath the
focus point of aGaussianwave group atop an exponential velocity profile, as a function
of two nondimensional groups of parameters: the relative current strength U0

√
k0/g,

and the vertical vs horizontal rate of variation, α/k0.
For illustration of these observed phenomena in a practical setting we have con-

sidered waves in the mouth of the Columbia River, where depth-resolved current
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measurements as well as measured wave spectra are available [38, 39]. For a focusing
wave with the same spectrum as that measured, i.e., having the same surface ele-
vation ζ(x, 0) at the point of focus, the horizontal orbital velocity beneath the crest
is increased by approximately 40% for following shear (i.e., propagating upstream
in an earth-fixed frame) compared to a depth-uniform current, whereas for opposing
shear (downstream propagation) the amplitude is reduced by about a factor 0.72. This
corresponds to the wave-induced dynamic pressure being approximately doubled and
halved, respectively, greatly affecting the forces such a focussed group will exert on
vessels and structures.
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A Appendix

A.1 Linear Focusing Theory in ShallowWater

A.1.1 Linear Shear

The dispersion relation with finite depth h is now (e.g. [43]),

ω(k) =
√
gk tanh kh + (σ tanh kh

)2 − σ tanh kh. (111)

http://creativecommons.org/licenses/by/4.0/
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Following Refs. [25, 28], the surface elevation integral (11) can be solved approxi-
mately in shallow water by expanding ω(k) in powers of h and k

ω(k) = kch − kσh + 1
2kσ

2g− 1
2 h

3
2 − g− 3

2 ( 16g
2k3 + 1

8kσ
4)h

5
2

+ 1
3k

3σh3 + O(h
7
2 ) (112a)

≡ w1k − 1
3w3k

3 + · · · (112b)

with

w1 = ch − hσ + 1
2σ

2g− 1
2 h

3
2 − 1

8g
− 3

2 σ 4h
5
2 + O(h

7
2 ); (113a)

w3 = 1
2chh

2 − σh3 + O(h
7
2 ), (113b)

where ch = √
gh is the phase (and group) velocity in the shallow-water limit in

absence of a shear current.

A.1.2 ı-Function Singularity in ShallowWater with Linear Current Profile

Consider the case of a group focusing to the delta function singularity, equation (47),
where the expansion (111) is inserted. We shall need the linear and cubic in k.

Evaluating the integral (47), the surface shape at any time t is then, approximately,

ζ(x, t) = aL

(w3t)1/3
Ai

[
x − w1t

(w3t)1/3

]
(114)

with w1 and w3 from Eq. (113b). This is a direct generalisation of the result of refs.
[25, 28] including a constant shear.

A.1.3 Gaussian Wave Group, Arbitrary Depth

For linear shear S and general depth h, the expressions for A0 = ω′(k0) and B0 =
ω′′(k0) which may be inserted into (56) are

A0 = − hσ

C20
+ C0S0 + (2κ − k0)h

2C20
√
T0

√
g

κ

; (115a)

B0 =2h2σT0
C20

−√gκT0

[
1

4κ
2

(
hk0
C0S0

− 1

)2
+ h2

C20

(
2 − k0

κ

)]
, (115b)

with shorthand

C0 ≡ cosh k0h, S0 ≡ sinh k0h, T0 ≡ tanh k0h = S0/C0, (116)
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Fig. 16 Waves focusing into a group with a Gaussian envelope in moderately shallow water, k0h = 0.2.
The solid graphs show η(x, t)/a for

√
gk0t from −45 to 45 in steps of 0.5 with the shape at t = 0 shown

in red. Here S = √
gk0, k0L = 3, and θ = 0 (top), π/2 (centre) and π (bottom)

and shear-modified wave number

κ = k0 + σ 2T0/g −→
{
k0 + σ 2/g k0h → ∞
k0(1 + σ 2h/g) k0h → 0

. (117)

(Note ω(k0) = √
gκT0 − σT0 in this formalism).

In the shallow water regime, k0h ≡ ξ0 � 1 we obtain

A0 =√gh − vσ ξ0 + 1
2 (v

2
σ /c00)ξ

3
2
0 − 1

2c00(1 + 1
4v

4
σ /c400)ξ

5
2
0 + vσ ξ30 + ... (118a)

k0B0 = − c00ξ
5
2
0 + 2vσ ξ30 + ... (118b)

with c00 = c0(k0) = √
g/k0 and vσ = σ/k0. For example, from equation (56) one

sees that for a Gaussian package the time it takes for the group to change significantly

is t ∼ L2/B0 ≈ (k0L2/c00)ξ
− 5

2
0 , by which time the group has traveled of order

A0t/λ0 ∼ (k20L
2/2π)ξ−2

0 wavelengths of the carrier wave. However, notice that the

leading-order correction to the phase and group velocities are order FSlin.ξ
1
2
0 and can

be significantly affected by the shear even when ξ0 is not extremely small. This is
illustrated in Fig. 16 in moderately shallow water, ξ0 = 0.2: The group at focus (red
graph) does not change shape perceptibly, but the phase velocity is clearly increased
for σ < 0 and decreased for σ > 0.
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