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Abstract
The radiation of steady surface gravity waves by a uniform stream U0 over locally
confined (width L) smooth topography is analyzed based on potential flow theory.
The linear solution to this classical problem is readily found by Fourier transforms,
and the nonlinear response has been studied extensively by numerical methods. Here,
an asymptotic analysis is made for subcritical flow D/λ > 1 in the low-Froude-
number (F2 ≡ λ/L � 1) limit, where λ � U 2

0 /g is the lengthscale of radiating
gravity waves and D is the uniform water depth. In this regime, the downstream wave
amplitude, although formally exponentially small with respect to F , is determined by
a fully nonlinear mechanism even for small topography amplitude. It is argued that
this mechanism controls the wave response for a broad range of flow conditions, in
contrast to linear theory which has very limited validity.

Keywords Steady surface gravity waves · Exponential asymptotics method ·
Low-Froude-number limit

1 Introduction

Free-surface flow past bottom topography has been studied widely in connection with
geophysical flow modelling, for instance oceanic flows over sea mounts and under-
water ridges. The standard way of tackling such steady wave problems analytically is
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by solving the linearized water-wave equations with appropriate radiation conditions,
using Fourier transforms [19]. There exists also a large body of numerical work utiliz-
ing boundary-integral and related techniques to compute the nonlinear wave response
(see e.g. [4, 7, 8, 12, 20]).

Here, we revisit the classical problem of straight-crested (1D) surface gravity waves
in the 2D flow due to a uniform streamwith velocityU0 over localized bottom topogra-
phy (Fig. 1), following an entirely different analytical approach. Our solution method
formally applies in the weakly nonlinear (ε � B/λ � 1) and low Froude number
(F2 � λ/L � 1) regime, where B measures the amplitude and L the width of the
topography, and λ � U 2

0 /g is the characteristic lengthscale of radiating gravity waves.
In addition, the flow is assumed to be subcritical, D/λ > 1, where D is the uniform
water depth. Under these flow conditions, the amplitude of the induced gravity wave-
train downstream is exponentially small relative to F2 and thus lies beyond all orders
of a perturbation expansion in powers of F2. This situation is also known as the ‘low-
speed paradox’, as a straightforward asymptotic analysis in the physical domain fails
to capture the wave response at any order [6, 15].

In the present study we overcome this difficulty by an exponential-asymptotics
methodology in the wavenumber domain. This approach was proposed by Akylas &
Yang [2] and has recently been developed further by the authors [10] in the context of
the forced Korteweg–de Vries (fKdV) equation. In this model problem, the dispersion
parameter μ plays a role analogous to F2 in the water wave problem and nonlinear
effects are controlled by the amplitude of the forcing term of the fKdV equation.

The wavenumber approach in the fKdV problem exploits the fact that the (expo-
nentially small with respect to μ � 1) waves in the physical domain are tied to
simple poles of the response Fourier transform on the real axis in the wavenumber
domain. The focus then is on computing the residues of these poles which determine
the wave amplitude upon inverting the Fourier transform. These residues naturally are
exponentially small relative to μ. Interestingly, however, they are also controlled by
the nonlinear term of the fKdV equation: linearization is not appropriate in the limit
μ → 0 for small but fixed forcing amplitude, and the radiated waves are governed by
a nonlinear mechanism.

Earlier asymptotic analyses for F2 � 1of free-surfaceflowpast topography [5, 13],
a submerged line source [14] and line vortices [16] were based on a WKB technique
[5, 13, 14, 16–18], where the appearance of exponentially small terms is tied to the
crossing of Stokes lines in the (complexified) physical space. For the fKdV equation
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Fig. 1 Sketch of free-surface flow due to a stream U0 over bottom topography
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with sech or sech2 forcing term, it has been shown that the WKB technique and the
wavenumber-domain approach used here give identical results [9].

Our asymptotic analysis of radiating gravity waves for F2, ε � 1 confirms the
fully nonlinear wave generation mechanism found in the fKdV model. Furthermore,
this mechanism controls the wave response for a broad range of flow conditions, as
demonstrated by comparing asymptotic results against numerical computations for
flow over topography with a sech profile. As a result, the validity of the classical linear
solutions is extremely limited.

2 Problem Formulation

Consider the classical problem of surface gravity waves due to a uniform stream
with velocity U0 over localized bottom topography z � b(x) of width L (Fig. 1).
The uniform water depth is D, and the effects of viscosity and surface tension are
neglected. This two-dimensional steady flow is described by the well-known potential
flow theory: the two-dimensional Laplace equation for the velocity potential subject
to the kinematic and dynamic conditions on the free surface and the impermeable
condition on the bottom. For the purpose of our analysis in the wavenumber domain,
however, it is convenient to work with the non-local formulation of water waves
presented by Ablowitz et al. [1] (see their (2.3), (2.4) and (1.8); note also that their
−H is our b):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

−∞
dxe−ikx {(U0 + u) sinh k(D + η) − (U0 + w) sinh kb(x)} � 0,

∫ ∞

−∞
dxe−ikx {(U0 + u) cosh k(D + η) − (U0 + w) cosh kb(x)} � 0,

∫ ∞

−∞
dxe−ikx

{

gη +U0u +
u2

2
− [(U0 + u)ηx ]2

2(1 + η2x )

}

� 0,

(2.1)

where k is a (real) ‘Fourier-like’ parameter, g is the gravitational acceleration and all
the equations including the dynamic condition (third equation) are expressed in integral
form. Here U0 + u(x) is the tangential flow speed along the free surface (multiplied
by (1 + η2x )

1/2), U0 + w(x) is that along the bottom (multiplied by (1 + b2x )
1/2), and

η(x) is the surface displacement. Equations (2.1) form a closed system for the three
unknowns (u(x), w(x), η(x)). We also impose the radiation condition that waves
appear downstream only:

u(x), w(x), η(x) → 0 (x → −∞). (2.2)

Now we introduce dimensionless variables according to

x → Lx , k → k

L
, (u, w) → εU0(u, w), (η, b) → ελ(η, b), D → λD, (2.3)
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where λ
( ≡ U 2

0 /g
)
is the characteristic lengthscale (~wavelength) of radiating gravity

waves and ε measures the (dimensionless) amplitude of the topography. In addition,
we define the Fourier transform in x

û(k) � 1

2π

∫ ∞

−∞
u(x)e−ikxdx , (2.4)

with analogous expressions for ŵ, η̂ and b̂, and expand the sinh, cosh and (1 + η2x )
−1

functions in (2.1) in power series of ε. Thus, to leading order in ε, Eqs. (2.1) reduce
to the linearized equations governing û, ŵ and η̂, and the Fourier transforms of the
higher-order (nonlinear) terms are expressed as convolution integrals. Specifically,
after considerable manipulation, we find the following dimensionless equations in the
wavenumber domain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
tanhμkD

μk
− 1

)

û � 1

μk coshμkD

⎛

⎝
∞∑

j�0

ε2 j f̂2 j+1 +
∞∑

j�1

ε j m̂ j

⎞

⎠ −
∞∑

j�1

ε j n̂ j ,

û coshμkD + μk(sinhμkD)η̂ − ŵ �
∞∑

j�1

ε2 j−1 f̂2 j +
∞∑

j�1

ε jm j ,

η̂ + û �
∞∑

j�1

ε j n̂ j ,

(2.5a)

where μ ≡ F2( � λ/L) is the Froude number squared. Regarding the right-hand side
terms,

f̂ j (k) � (μk) j

j!
F

[
b(x) j

]
(2.5b)

accounts for the forcing due to the topography, and

m̂ j (k) � (μk) j

j!

⎧
⎪⎪⎨

⎪⎪⎩

F

[

− coshμkD

(

u(x) + (tanhμkD)
μkη(x)

j + 1

)

η(x) j + w(x)b(x) j
]

( j : odd),

F

[

− coshμkD

(

(tanhμkD) u(x) +
μkη(x)

j + 1

)

η(x) j
]

( j : even),

(2.5c)

m j (k) � (μk) j

j!

⎧
⎪⎪⎨

⎪⎪⎩

F

[

− coshμkD

(

(tanhμkD) u(x) +
μkη(x)

j + 1

)

η(x) j
]

( j : odd),

F

[

− coshμkD

(

u(x) + (tanhμkD)
μkη(x)

j + 1

)

η(x) j + w(x)b(x) j
]

( j : even),

(2.5d)
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n̂ j (k) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F

[
−u2 + μ2η2x

2

(
−μ2η2x

) j−1
2

]

( j : odd),

F

[

−u(x)
(
−μ2η2x

) j
2

]

( j : even),

(2.5e)

are nonlinear terms. It should be noted that m j in (2.5d) represents m̂ j as defined in
(2.5c) but with j : odd and j : even interchanged. Furthermore, F[ · ] denotes the
Fourier transform (2.4) of the quantity in the square brackets.

Importantly, Eqs. (2.5) suggest the presence of simple-pole singularities in
(
û, ŵ,

η̂
)
at k � ±κ0/μ, where κ0 is determined from

tanh κ0D

κ0
� 1 (2.6)

for D > 1 (see Fig. 2). Upon inverting the Fourier integrals, the residues of these
singularities contribute radiating waves downstream (in keeping with (2.2)), in the
form

u(x)(� −η(x)) ∼ R sin

(
κ0

μ
x + θ

)

(x → ∞). (2.7)

The goal of the ensuing analysis is to compute the wave amplitude R and the phase
shift θ , which generally depend on μ, D and the topography profile b(x). It should be
noted that at low Froude number (μ � 1), the (dimensionless) response wavelength
2πμ/κ0 is short relative to the width of the topography. Owing to this lengthscale
disparity,

(
û(k), ŵ(k), η̂(k)

)
at the response wavenumber k � ±κ0/μ are expected

Fig. 2 κ0 vs.D under the relation
(2.6)
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to be exponentially small with respect to μ. This suggests that the response amplitude
R is exponentially small as well, which necessitates the use of exponential asymptotics
in order to capture it.

The following sections are devoted to an exponential asymptotics procedure in
the wavenumber domain for computing R and θ in the weakly nonlinear (ε � 1)
and low Froude number (μ � 1) regime for D � O(1) > 1. We also assume
that the topography profile b(x) is smooth and even in x . Furthermore, b̂(k) decays
exponentially for large k like

b̂(k) ∼ A|k|α exp(−β|k|) (|k| → ∞), (2.8)

where A, α and β (> 0) are real constants. As in the fKdV model [10], the details of
the analysis differ depending on the value of α.

3 Scalings

Based on Eqs. (2.5), straightforward expansions of
(
û, ŵ, η̂

)
in powers of ε and μ

(with D � O(1) > 1) yield

⎧
⎨

⎩

û(k) � 1

D − 1

{

1 +
D3

3(D − 1)
μ2k2 + · · ·

}

b̂(k) +
2D + 1

2(D − 1)3
ε

∫ ∞

−∞
b̂(l)b̂(k − l)dl + · · · ,

ŵ(k) � û(k) + · · · , η̂(k) � −û(k) + · · · .
(3.1)

Furthermore, making use of (2.8), the asymptotic behavior as |k| → ∞ of the convo-
lution integral above is found to be (see Appendix B in [11])

∫ ∞

−∞
b̂(l)b̂(k − l)dl �

⎧
⎨

⎩

O
(
|k|2α+1 exp(−β|k|)

)
(α > −1),

O
(|k|α exp(−β|k|)) (α < −1).

(3.2)

Thus, for ε � 1 nonlinear terms can contribute to the disordering for |k| � 1 of
expansions (3.1), only if

α > −1. (3.3)

Assuming this condition is satisfied and making use of (2.8) and (3.2), expansions
(3.1) take the following form for |k| � 1

⎧
⎨

⎩

û(k) � A|k|α
D − 1

{
1 + O

(
μ2k2

)
+ O

(
ε|k|α+1

)
+ · · ·

}
exp(−β|k|),

ŵ(k) � û(k) + · · · , η̂(k) � −û(k) + · · · .
(3.4)

Based on (3.4), nonlinear terms are expected to come into play for k near the poles
of

(
û, ŵ, η̂

)
at k � ±κ0/μ, if ε � O(μα+1). Accordingly, we set
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ε � μα+1, (3.5)

and A( � O(1)) defined by (2.8) will serve as the forcing amplitude parameter in
(2.5). Under these scalings, we now focus on computing the residues of the poles at
k � ±κ0/μ which determine R and θ in the wave response (2.7).

4 Two-Scale Asymptotics in theWavenumber Domain

4.1 Uniformly Valid Approximation of (̂u, ŵ, ̂�)

The disordering of expansions (3.1) for |k| � 1 noted above suggests a uniformly
valid approximation of

(
û, ŵ, η̂

)
that combines: (i) the straightforward perturbation

expansions (3.1), valid for 0 ≤ |k| � 1, with (ii) the two-scale expansions

(
û, ŵ, η̂

) � A(U (κ), W (κ), H(κ))
e−β|k|

μα
+ · · · , (4.1)

valid for κ � μk � O(1). In view of (3.4), we require that the amplitude functions
(U , W , H) satisfy

U (κ) � W (κ) � −H(κ) ∼ A|κ|α
D − 1

(κ → 0). (4.2)

Thus, taking δ to be a constant such that μ � δ � 1, expansions (i) and (ii) match
for k in the intermediate range

1 � |k| � O(1/δ) � 1/μ. (4.3)

4.2 Integral Equations for (U, W, H)

We now derive approximate governing equations for (U (κ), W (κ), H(κ)), 0 < κ �
O(1). Following [10], the Fourier transforms of quadratic nonlinear terms in (2.5a)
are evaluated as

εF
[
u2

]
≡ μα+1

∫ ∞

−∞
û(k − l)û(l)dl

∼ e−βk

μα

{

A2U2(κ) + 2μα+1A
∫ 1/δ

−∞
U (κ − μl)û(l)eβldl

}

, (4.4a)

where (3.5) and (4.1) have been used and

U2(κ) �
∫ κ−μ/δ

μ/δ

U (κ − λ)U (λ)dλ. (4.4b)
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Formally the term includingU2(κ) in (4.4a) dominates; however, for−1 < α ≤ 0, the
second term also comes into play when κ � κ0 + O(μ) because U (κ − μl) becomes
O(μ−1) or larger and then affects the pole residues. Similarly, for the j-th order ( j ≥ 3)
nonlinear terms, we find

ε j−1
F

[
u j

]
∼ e−βk

μα

{
A jU j (κ) + O

(
μα+1, μ(α+1)( j−1)U (κ)

)}
( j ≥ 3), (4.4c)

where

Uj (κ) �
∫ κ−μ/δ

( j−1)μ/δ

U (κ − λ)Uj−1(λ)dλ ( j ≥ 3). (4.4d)

Here, the error term O(· · ·), which originates from dropping terms analogous to the
second term in (4.4a), is not shown explicitly because it remains subdominant to (4.4a)
even close to the pole singularities.

Making use of (2.8), (4.1) and (4.4) as well as expansions (3.1) valid for k � O(1),
it follows from (2.5) that (U (κ), W (κ), H(κ)) for κ > 0 are governed by the following
approximate equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
tanh κD

κ
− 1

)

U +
∞∑

j�1

A j (−M j + N j
) − μα+1S �

∞∑

j�0

A2 j F2 j+1,

U + κ(tanh κD)H − W

cosh κD
� κ

⎧
⎨

⎩

∞∑

j�1

A2 j−1F2 j +
∞∑

j�1

A jM j

⎫
⎬

⎭
,

H +U �
∞∑

j�1

A jN j ,

(4.5a)

where

S(κ) �

⎧
⎪⎨

⎪⎩

2 + D(1 − κ2
0 )

D − 1

∫ 1/δ

−∞
b̂(l)U (κ − μl)eβldl (κ � κ0 + O(μ)),

O(1) (otherwise).

(4.5b)

The formally subdominant termμα+1S is included in (4.5a) because it can be important
close to the singularities as detailed below (Sect. 4.3). Specific expressions for the
forcing term Fj and the nonlinear terms M j , N j and M j are given in Appendix A.

4.3 Overview of Exponential Asymptotics

Equations (4.5) form the basis of the ensuing analysis.Although these are simultaneous
equations for (U , W , H), the first of Eqs. (4.5a) is similar to the (single) integral
equation for U (κ) derived in our earlier analysis of the fKdV equation [10] (see
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their (3.7)): the first term is linear, the second term comprises nonlinear convolution
integrals, the third term is the formally subdominant integral that becomes important
(when −1 < α ≤ 0) close to the singularities at κ � κ0 given by (2.6), and the
right-hand-side term is the forcing term. Accordingly, the basic results of our study of
the fKdV equation apply here as well.

Specifically, based on the leading-order (outer) approximation to (4.5a) where the
O

(
μα+1

)
integral is dropped, (U , W , H) feature a singularity at κ � κ0 given by (2.6).

However, the extent to which this singularity differs from the simple pole predicted
by linear theory hinges on the value of α: (i) when α > 0, (U , W , H) still have a
simple pole at κ � κ0 but its residue is influenced by nonlinear terms via the forcing
amplitude A (and the depth parameter D); (ii) for α � 0, the singularity at κ � κ0
becomes algebraic with power depending on A (as well as D); (iii) for −1 < α < 0,
the situation is even more complicated as there is a singularity of exponential type at
κ � κ0 if A > 0, but otherwise there is no singularity at all. For simplicity, here α

will be restricted to α ≥ 0 so only (i) and (ii) arise.
It should be noted that, in the case α � 0, the algebraic singularity of (U , W , H)

at κ � κ0 predicted by the outer approximation needs to be reconsidered because
the term μS in (4.5a), which is dropped in the outer analysis, becomes important as
κ → κ0. This necessitates an ‘inner’ analysis when κ � κ0 +O(μ), which reveals that
(U , W , H) actually feature a simple pole at κ � κ0. Matching the inner solution with
the outer solution for κ0 − κ � O(μ) then determines the residue of this pole. Here,
nonlinear terms affect the order of magnitude of the pole residue and thereby modify
the generated wave amplitude (and phase shift) in a more serious way than in the case
α > 0.

Below (Sect. 5) we sketch the procedure of determining the pole residues for α > 0
and α � 0 and compute the radiating waves in the form (2.7). Finally, Sect. 6 shows
a comparison of asymptotic against exact numerical results for the topography profile
b(x) � Asechx which corresponds to the case α � 0.

5 Pole Residues and RadiatingWaves

To leading order in μ and μ/δ, Eqs. (4.5a) reduce to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
tanh κD

κ
− 1

)

U +
∞∑

j�1

A j (−M j + N j
) �

∞∑

j�0

A2 j F2 j+1,

U + κ(tanh κD)H − W

cosh κD
� κ

⎧
⎨

⎩

∞∑

j�1

A2 j−1F2 j +
∞∑

j�1

A jM j

⎫
⎬

⎭
,

H +U �
∞∑

j�1

A jN j ,

(5.1)
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where Fj is given by (A.1) and M j , N j , M j are the nonlinear integral terms given
by (A.2)–(A.7) with integration ranges simplified to 0 < λ < κ . The integral equa-
tions (5.1), referred to as the ‘outer equations’, are to be solved subject to conditions
(4.2).

5.1 The Case˛ > 0

Under the condition α > 0, the integral terms in (5.1) are subdominant as κ → κ0,
and (U , W , H) feature a simple pole at κ � κ0 irrespective of A. Specifically,

(U (κ), W (κ), H(κ)) ∼ C

κ0 − κ

(
1, (1 − κ2

0 ) cosh κ0D, −1
)

(κ → κ0), (5.2)

where C is a (real) constant. Thus, using (4.1) we can express û(k) close to the simple
pole k → κ0/μ as

û(k) ∼ −AC

μα+1(k − κ0/μ)
e−βk

(

k → κ0

μ

)

. (5.3)

Nonlinear effects are encapsulated in the value of the constant C , which depends on
A, D and α.

Then, inverting the Fourier transform,

u(x) �
∫

�

û(k)eikxdk, (5.4)

where the integration path� extends along the real k-axis but passes below k � ±κ0/μ

so as to observe the radiation condition (2.2), the residues in (5.3) contribute a radiating
wave downstream in the form (2.7) with

R � 4π AC

μα+1 e− β κ0
μ , θ � 0. (5.5)

Thus, nonlinear terms influence the wave amplitude R but not the phase shift θ , and
the only difference of the nonlinear from the linear wave response

Rlin � 4π AClin

μα+1 e− β κ0
μ , θlin � 0, (5.6a)

with

Clin � κα
0

cosh κ0D
κ0

− D
sinh κ0D

, (5.6b)

is the value of C , which depends on A as well as D and α.
The constant C in (5.5) can be computed numerically by integrating (5.1) as an

initial-value problem, using (4.2) as initial condition and marching towards the simple
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Fig. 3 Ratio of nonlinear to linear
wave amplitude as a function of
the forcing amplitude A for α �
1 (solid line) and 2 (dashed line)
at D � 2

-4 -2 0 2 4
0

2

4

6

lin

R
R

A

pole of (U , W , H) at κ � κ0 according to (5.2). Figure 3 plots |R/Rlin| � |C/Clin|, the
ratio of the nonlinear to the linear response amplitude, as a function of − 4 ≤ A ≤ 4
for α � 1 and 2 (at D � 2). Nonlinearity becomes more important as α is decreased,
and the validity of linear theory is rather limited when α � 1. Furthermore, in this
range of α, the polarity of the forcing is a significant factor, as the nonlinear response
amplitude is greatly enhanced (reduced) for A > 0 (A < 0).

5.2 The Case˛ � 0

For α � 0, the nonlinear integral terms M j and N j in (5.1) partake in the dominant
balance as κ → κ0 and the singularity takes of the form

(U (κ), W (κ), H(κ)) ∼ C0

(κ0 − κ)γ

(
1, (1 − κ2

0 ) cosh κ0D, −1
)

(κ → κ0),

(5.7)

where C0 is a constant. By substituting (5.7) in (5.1), we then find

γ � 1 + A, (5.8)

where

A � A
2 + (1 − κ2

0 )D

(D − 1)
(

1
κ0

− D
sinh κ0D cosh κ0D

) (5.9)

(see Fig. 4). Thus, the singularity at κ � κ0 of the outer solution no longer is a simple
pole.
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Fig. 4 A/A as a function of D
given by (5.9)
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It should be noted that the asymptotic behavior (5.7) is valid only if γ > 1, i.e.
A > 0. For A ≤ 0, the singularity of (U , W , H) at κ � κ0 is determined by further
differentiating (5.1). Briefly, suppose−n < A ≤ −n+1, where n ≥ 1 is integer. After
differentiating (5.1) n times with respect to κ , dominant balance as κ → κ0 reveals
that the appropriate singular behavior is

(
U (n)(κ), W (n)(κ), H(n)(κ)

) ∼ Cn

(κ0 − κ)n+1+A

(
1, (1 − κ2

0 ) cosh κ0D, −1
)

(κ → κ0),

(5.10)

where Cn is a constant. The constants Cn (n ≥ 0) can be computed numerically from
(5.1).

As remarked earlier, in this instance the term μS in (4.5) comes into play when
κ −κ0 � O(μ) and the singularity at κ � κ0 ends up being a simple pole. To compute
the pole residue for A > 0, we introduce the inner variables:

κ̃ � κ0 − κ

μ
, (U (κ), W (κ), H(κ)) �

(
Ũ (κ̃), W̃ (κ̃), H̃(κ̃)

)

μ1+A
, (5.11)

in (4.5). Then, this leads to a single equation for Ũ (κ̃):

κ̃ Ũ (κ̃) �
∫ ∞

−∞
f̂ (l)Ũ (κ̃ − l)e−βldl, (5.12a)
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where

f̂ (l) ≡ A

A
b̂(l), (5.12b)

and b̂(−l) � b̂(l) is used because b(x) was assumed to be even in x. Taking derivative
of (5.12a) with respect to κ̃ leads to the same inner equation as that for the fKdV
equation [10] (see their (6.3)). Thus, the rest of the inner analysis is the same as in
[10] (except for A → A). Here we only quote the final results of the radiating wave
solution, which takes the form (2.7) with

R � 4π ACne−Jr

(n + 1 + A)

e− β
μ

κ0

μ1+A
, θ � −π A

2
− Ji , (5.13)

where  is the gamma function and J � Jr + iJi is defined by

J �
∫ 1

0

[

i f (s − iβ) +
A

s

]

ds +
∫ ∞

1
i f (s − iβ)ds, (5.14)

with f (x) � (
A/A

)
b(x) being the inverse Fourier transform of f̂ (l) in (5.12b). The

integer n ≥ 0 in (5.13) is specified by the modified forcing amplitude A: n � 0 for
A > 0 and n ≥ 1 for −n < A ≤ −n + 1.

6 Wave Response for b(x) � Asechx

In order to assess the validity of the asymptotic theory, we made comparisons of the
theoretical predictionswith direct numerical computations of wave responses based on
the full water wave equations, under various flow conditions. For these computations
we used the numerical method of Belward and Forbes [3] for two-layer flow over
topography (setting the upper-layer density to zero in their formulation). Overall, we
find that the asymptotic results for the amplitude R and phase shift θ of the wave
response (2.7) are in good agreement with numerical computations for a broad range
of flow conditions, beyond the formal range of validity ε, F2 � 1 assumed in the
exponential asymptotics. Here, in the interest of brevity, we present detailed results
only for the topography profile b(x) � Asechx (where J defined by (5.14) is−A ln 2).
This topography adheres to the assumed asymptotic behavior (2.8) with α � 0, β �
π/2 and expressions (5.13) are the appropriate asymptotic results for R and θ .

Figure 5 shows a comparison of the asymptotic with the numerical downstream
wave profile for F � 0.45 (ε � μ � 0.2) and four forcing amplitudes, εA �
−0.08, −0.04, 0.04 and 0.08. In addition, the corresponding linear solution based on
(5.6) is plotted for reference. For this moderate value of F, the nonlinear asymptotic
results show quite nice agreement with the numerical results for all four topography
amplitudes, unlike the linear response which grossly underpredicts (overpredicts) the
wave amplitudes for A > 0 (A < 0). Specifically, the linear response underpredicts
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Fig. 5 Downstream wave profiles εη(x) as a function of x in free-surface flow over the topography b(x) �
Asechx for F � 0.45 (μ � ε � 0.2) and D � 2 with topography amplitude εA � −0.08, −0.04, 0.04
and 0.08 (from top). (Red line): asymptotic theory; (——): exact numerical solution; (-----): prediction of
linear theory

the wave amplitude by a factor of 5 for εA � 0.04 and 20 for εA � 0.08, while
it overpredicts the wave amplitude by a factor of 8 for εA � −0.04 and 40 for
εA � −0.08. In regard to the phase shift θ , Fig. 5 indicates that the asymptotic theory
captures the overall trend of the dependence of θ on the forcing amplitude (cf. (5.13)),
in contrast to the linear result θlin � 0 (cf. (5.6a)).
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Fig. 6 Downstreamwave amplitude ε|R| as a function of topography amplitude εA in free-surface flow over
the topography b(x) � Asechx for F � 0.45 and D � 2. The right figure is the corresponding semi-log
plot. (Red line): asymptotic theory; (◯): exact numerical solution; (------): prediction of linear theory

Figure 6 summarizes the asymptotic results in a linear and a semi-log plot of the
wave amplitude ε|R| vs. topography amplitude εA. It is worth noting that the linear
solution is reliable only for exceedingly small topography amplitudes (|εA| < 0.01).
This is in contrast to the broad validity of the asymptotic nonlinear theory which cap-
tures also the steep increase of the wave response when εA ≥ 0.08; in this nonlinear
regime the (formally exponentially small) wave amplitude ε|R| is comparable to the
topography peak amplitude (εA ∼ 0.1). Such a broad applicability of nonlinear expo-
nential asymptotics also was noted in free-surface flow over a step [5]. Furthermore,
Fig. 6 reveals that the sign of the topography is an important factor in the nonlinear
wave response: a bottom bump (A > 0) generally gives rise to much larger waves
than a bottom trench (A < 0), whereas according to linear theory A → −A simply
changes the sign of the response.

7 Concluding Remarks

Motivated by our earlier study of the fKdV equation [10], we presented an asymp-
totic treatment of steady surface gravity waves due to a uniform stream over smooth
localized topography in the weakly nonlinear (ε � 1) low-Froude-number (F � 1)
limit. In this flow regime, the wave response has exponentially small amplitude with
respect to F. Moreover, as F → 0 linearization is not appropriate for small but finite
topography amplitude (ε � 1). Our exponential-asymptotics analysis in the joint
limit ε, F � 1 confirms that the generated waves downstream are governed by a
fully nonlinear mechanism which depends on the shape of the topography profile,
specifically the parameter α in (2.8), as well as the sign of the topography (bump vs.
trench). Comparisons of the asymptotic results with direct numerical computations
suggest that this mechanism is valid for a broad range of flow conditions, even when
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the (formally exponentially small) downstream wave amplitude becomes comparable
to the topography peak amplitude. This is in sharp contrast to linear theory which has
very limited validity.

The present analysis is based on an exponential-asymptotics methodology that
focuses on the residues of the poles of the response Fourier transform on the real axis in
the wavenumber domain. These residues determine the wave amplitude upon inverting
the Fourier transform. An advantage of this wavenumber approach is that it can be
readily extended to two-dimensional (2D) wave patterns, as illustrated by our recent
treatment of a 2D model equation [11]. We are currently exploring the possibility of
applying this methodology to 2D steady water waves in 3D flow, including the Kelvin
surface-wave problem.
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Appendix A Expressions for the Forcing and Nonlinear Terms in (4.5a)

Here we give specific expressions of the forcing term Fj and nonlinear terms M j , N j

and M j in (4.5a). The forcing term Fj is

Fj (κ) � κ j−1Bj (κ)

j! cosh κD
. (A.1)

The nonlinear terms M j and N j are

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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M j (κ) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ j−1

j!

{

−
∫ κ−μ/δ

jμ/δ

[

U (κ − λ) +
κ tanh κD

j + 1
H(κ − λ)

]

H j (λ)dλ

+
1

cosh κD

∫ κ−μ/δ

jμ/δ

W (κ − λ)Bj (λ)dλ

}

( j : odd),

−κ j−1

j!

∫ κ−μ/δ

jμ/δ

[

(tanh κD)U (κ − λ) +
κ

j + 1
H(κ − λ)

]

H j (λ)dλ ( j : even),

(A.2)

N j (κ) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1

2

∫ κ−μ/δ

jμ/δ

[
U (κ − λ)Q j (λ) + (κ − λ)H(κ − λ)Pj (λ)

]
dλ ( j : odd),

−
∫ κ−μ/δ

jμ/δ

U (κ − λ)Pj (λ)dλ ( j : even),

(A.3)

and M j is given by M j as defined in (A.2) but with j : odd and j : even interchanged.
Here,

H j (κ) �

⎧
⎪⎨

⎪⎩

H(κ) ( j � 1),
∫ κ−μ/δ

( j−1)μ/δ

H(κ − λ)H j−1(λ)dλ ( j ≥ 2),
(A.4)

Bj (κ) �

⎧
⎪⎨

⎪⎩

κα ( j � 1),

(α + 1) jκ (α+1) j−1

((α + 1) j)
( j ≥ 2),

(A.5)

Pj (κ) �

⎧
⎪⎨

⎪⎩

κH(κ) ( j � 1),
∫ κ−μ/δ

( j−1)μ/δ

(κ − λ)H(κ − λ)Pj−1(λ)dλ ( j ≥ 2),
(A.6)

Q j (κ) �

⎧
⎪⎨

⎪⎩

U (κ) ( j � 1),
∫ κ−μ/δ

( j−1)μ/δ

U (κ − λ)Pj−1(λ)dλ ( j ≥ 2).
(A.7)
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