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Abstract
Considered here are two systems of equations modeling the two-way propagation of
long-crested, long-wavelength internal waves along the interface of a two-layer system
of fluids in the Benjamin–Ono and the Intermediate Long-Wave regime, respectively.
These systems were previously shown to have solitary-wave solutions, decaying to
zero algebraically for the Benjamin–Ono system, and exponentially in the Intermedi-
ate Long-Wave regime. Several methods to approximate solitary-wave profiles were
introduced and analyzed by the authors in Part I of this project. A natural continuation
of this previous work, pursued here, is to study the dynamics of the solitary-wave
solutions of these systems. This will be done by computational means using a dis-
cretization of the periodic initial-value problem. The numerical method used here is
a Fourier spectral method for the spatial approximation coupled with a fourth-order,
explicit Runge–Kutta time stepping. The resulting, fully discrete scheme is used to
study computationally the stability of the solitary waves under small and large per-
turbations, the collisions of solitary waves, the resolution of initial data into trains
of solitary waves, and the formation of dispersive shock waves. Comparisons with
related unidirectional models are also undertaken.
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1 Introduction

In the precursor [1] to this work, the authors considered Benjamin-Ono and Interme-
diate Long Wave systems of the form

[
1 + √

μ
α

γ
H

]
ζt + 1

γ
((1 − εζ )u)x − (1 − α)

√
μ

γ 2 Hux = 0,

ut + (1 − γ )ζx − ε

2γ
(u2)x = 0,

(1)

for x ∈ R and t ≥ 0. These were derived in [2] and are here written in unscaled,
dimensionless variables. The system (1) is a one-spatial-dimensional model for the
two-way propagation of long-crested internal waves along the interface of a two-layer
system of homogeneous, inviscid fluids of densities ρ j , j = 1, 2, with the bottom
layer density ρ2 > ρ1 for static stability, and depths d j , j = 1, 2. The upper layer is
taken to be bounded above by a rigid surface (the so-called rigid lid approximation)
and the lower layer is bounded below by a horizontal, flat, impermeable bottom.

Asmentioned, thesemodels allow for bi-directional propagation, unlike the original
Benjamin-Ono and Intermediate Long-Wave equations (abbreviated to BO and ILW
henceforth). However, they do assume the waves are long-crested, so there is no
appreciable variation in the horizontal direction orthogonal to the principle direction
of propagation. The independent variable x is proportional to position in the direction
of propagation while t is proportional to elapsed time, ζ = ζ(x, t) is the deviation
of the interface from its rest position at the point x at time t . The dependent variable
u = u(x, t) is a horizontal velocity-like variable while γ = ρ1/ρ2 < 1 is the density
ratio and α is a non-dimensional modeling parameter.

In terms of the non-dimensional parameters

ε = a

d1
, μ = d21

λ2
, ε2 = a

d2
= εδ and μ2 = d22

λ2
= μ

δ2
,

(where a and λ denote, respectively, a typical amplitude and wavelength of the inter-
facial wave and δ = d1/d2 is the depth ratio), the physical regimes under which the
Euler equations for internal waves are consistent with the two-dimensional version of
(1) are (see [2]):

• Intermediate Long-Wave regime: μ ∼ ε2 ∼ ε2 � 1, μ2 ∼ 1. (This means that
the upper layer is shallow, and the interfacial deformations are small with respect
to the depths of both layers.)

• Benjamin-Ono regime: μ ∼ ε2 � 1, ε2 � 1, μ2 = +∞ (corresponding to a
very deep lower layer).
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The two regimes aremathematically distinguished in (1) by the definition of the Fourier
multiplier operator H. This takes the form H = ∂xT

√
μ2 , with

Tβζ = 1

2β
P.V.

∫ ∞

−∞
coth

π(ξ − x)

2β
ζ(ξ, t) dξ, β > 0,

in the ILW case (where P.V. stands for the Cauchy principal value of the integral), and
H = ∂xH, where

Hζ = 1

π
P.V.

∫ ∞

−∞
ζ(ξ, t)

ξ − x
dξ,

is theHilbert transform, in theBO case. In terms of the corresponding Fourier symbols,
if f̂ denotes the Fourier transform of f , then Ĥ f (k) = g(k) f̂ (k), k ∈ R, where

g(k) =
{ |k| in the BO case,
|k| coth(√μ2|k|) in the ILW case.

(2)

Note that in the ILW case g(0) = 1/
√

(μ2). Briefly described now are some
mathematical properties of the initial-value problem for (1) (see [1] for details). The
system (1) is linearly well posed if and only if α ≥ 1 [2] and the nonlinear initial-value
problem for the ILW case has been shown in [3] to be well posed, locally in time, in
suitable Sobolev spaces if α > 1. In the same paper, again when α > 1, similar well-
posedness results for the BO system are suggested to hold because of the convergence
of solutions of the ILW system to those of the BO system as μ2 → ∞.

On the other hand, to the best of our knowledge, the system (1) for α 	= 0 has only
the simple conservation laws

I1(ζ, u) =
∫ ∞

−∞
ζ dx, I2(ζ, u) =

∫ ∞

−∞
u dx, (3)

whereas the case α = 0, which is ill posed [4], admits two additional invariant quan-
tities and a Hamiltonian structure emerges.

Another important property of (1) is the existence of solitary-wave solutions of the
form ζ(x, t) = ζ(x − cst), u(x, t) = u(x − cst), moving with constant speed cs 	= 0,
having profiles ζ = ζ(X), u = u(X) which, along with their derivatives, decay to
zero as X = x − cst → ±∞. They must be solutions of the system

(
−cs(1 +

√
μα

γ
H) 1

γ
+ (α − 1)

√
μ

γ 2 H
1 − γ −cs

) (
ζ

u

)
= ε

γ

(
ζu
u2/2

)
. (4)

Existence of smooth, small-amplitude solutions of (4) was recently proved byAngulo-
Pava and Saut in [5]. In the same paper, the decay as |X | → ∞ was shown to be
exponential in the ILW case and algebraic (as 1/|X |2) in the BO case, just as for the
solitary-wave solutions of their undirectional counterparts.
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The numerical generation of solitary-wave solutions of (1) was discussed by the
authors in [1], which is Part I of the present study (see also [6]). Three iterative meth-
ods, one of Newton type, the classical Petviashvili iteration, and a modification of it,
were proposed to solve iteratively a discretization of (4) based on Fourier colloca-
tion approximation of the corresponding periodic problem. The three schemes were
compared in accuracy and some properties of the resulting computed solitary waves
that emerged from the experiments were pointed out. These concerned the speed-
amplitude relationship, the convergence of the solitary waves of the ILW system to
those of the BO system, and comparisons with solitary-wave solutions of both the
classical and regularized versions of the unidirectional BO and ILW. The regularized
versions of these unidirectional equations, which result from using the lowest order
relation, ∂x = −∂t to modify the dispersion relation, will be denoted henceforth by
rBO and rILW, respectively.

With a reasonably good grasp of the solitary-wave solutions in hand, it is natural
to turn to their dynamics as solutions of the time-dependent problem. To this end,
the corresponding periodic initial-value problem (IVP) is discretized in space with a
spectral method and in timewith the explicit, fourth-order Runge–Kutta (RK) scheme.
Error estimates of the spectral semi-discretization were proved in [6]. These estimates
naturally depend upon the regularity of the solutions of (1) and, in particular, lead to
spectral convergence in the smooth case. In addition, the fully discrete method was
also used in Part I of this project to check the accuracy of the computed solitary-wave
profiles. Its very satisfactory performance gave the confidence needed to make use of
it for the developments in the present essay.

From this computational perspective, several properties of (1) are studied. The first
group of experiments analyzes the stability of the solitary-wave solutions. Small per-
turbations of the traveling-wave profiles, which are determined as in [1], are taken as
initial conditions of the time-dependent numerical scheme. The evolution of the corre-
sponding numerical approximation suggests that the solitary waves are asymptotically
stable. Indeed, what is observed is that a perturbed initial solitary wave develops into a
principal part which appears to converge rapidly to a new solitary wave, together with
smaller waves of a purely dispersive nature. There are two groups of these dispersive
waves, traveling in opposite directions.

One would expect that internal solitary waves would be unstable or lead to series
of solitary waves when perturbed by a large amount. Surprisingly, the experiments
suggest that this is not the case for theBOand ILWsystems.Large perturbations of their
solitarywaves appear to develop into a single, large solitarywave. The amplitude of the
emergent solitarywave is related to the size of the perturbation in away to be discussed
later. The solitary wave is followed by comparatively small amplitude, dispersive tails
quite similar to those appearing when small perturbations are considered.

Another issue studied in the present paper, which appears related to their stabil-
ity, is the interaction of solitary waves. Since (1) admits two-way propagation, both
experiments of head-on and of overtaking collisions are carried out. As the interac-
tions are expected to be inelastic, additional information provided by the experiments
will concern the emerging waves and the nature of the dispersion resulting from the
collisions. We complete the computational study of properties related to the stability
of solitary waves by analyzing numerically the resolution of general initial data into
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trains of solitary waves along with dispersive tails. In particular, the role of the energy
and mass of the initial data, represented in terms of its amplitude and wavelength, is
examined in the context of this resolution property.

The computational study of (1)will be concludedwith a discussion of two additional
issues. The first one concerns the relationship between the system and the correspond-
ing unidirectional equations.More specifically, we are interested in the dynamics of (1)
when presented with data corresponding to unidirectional propagation. To this end,
we analyze computationally the evolution of the interface according to the system
using initial data derived from solitary-wave solutions of the unidirectional model and
vice-versa. We find that the systems compare qualitatively, and to some extent quanti-
tatively, with their unidirectional counterparts in the unidirectional regime. Indeed, in
both cases, the numerical experiments reveal that the evolution that emerges is similar
to that which obtains from small perturbations of the exact solitary-wave solution of
the relevant system.

The second point concerns the formation of dispersive shock waves (DSW hence-
forth). When they exist, one expects such waves to involve two scales, one fast and
oscillatory and a second one, slow and modulational, cf. [7, 8]. Thus, they would
consist of a wavetrain with a local, rapidly oscillating structure while the envelope
wave parameters themselves are changing on a much slower time scale. In the present
paper, the formation of DSWs associated to (1) is investigated by integrating numer-
ically two problems typically related to DSW formation: the Riemann problem and
the dam break problem.

The paper is structured as follows: Sect. 2 is devoted to a description and an accuracy
study of the numerical method used for the computational work to follow. In Sect. 3,
the stability of the solitary waves is analyzed via a group of experiments concerning
the evolution of small and large perturbations of the solitary-wave initial data. The
investigation of head-on and overtaking collision of solitary waves, as well as the
resolution property is presented in Sect. 4. Discussion of some relationships between
unidirectionalmodels and the associated bi-directional systems is the subject of Sect. 5,
while Sect. 6 contains the computational study of DSWs. Some concluding remarks
may be found in the final Sect. 7.

Overall, the dynamics for the ILW and the BO systems appear qualitatively quite
similar. To keep the length of the script under control, the present paper will mostly
report experiments on the dynamics of the BO system, partly because BO is compu-
tationally more challenging owing to the slower decay of its solitary waves.

2 Description of the Numerical Method

In this section, the fully discrete scheme for the numerical approximation of (1) is
described. The particular method was already used in [1] to check the accuracy of
the computed solitary-wave profiles. This involved considering the computed solitary-
wave profiles as initial conditions and monitoring by howmuch the resulting solutions
evolve away from an appropriate translation of the profile.

While the problems under consideration are set on the spatial domain R, the com-
putations take place in a spatially periodic setting. The commonplace practice of
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approximating IVP’s on R having localized initial data via periodic problems goes
back at least to the 1960s. (see e.g. Zabusky and Kruskal [9] and Tappert [10]). Pre-
liminary arguments justifying such approximation for unidirectional models can be
found in [11], but see the more recent work of H. Chen [12], where explicit error esti-
mates, valid over long time scales depending on the length of the period, are obtained.
The same type of analysis can be applied to the bidirectional case.

Taking this point as settled, attention is focused on the periodic IVP for (1) on a long
enough interval [−l, l], with initial conditions given by two smooth periodic functions
ζ0, u0, and where the dispersion operator H takes the form of the corresponding
periodic operator, which is to say, H is a multiplier on the Fourier coefficients by the
function whose discrete symbol is given as in (2) (cf. [1]).

For an even integer N ≥ 1, let SN be the space of trigonometric polynomials, viz.

SN = span
{
e
iπk
l (x+l) : −N/2 ≤ k ≤ N/2

}
, x ∈ [−l, l].

Let {x j = −l + jh, j = 0, . . . , N − 1} be a uniform mesh of nodes on [−l, l] with
h = 2l/N . Let P = PN denotes the L2-projection onto SN while I f = IN f denotes
the interpolating trigonometric polynomial to f based on the nodes x j .

For T > 0, the semidiscrete Fourier-Galerkin approximation is defined as the
mapping (ζ N , uN ) : [0, T ] → SN × SN satisfying

〈[
1 + √

μ
α

γ
H

]
ζ N
t +

[
1

γ
(1 − εζ N )uN − (1 − α)

√
μ

γ 2 Hu

]
x
, χ

〉
= 0,

〈
uN
t +

[
(1 − γ )ζ − ε

2γ
u2

]
x
, χ

〉
= 0, ∀χ ∈ SN ,

(5)

for t ≥ 0, with initial data ζ N (x, 0) = PN ζ0, uN (x, 0) = PNu0. The inner product
〈·, ·〉 is that of L2(−l, l). The spectral discretization (5) was introduced in [6] and
L2-error estimates were established there. For the experiments below, and to take
advantage of the numerical generation of solitary waves performed in [1], the method
was implemented in pseudospectral form. Algebraically, this is equivalent to the collo-
cation formulation [13].With a small abuse of notation, (ζ N , uN ) : [0, T ] → SN ×SN
will also denote the semidiscrete Fourier collocation approximation, which is to say,
the mapping (ζ N , uN ) satisfies

[
1 + √

μ
α

γ
H

]
ζ N
t + 1

γ

(
IN

(
(1 − εζ N )uN

))
x

− (1 − α)

√
μ

γ 2 HuN
x = 0,

uN
t + (1 − γ )ζ N

x − ε

2γ
(IN (u2))x = 0,

(6)

at x = x j , j = 0, . . . , N − 1, with ζ N (0) = IN ζ0, uN (0) = INu0, so that

ζ N (0)
∣∣
x=x j

= ζ0(x j ), uN (0)
∣∣
x=x j

= u0(x j ), 0 ≤ j ≤ N − 1. (7)
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The semidiscrete system (6), (7) is conveniently formulated using a nodal repre-
sentation (ζh, uh) of (ζ N , uN ) with

ζh(t) = (ζh, j )
N−1
j=0 , ζh, j = ζ N (x j , t), j = 0, · · · , N − 1,

uh(t) = (uh, j )
N−1
j=0 , uh, j = uN (x j , t), j = 0, · · · N − 1.

The resulting system for (ζh, uh) is

[
1 + √

μ
α

γ
HN

]
d

dt
ζh + 1

γ
DN ((1 − εζh) ◦ uh) − (1 − α)

√
μ

γ 2 HNDNuh = 0,

d

dt
uh + (1 − γ )DN ζh − ε

2γ
DN (uh ◦ uh) = 0,

(8)

where ◦’s connote Hadamard products, DN is the Fourier pseudospectral differenti-
ation matrix of order N and HN stands for the corresponding discrete version of the
operator H. In terms of the kth discrete Fourier coefficients ζ̂ N (k) and ûN (k) of ζ N

and uN , the discrete Fourier transform allows us to write (8) in the form

[
1 + √

μ
α

γ
gk

]
d

dt
ζ̂ N (k, t) + i k̃

γ

(
ûN − εζ̂ NuN

)
(k, t)

− (1 − α)

√
μ

γ 2 gk(i k̃)ûN (k, t) = 0,

d

dt
ûN (k, t) + (1 − γ )(i k̃)ζ̂ N (k, t) − ε

2γ
(i k̃)(̂uN )2(k, t) = 0,

(9)

where k̃ = πk
l , gk = g(|̃k|), −N ≤ k ≤ N and g is as given in (2).

The initial-value problem for the semidiscrete system (9) is integrated in time using
the explicit, 4th-order Runge–Kutta method.

Remark 2.1 It is worth mentioning some additional properties of the semi-discrete
schemes. Note first that for the continuous, periodic initial-value problem for the
system (1) on (−l, l), the analogs

I1(ζ, u) =
∫ l

−l
ζ dx and I2(ζ, u) =

∫ l

−l
u dx, (10)

of (3) are also independent of time. A natural discretization of (10) is given by
hI1,h, hI2,h where

I1,h(ζh, uh) = 〈ζh, 1N 〉, I2,h(ζh, uh) = 〈uh, 1N 〉, (11)

and 1N denotes the vector with all components equal to one. The angle brackets 〈·, ·〉
here denote the Euclidean inner product in C

N . Note that if FN stands for the matrix
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associated to the discrete Fourier transform based on the x j and F∗
N is its adjoint, then

F−1
N = 1

N F∗
N , and

HN = FN HN F
−1
N , DN = FN DN F

−1
N ,

where HN (respectively DN ) denotes the diagonal matrix with diagonal entries gk
(respectively ik), k = 0, . . . , N −1. In particular, H∗

N = HN and D∗
N = −DN . Since

F−1
N 1N = 1

N
F∗
N1N = e1 = (1, 0, . . . , 0)T ,

thenHN1N = DN1N = 0. Therefore, taking the inner product with 1N in the first and
second equations of (8) reveals that the quantities (11) are preserved up to round-off
error by the semidiscrete approximation.

3 Stability of the SolitaryWaves

3.1 Stability of SolitaryWaves Under Small and Large Perturbations

In our study of the stability of solitary waves of both ILW and BO systems, several
types of numerical experiments are performed. The general procedure is always the
same: first generate an approximate solitary-wave profile by using one of the methods
described in [1]. Then, this computed profile is perturbed in one or both of its com-
ponents ζ and u. Finally, the perturbed profile is used as an initial condition for the
fully-discrete scheme described in Sect. 2 and the evolution of the resulting numerical
approximation is monitored.

In all cases, the solitary waves appear to be stable under small perturbations. The
behavior is illustrated by the following example:Consider theBOsystemwithα = 1.2,
γ = 0.8 and ε = √

μ = 0.1 and the solitary wave with cs = 0.57 and amplitude
approximately a = 3.9129. This solitarywave is perturbed bymultiplying the function
ζ0(x) by the factor r = 1.1. Thus, the perturbed initial data is (rζ0, u0) where (ζ0, u0)
is the unperturbed solitary-wave profile. This represents a perturbation of about 10%.
Figure1 shows the evolution of the perturbed solitary wave to a new, stable solitary
wave followed by a rather interesting dispersive tail. The dispersive tail consists of a
right and a left-traveling part as indicated in Fig. 1. In this figure, we only show the
ζ -component of the solution since u behaves similarly. Analogous behaviour has been
observed in the case of Boussinesq systems for surface waves in [14]. The accuracy
of the results is guaranteed in this case by using N = 32, 768 nodes in the interval
[−512, 512] (so h = 3.125 × 10−2) and �t = 0.01. The results reported here are
representative of a whole series of tests with r 	= 0, but |r − 1| fairly small.

The results obtained for the ILW case are quite similar to those presented in Fig. 1.
The main difference is that, because the solutions decays exponentially to 0, the sim-
ulations are more easily carried out since a smaller spatial interval is required. This
stable behaviour seems to persist for larger perturbations. For example, Fig. 2 presents
the evolution of a solitary wave of the ILW system with an amplitude perturbation
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Fig. 1 Nonlinear stability of a BO-solitary wave with cs = 0.57 with amplitude approximately a = 3.9129,
perturbed initially by about 10% in only the ζ -component of the system

r = 1.5 in the ζ component only. Keeping the parameters of the ILW system the
same as in the BO system, the unperturbed speed of the solitary wave was taken to
be cs = 0.51. With these specifications, the amplitude was approximately a = 1.7.
The evolution of the perturbed initial condition leads to a new solitary of amplitude
approximately a = 2.35 and two counter-propagating dispersive tails. A series of sim-
ulations with larger values of r showed similar behavior for both BO and ILW systems.
The emerging solitary wave had roughly the amplitude ra, where a is the amplitude
of the unperturbed solitary wave. These results speak to the extreme stability of the
solitary-waves solutions of both systems.

3.2 Dispersive Tails

Observe in Fig. 1d that the tail generated by the perturbation of a solitary wave consists
of two dispersive groups, a left- and a right-propagating part. These seem to be well
separated and there appears to be no interaction between them or with the emerging
solitary wave. This phenomenon has also been observed in Boussinesq systems for
surface waves. It is worth remarking that in the Boussinesq system context, there were
cases where an interaction between the two parts of the dispersive tails was observed;
this seemed to occur when blowup phenomena was imminent (see [14]).
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Fig. 2 Nonlinear stability of a solitary wave with cs = 0.51 perturbed initially by about 50% in only the
ζ -profile of the ILW-system

A little analysis based on observation of the outcome of numerical simulation casts
some light on the remarks above. Define two quantities

cγ = √
(1 − γ )/γ and R =

√√√√√γ + (α−1)
√

μ√
μ2

γ + α
√

μ√
μ2

. (12)

(Note that R < 1.) As seen in [1], the speed of the solitary waves seems to be bounded
from below by cγ in case of the BO system and by Rcγ in case of the ILW systems.
The solution of these systems that start from a perturbed solitary wave evolves into
a solitary wave of speed cs , say, and a small remainder, which we are calling the
dispersive tail. We suppose cs > cγ in the BO case and that cs > Rcγ in the ILW
situation. Small solutions of the system (1) satisfy approximately the linearized system

[
1 + √

μ
α

γ
H

]
(∂t − cs∂X )ζ + 1

γ

(
(1 − (1 − α)

√
μ

γ
H

)
∂Xu = 0,

(∂t − cs∂X )u + (1 − γ )∂Xζ = 0.
(13)



Solitary-Wave Solutions of Benjamin–Ono and… 171

where X = x − cst is a frame of reference moving with a solitary wave of speed
cs > cγ in the BO case and cs > Rcγ in the ILW case.

Since the operators H and ∂t − cs∂X commute, if ∂t − cs∂X is applied to the first
equation in (13) and the second equation is used to solve for (∂t − ∂X )u in terms of ζ ,
there obtains

[
1 + √

μ
α

γ
H

]
(∂t − cs∂X )2ζ − c2γ

(
1 − (1 − α)

√
μ

γ
H

)
∂2Xζ = 0. (14)

Solutions of (14) are superpositions of plane waves ζ(X , t) = ei(kX−ω(k)t) where

ω = ω±(k) = −csk ± cγ kφ(|k|),

and φ : [0,∞) → R is

φ(x) =

√√√√√1 −
√

μ

γ
g(x)

1 + α
√

μ

γ
g(x)

.

As before, g is given in (2). Note that g is positive and increasing for x ≥ 0. Define
g(0) = 1/

√
μ2 in the ILW case. If one assumes α ≥ 1, which is required for well

posedness, then φ has the following properties:

(i) For x > 0,

0 < φ(x) < φ(0) =
{
1 in the BO case,
R in the ILW case.

(15)

(ii) For x > 0,

φ′(x) = −
√

μ

2γ

g′(x)

φ(x)
(
1 + α

√
μ

γ
g(x)

)2 < 0. (16)

(iii)

lim
x→+∞ φ(x) =

√
1 − 1

α
∈ [0, 1].

Therefore, for all wavenumbers k > 0, the phase speed

v±(k) = ω±(k)

k
= −cs ± cγ φ(|k|),

of the dispersive tail, relative to the speed of the solitary wave, satisfies

− (cs + φ(0)cγ ) < v−(k) < −cs < v+(k) < −cs + φ(0)cγ . (17)
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The inequalities (17) show in which direction the plane-wave components of the
dispersive tails propagate, relative to the solitary wave. Since φ(0) < 1, the absolute
phase speed v+(k)+ cs of the right-traveling waves ei(kX−ω+(k)t) is less than or equal
to cγ , and similarly the left-traveling waves ei(kX−ω−(k)t) have |v−(k) + cs | ≤ cγ .
Moreover, components corresponding to longer wavelength (smaller k) are faster than
those of shorter wavelength.

Examine now the associated group velocities. Observe that,

ω′±(k) = −cs ± cγ (φ(|k|) + |k|φ′(|k|)), k 	= 0,

ω′±(0) = −cs ± cγ φ(0).

For x ≥ 0 consider the function

ψ(x) = φ(x) + xφ′(x) = φ(x) −
√

μ

2γ

xg′(x)

φ(x)
(
1 + α

√
μ

γ
g(x)

)2 , x > 0,

ψ(0) = φ(0).

Note first that (16) implies that ψ(x) ≤ φ(x) for x ≥ 0. On the other hand, according
to (2), xg′(x) = g(x) + x2C(x) where

C(x) =
{

0 in the BO case,

−
√

μ2

sinh2(
√

μ2x)
in the ILW case.

Consequently, C(x) ≤ 0 for x > 0 and so xg′(x) ≥ g(x) for x > 0. This and the
hypothesis α ≥ 1 imply that

ψ(x) ≥ φ(x) −
√

μ

2γ

g(x)

φ(x)
(
1 + α

√
μ

γ
g(x)

)2 ≥ 0.

In consequence, it transpires that

0 ≤ ψ(x) ≤ φ(x), for x ≥ 0, and

limx→+∞ ψ(x) = limx→+∞ φ(x) =
√
1 − 1

α
.

Therefore, for all wavenumbers k > 0,

− (cs + φ(0)cγ ) < ω′−(k) < −cs < ω′+(k) < −cs + φ(0)cγ < 0. (18)

By using (12), (15), and the hypotheses on cs , it is deduced that cs > φ(0)cγ in both
the BO and ILW cases. Then, (18) means that there are two dispersive groups, one
traveling to the left and one to the right (with the solitary wave), but with a group
velocity smaller than cs .
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4 SolitaryWave Interaction and the Resolution Property

The present section is concerned with the interactions of solitary waves. We remind
the reader that for the unidirectional BO and ILW models, overtaking interactions
are elastic owing to the complete integrability of the equations. For the regularized
versions of these models, apparently the collisions are not elastic as witnessed by the
simulations in [15, 16]. Our purpose now is to study computationally the interactions of
solitary waves of the BO and ILW systems (1). Since the models support propagation
in both directions, two types of collisions can be considered.

4.1 Head-on Collisions

The experiments begin with a symmetric head-on collision for the BO system. This
is illustrated by the following example. Two computed solitary waves with the same
speed cs = 3.2 (with α = 1.2, γ = 0.1, ε = 0.5,

√
μ = 0.1) on [−4096, 4096], prop-

agating in opposite directions are computed. (To reverse the direction of propagation,
simply remark that if (ζ, u) is a solitary wave propagating to the right with speed cs ,
then (ζ,−u) is a solitary wave propagating to the left with speed −cs .). The location
of the peak amplitudes of the two solitary pulses was initially placed at x = −800
and x = 800, respectively. (In this and all the rest of the experiments of this section,
h = 0.125 and �t = 0.01.) The head-on collision is illustrated in Fig. 3 at several
time instances of the evolution of the numerical approximation to the deviation of the
interface. The interaction appears to be inelastic and similar to the head-on collision of
Boussinesq systems for surfacewater waves, (see e.g. [17]). During the interaction, the
solitary waves change slightly in shape and their speed decreases. After the inelastic
head-on collision the emerging solitary waves have altered amplitudes and speeds and
they shed a symmetric dispersive tail propagating in both directions. (A magnification
of the dispersive tail is shown in Fig. 3f.)

The peak amplitude of the numerical approximation during the interaction is
presented in Fig. 4a, while Fig. 4b shows the locations of the peak amplitudes.
The amplitudes and their locations have been computed using Newton’s method as
described in [1]. The amplitude before the collision was a = −0.362898 while after
the (symmetric and inelastic) interaction it has decreased to a = −0.362912 which is
a 0.39% change. A similarly small phase change can be observed.

In addition, we performed asymmetric head-on collisions, with similar results and
the same conclusions. This inelastic character is also observed in the case of the ILW
system. Due to the exponential decay rate of the solitary wave profiles in this case,
the numerical simulations do not require such a large spatial domain for accurate
approximation.

4.2 Overtaking Collisions

We also consider a second type of interaction between solitary waves, namely over-
taking collisions. These occur when a wave of one speed is placed behind another
with a smaller speed. Recall again the elastic behavior of this type of collision for the
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Fig. 3 Symmetric head-on collision of solitary-wave solutions of the BO system with cs = 3.2. a–e:
Numerical approximation at several times; (f) is a magnification of the marked part of (e)

unidirectional ILW and BO equations. On the other hand, the regularized versions of
these unidirectional models featured inelastic collisions (according to the experiments
reported in [15, 16] for the BO case).

For the BO system, the typical behavior for this interaction is illustrated by the
following experiment. Taking α = 1.2, γ = 0.1 and ε = √

μ = 0.1 on the interval

[−4096, 4096], two solitary waves with speeds c(1)
s = 3.5 and c(2)

s = 3.1 (traveling
to the right) with amplitudes a(1) = −4.7157 and a(2) = −0.8978, respectively, have
been considered as initial data for the numerical integration of (1). The peaks of these
two solitary waves were placed initially at x = −1,000 and x = 1,000. The numerical
computations used N = 65,536 modes (corresponding to h = 0.125) and �t = 0.01.

For comparison, the same experiment for the corresponding solitary-wave solutions
(with the same speeds) of the rBOmodel is also performed. The solitary-wave solutions
for rBO have an exact formula, and it is not necessary to generate them numerically.
Having the same speeds as those for the BO system, the amplitudes are not the same
due to the different speed–amplitude relation, see [1].

Figure 5 presents the ζ profile during the interaction for different propagation
times. The experiment suggests an inelastic overtaking collision of the solitary waves
for both the BO system and rBO equation. We also note (see especially 5d) that the
interaction of the solitary waves in the case of the rBO equation looks more inelastic
(more nonlinear) and lasts longer. Perhaps as a result of this longer interaction time,
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Fig. 4 Location of peak amplitudes of the numerical approximation during the symmetric head-on collision
of the BO system, see Fig. 3. Notice the small, retarded phase shift after the interaction

the solitary waves of the rBO equation after the interaction appear to possess a larger
phase change. This more inelastic character in the rBO case is noted, for example, by
the fact that after the interaction, the larger solitary wave of the rBO equation has a
change in amplitude of about 0.68%, in comparison with the BO system, where the
change is about 0.51%.

As expected, after the inelastic interaction, dispersive tails were generated. For
the experiments under discussion, these emerging tails are shown in more detail in
Fig. 6 for the BO system and in Fig. 7 for the rBO equation. The magnification given
in Fig. 6b shows that after the interaction of the solitary waves of the BO system, a
N-shaped wavelet traveling to the left is generated. This does not appear in the case
of the rBO equation, see Fig. 7b. The formation of these types of waves has also been
observed in unidirectional and bidirectional surface water-wave models, cf. [18, 19].
The rest of the dispersive tails are comparable in both size and wavelength for the two
models, see Figs. 6d and 7d.

The next experiment provides an indication of the similarities between the BO-
and the ILW-systems. An overtaking collision of two solitary waves with c(1)

s = 0.5
and c(2)

s = 0.48 of the ILW-system and rILW-equation (with α = 1.2, γ = 0.8,
ε = √

μ = 0.1 and
√

μ2 = 1) produce similar results. The dispersive tails generated
in the case of the ILW system consist of the same two parts as in the BO system and
include the N-shaped wavelet. The collision is thus clearly inelastic, as is the case for
the rILW equation. The result of these interactions is illustrated in Fig. 8.
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Fig. 5 Overtaking collision of two solitary waves of the BO system (solid lines) and the rBO equation

(dashed lines) with speeds c(1)s = 3.5 and c(2)s = 3.1. a–f : Numerical approximation at several times. After
the interaction, there is a small difference in the speeds of the larger emergent solitary waves

Fig. 6 The dispersive tails after the interaction of the solitary waves of the BO system appearing in Fig. 5. b
and d are magnifications of the marked part of a and c, respectively. Notice the N-shaped, left-propagating
wave
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Fig. 7 The dispersive tails after the interaction of the solitary waves of the rBO equation from Fig. 5. Graphs
b and d are magnifications of the marked part of a and c, respectively. There is no N-shaped residual here

Fig. 8 The dispersive tail and the N-shaped wavelet produced after the overtaking collision of two solitary
waves of the ILW system compared to the solution of the rILW equation with the analogous solitary waves,
cf. Fig. 5
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4.3 Resolution into SolitaryWaves

Another important property, which is related to the stability of the solitary waves, is
the process whereby solitary waves emerge from the evolution of more general initial
conditions. This is often referred to as resolution into solitary waves, and explains why
these special solutions attract so much attention. To illustrate this resolution property
in the current context, a series of runs is reported. The initial conditions in this section
are Gaussian perturbations of the interface with zero initial velocity, i.e.

ζ0(x) = −Ae−(x/λ)2 , u0(x) = 0, (19)

where A and λ are constants. Such initial conditions are reminiscent of the early
stages of tsunami generation [20]. For these initial conditions, the resolution seems to
be determined by the energy and mass of the pulse, which in this case is related to the
amplitude A and the wavelength λ, as seen in what follows.

Consider the BO system with α = 1.2, γ = 0.1 and ε = √
μ = 0.1 with initial

conditions (19), where A = 2 and λ = 10. These initial conditions are unable to
trigger the generation of solitary waves. Instead, two counter-propagating dispersive
wavetrains appear as shown in Fig. 9. Indeed, we monitored the L∞-norm of the
solution as a function of t and observed that it decreased steadily as t increased from
0 to 2, 000. This decay of the maximum norm is one of the hallmarks of a solution
containing no solitary-wave component. The result is not surprising, as the branch of
solitary-wave solutions of the BO system appears to have energies that are bounded
away from 0.

Increasing either the amplitude or wavelength of the initial condition has the effect
of activating the generation of solitary waves. For example, the evolution of (19) with
A = 5 and λ = 10 is shown in Fig. 10. Note that two counter-propagating solitary
waves are generated followed by dispersive tails. Similarly, increasing the wavelength
of the initial condition by taking λ = 20 and holding A = 5 produces the four solitary
waves shown in Fig. 11, while Fig. 12 shows the resolution of the initial condition with
A = 1 and λ = 100 into at least four, and very probably six, solitary waves.

5 Comparisons with SolitaryWaves of the BO Equation

As discussed in Part I of this work [1], the rBO and rILW equations describe the
propagation of internal waves inmainly one direction and have solitary-wave solutions
found in closed form. The BO and ILW systems should be able to describe waves
propagating in one direction similarly to the unidirectional models provided that the
initial data are ‘unidirectional’. In the present Section, the ability of the two-way
systems tomodel thewaves of their unidirectional counterparts, and especially solitary
waves of the rBO and rILW equations is investigated. The results for the BO system
are shown below; the experiments for the ILW system are easier to perform and the
overall conclusions are the same.

The tricky point here is that unidirectional models require initial data only for the
interfacial variable ζ(x, 0) = ζ0(x), whereas the two-way propagation systems also
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Fig. 9 Resolution of a Gaussian initial condition (19) with A = 2 and λ = 10 into dispersive wavetrains
for the BO system

require an initial velocity u(x, 0) = u0(x). Guided by the rigorous theory of surface-
wave Boussinesq systems [21], we use the higher order approximation

u0 = √
γ (1 − γ )

(
ζ0 + ε

4
ζ 2
0 +

√
μ

2γ
Hζ0

)
(20)

to the unknown velocity that applies in the unidirectional case (see Equation (11) of
[1]).

Thus, if we consider a solitary wave ζ0(x) of the rBO equations, given exactly in
Equations (13)–(16) of [1], then the unknown initial velocity u0(x) for the BO system
is consistently chosen by the higher-order approximation (20).

For the first reported experiment, we took α = 1.2, γ = 0.8, ε = √
μ = 0.1.

Figure13 presents the evolution of the BO system with initial data for ζ0 taken to be a
solitary-wave solution of the rBO equation with cs = 0.53 and amplitude a = −1.6,
together with the u0 derived from (20). The numerical approximation evolves into a
principal profile of solitary-wave type, along with a trailing tail. Most of the resulting
wave travels to the right with the rBO-solitary wave, while a very small portion travels
in the opposite direction. After a simulation which is long enough for the tail to
separate and disperse, the numerical approximation appears to be a new solitary wave
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Fig. 10 Resolution of a Gaussian initial condition (19) with A = 5 and λ = 10 into solitary-wave solutions
of the BO system

of amplitude a ≈ −1.78, differing from that of the initial profile by about 11.25% in
the maximum norm. What is particularly notable here is that this ‘unidirectional’ data
does indeed produce a signal that, in the main, propagates in only one direction.

Similarly, a simulation was run of the rBO equation with initial condition given by
a solitary-wave solution of the BO system. The solitary-wave profile was generated
following the numerical techniques introduced in [1] and with speed cs = 0.53.
The computed speed-amplitude relation gives a numerical profile of the amplitude
a ≈ −1.63. The IVP for the rBO equation is approximated by a fully discrete scheme
based on the same procedures described in Sect. 2 for the BO system. The evolution
of the corresponding numerical approximation is shown in Fig. 14. As in the previous
experiment, this shows a solution of the rBO equation consisting of a solitary-wave
profile followed by a tail. As time evolves and the tail disperses, the approximation
tends to an emerging solitary wave with amplitude a ≈ −1.47, which is a difference in
uniform norm of about 10% when compared with the amplitude of the initial profile.

6 Dispersive ShockWaves

This section is devoted to studying numerically the formation of dispersive shock
waves in the regularized ILW and BO equations, as well as the ILW and BO systems.
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Fig. 11 Resolution of a Gaussian initial condition (19) with A = 5 and λ = 20 into solitary-wave solutions
of the BO system

Since the results are broadly similar for ILWandBOmodels, only those corresponding
to the BO-type models will be shown.

The formation of DSW’s is associated to the propagation of a shock wave through a
medium where dispersion effects dominate dissipation (see e.g. Hoefer and Ablowitz
[7]). Under these conditions, the changes in the medium represented by the shock
wave typically occur in the form of a structure involving two scales: a rapidly oscil-
latory wave scale and a slow modulational scale. Examples of DSWs appear in many
disciplines such as Water Waves, Plasma Physics, Optics, etc. (see [8, 22, 23] and the
references therein).

From the mathematical point of view, media featuring DSW’s are often described
by a system of conservation laws together with dispersive and dissipative terms. In
the present study, consideration is given to the situation where dispersion dominates
and so dissipation can be safely ignored. For completely integrable equations, the slow
modulation of a rapidly oscillatingwave can be described usingWhitham’smodulation
theory, [8, 22–24]. In such problems, exact solutions for the corresponding Whitham
modulation equations can be constructed in terms of the Riemann invariants of the
conservation law.These in turn can be used to obtain, from suitable initial and boundary
data, asymptotic representations of dispersive shock waves. This was applied, in [25]
for the dispersive Riemann problem associated with the KdV equation; see also [23,
26]. Other important integrable systems have been similarly analysed; see for example
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Fig. 12 Resolution of a Gaussian initial condition (19) with A = 1 and λ = 100 into solitary-wave solutions
of the BO system

[27] for the modified KdV (mKdV) equation, [28] for the BO equation and [29] and
[30] for the nonlinear Schrödinger (NLS) equation.

In non-integrable systems, it is usually not possible to write the modulation equa-
tions in Riemann invariant form and several alternate strategies to study the formation
of DSWs have emerged, e.g. the method of El [31] or the approximate method of
Marchant and Smyth discussed in [32].

In many cases, DSW’s are generated from discontinuities in the initial data. Our
computational study will consider two initial-value problems for the rBO equation
and the BO system with discontinuous initial data, namely the Riemann problem and
the dam break problem.

Note first that if one neglects the dispersive terms in the BO system (1), the hyper-
bolic conservation laws

ζt + 1

γ
((1 − εζ )u)x = 0,

ut + (1 − γ )ζx − ε

2γ
(u2)x = 0,

(21)

emerge. The system (21) can be written in a matrix–vector form, viz.

vt + A(v)vx = 0, (22)
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Fig. 13 Evolution of a solitary wave of the rBO equation used as initial condition for ζ0 with u0 determined
by (20) for the BO system. The maximum negative excursion of the solution as a function of time is
also displayed. Observe that the negative excursion levels off as t grows, consistent with a traveling-wave
structure

where v = (ζ, u)T and

A =
(

− ε
γ
u 1

γ
(1 − εζ )

1 − γ − ε
γ
u

)
.

The distinct eigenvalues of A are

λ± = − ε

γ
u ±

√
1 − γ

γ
(1 − εζ ),

and the Riemann invariants of the system (22), determined from the associated eigen-
vectors, are

R± = ε

γ
u ∓ 2

√
1 − γ

γ
(1 − εζ ).
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Fig. 14 Evolution of a solitary wave of the BO system used as an initial condition for the rBO equation.
The maximum negative excursion of the solution as a function of time is also shown

Recall that the quantities R± are constant in time along the characteristic curves of
the system, that is they satisfy the equations

∂t (R±) + λ±∂x (R±) = 0.

6.1 The Riemann Problem

Consider first the BO system with Riemann-type initial data, which is to say the initial
conditions are of the form

ζ(x, 0) =
{

ζ−, for x < 0
ζ+, for x > 0

, u(x, 0) =
{
u−, for x < 0
u+, for x > 0

, (23)

with ζ±, u± satisfying the compatibility condition

ε

γ
u− + 2

√
1 − γ

γ
(1 − εζ−) = ε

γ
u+ + 2

√
1 − γ

γ
(1 − εζ+). (24)
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Fig. 15 The formation of a simple DSW for the BO system with initial conditions (26)–(27) and ζ0 = −1

These initial data usually generate what is referred to as a simple DSW. Taking the
slightly easier case ζ+ = u+ = 0, it transpires that

u− = −2
γ

ε

(√
1 − γ

γ
(1 − εζ−) −

√
1 − γ

γ

)
. (25)

To simulateRiemann-type problemswith the numericalmethoddescribed inSect. 2,
the initial data must be slightly smoothed. Otherwise our Fourier-spectral method
cannot handle the problem. Instead of (23), initial data of the form

ζ(x, 0) = ζ0 [1 + tanh (250 − |x |)] , (26)

with ζ0 = −1 and from (25)

u(x, 0) = −2
γ

ε

(√
1 − γ

γ
(1 − εζ(x, 0)) −

√
1 − γ

γ

)
(27)

is posited. Both ζ0 and u0, while smooth, feature large gradients reminiscent of the
pure Riemann data (23) (see Fig. 15).

Since ζ(−x, 0) = ζ(x, 0), x ∈ R and ζ(x, 0) decays to zero exponentially as
|x | → ∞, the corresponding periodic IVP with initial conditions (26), (27) for the
BO system and (26) for the rBO equation are integrated for x in a long spatial interval
(−l, l).
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Fig. 16 The formation of a simple DSW for the rBO equation and initial condition (26) with ζ0 = −1

For l = 1024 and step sizes h = 0.125 and �t = 0.001, the numerical simulation
with these initial conditions is shown in Figs. 15 and 16 respectively. In the case of
the BO system, we observe the formation of a right-propagating simple DSW plus a
dispersive rarefaction wave. Recall that in the absence of the dispersion, one expects a
classical shock wave followed by a classical rarefaction wave. Since the compatibility
condition (24) is not exact for the BO system, the initial conditions generate also
leftward propagating dispersive tails. This does not seem to be the case of the rBO
equation, as shown in Fig. 16. Note that the formation of the simple DSW and the
rarefaction wave does not look to involve additional structures.

6.2 The Dam Break Problem

Next is introduced the so-called dam break problem. This is a special case of the
Riemann problem in which u± = 0 in (23). For the experiment belowwewill consider
the periodic IVP for the BO system with initial conditions ζ(x, 0) on [−1024, 1024]
given by (26) and u(x, 0) = 0. The resulting numerical simulation, see Fig. 17, appears
as a waveform consisting of two wave packets, each of which has a dispersive shock
plus a rarefaction wave. The packets propagate symmetrically in opposite directions.

7 Concluding Remarks

Studied here has been two asymptotic models for the propagation of internal waves
along the interface of a two-layer fluid system, with the upper layer bounded above
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Fig. 17 The dam break problem for the BO system with initial conditions ζ(x, 0) given by (26) with
ζ0 = −1 and u(x, 0) = 0

by a rigid lid and the lower layer bounded below by a rigid, featureless horizontal
bottom. The systems were derived in [2] in the Intermediate Long Wave and the
Benjamin-Ono regimes, respectively. The Benjamin-Ono system is the limiting case
of the Intermediate Long-Wave system when a very deep (theoretically infinite) lower
layer is assumed. The corresponding one-dimensional pseudo-differential systems (1)
have the same quadratic-type nonlinearities, while the linear parts for both of them
are non-local.

In Part I of this study [1], the authors presented several numerical techniques to
generate approximate solitary wave solutions of these systems whose existence, in
the small-amplitude case, was proved in [5]. A comparative study with solitary wave-
solutions of related, unidirectional models of ILW and BO type was also developed.

In the present essay, we further study the solitary-wave solutions of (1), analyzing
by computational means some aspects of their dynamics. To this end, the periodic IVP
is solved numerically on a long enough spatial interval that it approximates well the
IVP on R. The spatial approximation of our scheme is via a spectral Fourier-Galerkin
method (implemented as pseudospectral; the resulting method is algebraically equiv-
alent to a Fourier collocation scheme). This is coupled with an explicit, 4th-order
Runge-Kutta time-stepping. The L2-convergence of the spectral semidiscretization
was proved in [6] and the resulting fully discrete scheme was already used in [1] to
check the accuracy of the computed solitary-wave profiles. These facts, together with
the convergence studies reported in [1], provide confidence in the accuracy of the
simulations reported herein.
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Specifically, our computational study is concerned with the following aspects: the
dynamics of the solitary waves under small and large perturbations, the behaviour
of overtaking and head-on collisions of solitary waves, and the resolution of initial
data into solitary waves. We also compare computationally the bi-directional and uni-
directional models corresponding to the same physical regime. The study is completed
by analyzing numerically the formation of dispersive shock waves. Some of the con-
clusions of the study are the following:

• Under small perturbations, the solitary waves seem to be nonlinearly stable, in
the sense that an initially perturbed solitary-wave profile evolves into a modified
solitary wave with slightly different amplitude and speed, along with a dispersive
tailwith twocomponents, one traveling to the left andone to the right. The existence
of these two dispersive groups was analysed via small-amplitude, plane-wave
solutions of (1), linearized about the rest state.

• Testing the stability of solitary waves of the BO and ILW systems under large
perturbations we found that they are still extremely stable. They evolve into a new
solitary wave of an enhanced magnitude plus a dispersive tail of relatively small
amplitude.

• The resolution property is illustrated with experiments involving the evolution of
initial data of Gaussian type. The initial condition develops into a train of solitary
waves whose number depends on the energy of the initial Gaussian pulse (rep-
resented through its amplitude and wavelength parameters) and with a dispersive
tail behind.

• The interactions are observed to be inelastic, something that is expected on account
of the lack of Hamiltonian structures and the fact that there are only linear con-
served quantities. Since the models are bidirectional, two types of collisions are
considered. In the case of overtaking collisions, the behaviour of the waves after
the interaction was compared to that of similar experiments for the uni-directional
regularized BO equation. The main difference observed in the experiments seems
to be the formation, in the case of the BO system, of N -shaped wavelets in the
tail, traveling in the direction opposite to that of the emerging solitary waves. In
the case of head-on collisions, the interactions develop dispersive tails propagat-
ing in both directions, as expected from the analysis of the small solutions of the
linearized system, mentioned above.

• Comparisons between the unidirectional and bidirectional models when the ini-
tial data for the bidirectional model is well prepared for unidirectionality show
remarkable similarities. This suggests that a theorem of the sort derived in [21] for
surface waves likely holds for internal waves as well.

• Thenumerical experiments concerning the formation ofDSWswere focusedon the
classical Riemann and dam break problems. In the case of the Riemann problem,
suitable initial data generated a simple DSW along with a dispersive rarefaction
wave, with an additional small dispersive structure traveling in the opposite direc-
tion. We checked that from the same initial condition, the BO and regularized BO
equations developed similar structures but without the small additional dispersion.
In the case of the dam break problem, the experiments suggest that from initial data
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with zero flow, the approximate solution of the BO system develops two DSWs
plus rarefaction structures traveling in opposite directions.
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