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Abstract
The linearized water-wave radiation problem for a 2D oscillating source in an inviscid
shear flowwith a free surface is investigated analytically. The singular source is located
at the bottom, with constant fluid depth. The velocity of the basic flow varies linearly
with depth, assuming uniform vorticity. The far-field surface waves radiated out from
the 2D bottom source are calculated, based on Euler’s equation of motion with the
application of radiation conditions. The present analysis extends the work by Tyvand
and Sveen to include a nonzero surface flow. Doppler effects will arise in a system at
rest with the undisturbed free surface. Resonance with zero group velocity will occur
at a critical Froude number for the surface flow. In the presence of a basic surface
flow, there are in total four radiated waves when the surface flow is subcritical. With
supercritical flow, there are only two emitted waves, with downstream propagation.
The critical Froude number depends on the surface velocity, the shear rate and the
oscillation frequency of the bottom source.

Keywords Green function · Oscillating bottom source · Resonance · Shear flow ·
Water waves

1 Introduction

An elementary solution for linearized water waves is constituted by the submerged
oscillatory source. Oscillatory sources serve to provide Green functions for Laplace’s
equation, obeying the linearized free-surface condition and radiation conditions at
infinity. Kochin [9] gave the first versions of these singular solutions relevant for
water waves interacting with submerged and floating bodies. See the review article by
Wehausen and Laitone [15] and the books by Newman [10] and Faltinsen [8].
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The present flow problem will give a fundamental singular solution for a rotational
unidirectional open-channel flow with bottom vibrations. We will give the basis for a
Green function formalism of water wave radiation in two dimensions by considering
one singular point of bottom oscillations, which is equivalent to an oscillatory Dirac
singularity for the normal velocity. The work by Tyvand and Torheim [14] with uni-
form basic flow will here be extended to include a constant vorticity. For the actual
formulation of a Green function integral we refer to this previous work. Section 3
in [14] demonstrated the formulation of a Green function integral for radiated waves
from an arbitrary distribution of monochromatic bottom vibrations.

The exact dispersive theory of linearized water waves is applied, while the
conventional theories of open-channel hydraulics are restricted to shallow-water
approximations. The present assumption of 2Dwaves is adequate for waves in straight
open channels,where the ratio ofwavelength to channelwidth is of order one or greater.

Our solution will be based on the Euler equation of motion for an incompressible
inviscid fluid. The amplitudes of the radiated far-field waves will be calculated analyti-
cally. The present inclusion of a surface flow extends the previous work by Tyvand and
Sveen [13], who studied shear flow with zero surface velocity, where there are always
two waves radiated out to infinity. One upstream wave and one downstream wave,
which correspond to the two regular waves discussed by Ellingsen and Tyvand [7].
They studied a submerged oscillatory source which generates perturbation vorticity
carried with the flow as a third wave severely influencing the two regular waves. Our
model of an oscillatory source placed at the bottom is simpler, since Lord Kelvin’s
circulation theorem does not allow any perturbation vorticity to be generated in the
fluid. The analysis by Ellingsen and Tyvand [7] showed that a submerged oscillating
source in a shear flow cannot provide a Green function for linearized water waves,
because of the disturbing influence of the source. It gives a critical-layer like behavior
for the perturbation vorticity, inducing a surface disturbance which is not a gravita-
tional wave. This undulating disturbance of perturbation vorticity is not a gravitational
wave because it is not governed by the dispersion relation. It is propagated by the shear
flow, with its velocity at the location of the source.

Our previous model [13] with only subsurface basic flow is quite transparent
physically. With the present inclusion of a nonzero surface velocity, the situation
is considerably more complicated. Because of Doppler effects, there may be up to
four radiated waves. Two of these waves will have upstream phase velocity, and when
these two waves merge, there is resonance with zero group velocity and infinite wave
amplitude, according to linear theory [14]. In the present work, the subcritical reso-
nance and the dependencies of the radiatedwave and its frequencywill be investigated,
for given flow parameters, which is the Froude number and the shear rate.

Similar to the work by Tyvand and Torheim [14] we expect four different waves to
be radiated at subcritical Froude numbers. The previousmodel [14]was the same as the
present one, but without vorticity in the (uniform) basic flow. A first and a secondwave
was found to propagate in the downstream direction. At the critical Froude number,
the third and fourth wave merge, as a resonant case with zero group velocity and
diverging amplitude according to linear theory. Nonlinear theory is required to study
finite-amplitude resonant waves, and this has been done by Bestehorn and Tyvand [1]
for the same physical problem as [14]. This fully nonlinear free-surface problem lead
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to finite wave amplitude at all frequencies. The numerical results by Bestehorn and
Tyvand [1] showed that the highest wave peaks occurred for Froude numbers slightly
below the critical value of resonance at a given frequency. The first nonlinear analysis
of this type of resonance was performed by Dagan and Miloh [4], for a 2D submerged
oscillating source in a uniform basic flow.

The review article by Peregrine [11] revealed a limited amount of work on fully
dispersive water waves on shear flow. The focus of this research remains on ocean
wave drift and weakly nonlinear interactions. Brevik [2] studied the possibilities of
stopping a surface wave by generating a shear flow. Ellingsen and Brevik [6] gave
a detailed discussion of the dispersion relation for linear waves, and Ellingsen [5]
applied these results to study ship-waves on a shear flow. The present work follows
up the paper by Ellingsen and Tyvand [7] on an oscillatory line source submerged in
a shear flow with a free surface. The focus was on infinite depth, and only the case of
vanishing surface flow was treated. In the present work we will consider an oscillating
bottom source, which is equivalent to a singular flux through the bottom, oscillating
harmonically in time.

We will consider a bottom source, which is simpler than a submerged source,
because there is no generation of vorticity in the fluid domain. We include a nonzero
surface velocity, which will induce Doppler effects, possibly resulting in four different
waves being emitted from the oscillating source, for certain ranges of the parameter
choices.

2 Mathematical Model

We consider an inviscid and incompressible fluid (liquid) in a steady shear flow, where
the shear flow is aligned along a horizontal x-axis. In addition there is a uniform
horizontal flow with an arbitrary direction. The fluid has constant depth H and a
free surface subject to constant atmospheric pressure. Surface tension is neglected.
Cartesian coordinates x, z are introduced, where the z-axis is directed upwards in
the gravity field and the x-axis is aligned along the undisturbed free surface. The
gravitational acceleration is g, and ρ denotes the constant fluid density. The velocity
perturbation vector is denoted by (û, ŵ).

The surface elevation is denoted by ζ(x, t), see the sketch in Fig. 1. There is a wave
motion caused by a fixed oscillating line source (2D source) located in the bottom
point (0,−H). The angular frequency ω of this forced bottom source is given. The
water wave problem will be linearized with respect to the surface elevation and the
velocity perturbation.

There is a basic horizontal shear flow U (z) in the x direction

U (z) = U0 + Sz, z < 0, (1)

where U0 is the uniform surface velocity, which is defined nonnegative. There is
a uniform vorticity S in the −y direction. When U0 > 0, there is no restriction
concerning the sign of S, and the x-axis points in the downstream direction of the
surface flow.
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Fig. 1 Definition sketch for the oscillating bottom source q(t), the linearly varying basic flow U (z), and
the free-surface elevation z = ζ(x, t). The fluid layer has constant depth H . This figure illustrates the flow
with a positive value for the velocity S

When U0 = 0, we choose to make the restriction S ≥ 0, which means that the
x-axis points in the upstream direction of the subsurface flow, in the absence of a
surface flow.

Euler’s equation of motion can be written

�a = − 1

ρ
∇P − g�iz, (2)

where �a is the acceleration vector and �iz is the vertical unit vector. The total pressure
is denoted by P . The mass balance is given by the continuity equation

ûx + ŵz = 0. (3)

The linearized kinematic free-surface condition is

ŵ
∣
∣
z=0 = ζt +U0ζx , (4)

with subscripts denoting partial derivatives.
Surface tension is neglected, and the dynamic boundary condition is given by the

tangential component of the Euler equation along the free surface. It can be written

�a − (�a · �n)�n = −g �iz + g(�iz · �n)�n, z = ζ(x, y, t), (5)

where the surface normal vector is denoted by �n. According to linear theory, the surface
normal is given by �n = �iz −∇ζ . We linearize this dynamic free-surface condition and
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take its x component, which gives

ût +U0ûx + Sŵ = −gζx , z = 0. (6)

Ellingsen and Tyvand [7] assumed U0 = 0, while we can generalize their analysis by
the transformation

∂

∂t
→ ∂

∂t
+U0

∂

∂x
, (7)

to get a free-surface condition expressed by the vertical velocity alone

(
∂

∂t
+U0

∂

∂x

)2

ŵz − S

(
∂

∂t
+U0

∂

∂x

)

ŵx = gŵxx , z = 0. (8)

Our bottom condition represents a singular oscillating source located in a fixed bottom
point

ŵ = q0δ(x)e
−iωt , z = −H , (9)

where q0 is the flux amplitude of the bottom source, given in 2D as area per time. The
Dirac delta function is denoted by δ(x), and i is the imaginary unit.We have introduced
a complex time dependence with angular frequency ω. The physical quantities are
represented by the real parts of the complex variables.

The singular condition (9) allows the construction of a Green function for linearized
water waves emitted from bottom vibrations. It may serve as the building block for
expressing an arbitrary distribution ofmonochromatic oscillation along a finite portion
of the bottom. In [14], it was shown how to construct such a Green function integral.

3 Fourier Transform of the Radiation Problem

The flow is assumed driven by a bottom source of harmonically pulsating strength

q(t) = q0 cos(ωt). (10)

This is the physical source but it needs to be expressed mathematically as a complex
exponential function, to allow water waves that are radiated both in the upstream and
downstream directions. The sign of the wave number k in the Fourier integral will
then represent the direction of wave propagation. The variables can now be Fourier
transformed as follows:

(û, ŵ, p̂) = q0
1

2π

∫ ∞

−∞
(u(z), w(z), p(z))eikx−iωtdk. (11)
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This Fourier integral consists of two different contributions: Waves propagating in
the +x direction, with positive wavenumber (k > 0). Waves propagating in the −x
direction, with negative wavenumber (k < 0).

The transformed components of the Euler equation are given by

− i(ω − kU )u + Sw = −ikp/ρ, (12)

−i(ω − kU )w = −p′/ρ, (13)

where the derivative is taken with respect to z. The transformed continuity equation
is

iku + w′ = 0. (14)

The surface elevation is Fourier transformed as follows:

ζ(x, t) = q0
1

2π

∫ ∞

−∞
B(ω, k)eikx−iωtdk. (15)

We derive an equation for the vertical velocity alone

w′′ − k2w = 0. (16)

The transformed bottom condition (9) is

w = 1, z = −H . (17)

The solution of this second-order boundary value problem is

w(z) = cosh k(z + h) + A sinh k(z + h). (18)

The Fourier transform (11) involves the whole spectrum of positive and negative
wave numbers k. We introduce a modified angular frequency � = ω − kU0. The
transformed kinematic free-surface condition (4) is

w|z=0 = −i�B. (19)

We insert the solution (18) to find

cosh kh + A sinh kh = −i�B. (20)

Similarly, the transformed dynamic free-surface condition (6) is

(−i�u + Sw)|z=0 =
(

�

k
w′ + Sw

)∣
∣
∣
∣
z=0

= −ikgB, (21)
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where the solution for w leads to another link between A and B

� sinh kh + S cosh kh + A(� cosh kh + S sinh kh) = −ikgB. (22)

We eliminate A from these two relationships to solve for B(�)

B = i
�

sinh kh

1

�2 coth kh + �S − gk
. (23)

4 Waves with Surface Velocity U0 > 0

In our previous paper [13], we solved the present radiation problem for the special
case of vanishing surface flow (U0 = 0).

With this background, we proceed further to solve the radiation problem with sur-
face flow, defined positive (U0 > 0). Then we reintroduce ω in the above formulas
(� = ω − kU0). The vorticity S can now have any value, not restricted to be positive.
The upstream (x < 0) and downstream (x > 0) directions are now dictated by the
direction of the surface velocity U0.

We introduce dimensionless variables, based on the depth H as length unit, com-
bined with a gravitational time unit

√
H/g. These are

ω∗ =
√

H

g
ω, S∗ =

√

H

g
S, k∗ = kH , (24)

being the given dimensionless source frequencyω∗, the dimensionless vorticity S∗ and
the source-induced upstream/downstream dimensionless wave numbers k∗ of radiated
waves, respectively.Aswe have a positive surface velocityU0,we introduce the Froude
number F for the surface flow

F = U0√
gH

, (25)

where F > 0 by definition, while the shear rate S∗ may be positive or negative.
The dimensionless dispersion relation is thus given by the common equation for
k∗(ω∗, S∗, F). The modified angular frequency � = ω − kU0 will have the dimen-
sionless version �∗ = ω∗ − k∗F .

There can be up to four different radiated waves, and we introduce subscripts
1, 2, 3, 4 for these possible four waves. Their properties will be discussed below. The
dispersion relation with these classes of waves has been discussed by Tyvand and
Lepperød [12], but only for infinite depth. Finite depth is essential in the present paper
because the source is placed at the bottom, so we take the depth H as our length unit.
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Fig. 2 The multi-valued dispersion relation |k∗(ω∗)| with Froude number F = 0.25. Three different shear
rates are displayed: Dotted curves represent S∗ = 0 (uniform flow). Solid curves represent S∗ = 0.5.
Dashed curves represent S∗ = −0.5. The positive (downstream) wave numbers k∗

1 and k∗
2 are given by the

lower and upper monotonous curves, respectively. The intermediate (double-valued) curves represent the
two waves with negative wave numbers k∗

3 and k∗
4 . These waves with upstream phase velocity merge at

resonance, whereω∗. k∗
3 is the smallest and k∗

4 is the greatest of the twowave numbers for these sub-resonant
waves

4.1 The Dispersion Relation with Surface Flow

The dimensionless dispersion relation is given by the common implicit equation for
determining k∗

1,2,3,4(ω
∗, S∗, F)

k∗ = (ω∗ − k∗F)2 coth k∗ + (ω∗ − k∗F)S∗. (26)

Figures 2, 3 and 4 illustrate themulti-valued dispersion relation k∗(ω∗) for different
choices of F and S∗. Figure 2 shows a Froude number F = 0.25 in combination with
a shear rate S∗ = ±0.5, adding the reference case of uniform flow S∗ = 0 [12].
Figure 3 shows the higher Froude number F = 0.5, with three choices for the shear
flow: S∗ = ±0.25 and the reference case S∗ = 0.

Figures 2 and 3 represent subcritical Froude numbers where four different waves
may be radiated from the oscillating source. We therefore add Fig. 4 where only
two different waves are radiated. This is achieved by choosing a supercritical Froude
number F = 1.2, combined with the shear rates S∗ = ±0.1 and S∗ = 0.
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Fig. 3 The multi-valued dimensionless dispersion relation |k∗(ω∗)| for an oscillating bottom source in
a flow with Froude number F = 0.5. Three different shear rates are displayed: Dotted curves represent
S∗ = 0 (uniform flow). Solid curves represent S∗ = 0.25. Dashed curves represent S∗ = −0.25. The
positive (downstream) wave numbers k∗

1 and k∗
2 , given by the lower and upper monotonous curves, exist

for all frequencies ω∗ > 0. The intermediate (double-valued) curves represent the two waves with negative
wave numbers k∗

3 and k∗
4 (having upstream phase velocities). These waves merge at resonance, where ω∗

has its maximum admissible value for these waves to exist. The smallest value is k∗
3 and the greatest value

k∗
4 for the two wave numbers of waves that exist only for subresonant frequencies

Figures 2 and 3 represent subcritical flow with the richest dispersion relation (26)
having four different waves generated for a given angular frequency ω∗ > 0, with
a basic flow F > 0. We solve the radiation problem in the coordinate system at
rest with the source. Thereby the wave problem remains monochromatic, with the
given frequency of forced source oscillation as the only frequency. If we changed
the coordinate system to be at rest with the undisturbed free surface, there would be
explicit Doppler effects for the surface waves, where they would have frequencies
different from the source frequency. The only convenient mathematical procedure is
to keep the problem monochromatic, whereby the Doppler effects remain hidden, but
they would emerge if we described the wave from a coordinate system at rest with the
undisturbed free surface.

The first wave exists for all parameter values and is the downstream wave with the
longest wavelength, so that its wavenumber k∗

1 is the smallest positive solution for k∗
in the dispersion relation. The conventional way of expressing the dispersion relation
for this longest downstream wave with positive wave number is as follows
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Fig. 4 The double-valued dispersion relation |k∗(ω∗)| with supercritical Froude number F = 1.2. Three
different shear rates are displayed: Dotted curves represent S∗ = 0 (uniform flow). Solid curves represent
S∗ = 0.1. Dashed curves represent S∗ = −0.1. The positive (downstream) wave numbers k∗

1 and k∗
2 are

given by the lower and upper monotonous curves, respectively. These two waves are the only ones. No
resonance is possible, and there are no radiated upstream waves

ω∗ = Fk∗
1 + tanh k∗

1

2

(

−S∗ +
√

(S∗)2 + 4k∗
1 coth k

∗
1

)

, (27)

leading to the dimensionless phase velocity c∗
f = ω∗/k∗

1 and the more complicated
dimensionless group velocity

c∗g = F + 1 − 2k∗
1 csch (2k∗

1 )
√

(S∗)2 + 4k∗
1 coth k

∗
1

+ sech2k∗
1

2

(

−S∗ +
√

(S∗)2 + 4k∗
1 coth k

∗
1

)

. (28)

These formulas are valid for the first wave with dimensionless wavenumber k∗
1 . This

is a long wave that has both phase and group velocity in the downstream direction
x → ∞.
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The other wave with downstream phase velocity has positive wave number k2, with
the dispersion relation

ω∗ = Fk∗
2 − tanh k∗

2

2

(

S∗ +
√

(S∗)2 + 4k∗
2 coth k

∗
2

)

, (29)

leading to the dimensionless phase velocity c∗
f = ω∗/k∗

2 and the more complicated
dimensionless group velocity

c∗
g = F − 1 − 2k∗

2 csch (2k∗
2)

√

(S∗)2 + 4k∗
2 coth k

∗
2

− sech2k∗
2

2

(

S∗ +
√

(S∗)2 + 4k∗
2 coth k

∗
2

)

.

(30)

The dispersion relation for the third and fourth waves with upstream phase velocity
(having negative wave numbers) is

ω∗ = Fk∗
j − tanh k∗

j

2

(

S∗ +
√

(S∗)2 + 4k∗
j coth k

∗
j

)

, ( j = 3, 4), (31)

leading to the dimensionless phase velocity c∗
f = ω∗/k∗

j and the dimensionless group
velocity

c∗
g = F − 1 − 2k∗

j csch (2k∗
j )

√

(S∗)2 + 4k∗
j coth k

∗
j

− sech2k∗
j

2

(

S∗ +
√

(S∗)2 + 4k∗
j coth k

∗
j

)

, ( j = 3, 4).

(32)

We note that these formulas are the same as those for the second wave, which has
a positive wavenumber. The third and fourth wave have negative wavenumbers. By
definition |k4| > |k3|.

The first and second waves are the waves that have phase velocities in the down-
stream direction (x → ∞). The third and fourth wave are the waves that have phase
velocities in the upstream direction (x → −∞), seemingly propagating against the
surface flow. However, only the third wave will have upstream energy propagation,
which means upstream group velocity. The fourth wave has a group velocity in the
downstream direction, which means that its energy propagation is in the opposite
direction of its phase velocity. This is important for applying the correct radiation
condition in solving the mathematical problem for the emitted far-field waves.

4.2 On Resonance with Zero GroupVelocity

The third and fourth wave will not exist if the Froude number is too large for a given
source frequency, since the waves cannot propagate in the upstream direction if their
opposing current is too strong. The threshold value for the Froude number that allows
upstream wave propagation is called the critical Froude number Fc. It depends on the
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angular frequency ω∗ and the shear rate S∗. At the critical Froude number, the third
and fourth wave will merge into one common wave with zero group velocity. This is
resonance, for which the radiated wave amplitude is infinite according to linear theory
with a strictly harmonic time dependence.

There are two possible ways of achieving finite wave amplitude at resonance: (i)
To turn on the oscillating source at time zero and solve the linearized transient wave
radiation problem. (ii) To take into account the fully nonlinear free-surface conditions.
A full analysis of resonance will be to combine the free-surface nonlinearity with
transient wave propagation from a source that is turned on at time zero. Dagan and
Miloh [4] studied this nonlinear wave resonance from an oscillating submerged source
with uniform flow at infinite depth. Only a small number of papers have appeared
later. Understanding of linear theory with shear flow is necessary before attempting a
nonlinear theory of resonance.

The present paper will be restricted to linear theory, with a strictly oscillatory
source strength. A resonance will reveal itself by zero group velocity and infinite
wave amplitude. It should be noted that the phase velocity at resonance is finite, and it
is directed in the upstream direction. This is the common phase velocity of the merged
third and fourth wave at resonance, where their joint group velocity is zero.

At resonance, there is a critical Froude number Fc and an associated critical wave
number k∗

c .We prefer to calculate thewave number by eliminating F from theEqs. (31)
and (32) to get the relationship

ω∗ = tanh k∗
c

2

(

−S∗ −
√

(S∗)2 + 4k∗
c coth k

∗
c

)

+k∗
c

1 − 2k∗
c csch(2k∗

c )
√

(S∗)2 + 4k∗
c coth k

∗
c

+ k∗
c
2
sech2k∗

c

(

S∗ +
√

(S∗)2 + 4k∗
c coth k

∗
c

)

, (33)

valid at resonance where c∗
g = 0 and F = Fc.

This equation is solved numerically with respect to the critical wave number
k∗
c (ω

∗, S∗), which is the common wave number of the merged third and fourth wave
at resonance. Table 1 shows numerical results for the critical wave number k∗

c as a
function of ω∗ and S∗. Tables 1, 2, 3 and 4 will focus exclusively on the parameter
values (with given frequency) where there is a critical wave with resonance. With
this restrictive constraint, these tables nevertheless cover a much broader range of
parameter values for S∗ than the figures, where we have only displayed values of S∗
sufficiently small to avoid too great differences compared with uniform flow without
vorticity [14].

After k∗
c has been computed for a choice of values ω∗ and S∗, we can compute the

critical Froude number from the formula

Fc = ω∗

k∗
c

+ tanh k∗
c

2k∗
c

(

S∗ +
√

(S∗)2 + 4k∗
c coth k∗

c

)

. (34)

The critical Froude number Fc(ω∗, S∗) where the group velocity of the third and
fourth wave is zero, is tabulated in Table 2. For given parameters ω∗ and S∗, the
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Table 1 The absolute value of the (negative) critical wave number |k∗
c | for the merged third and fourth wave

at their joint resonance with zero group velocity

ω∗ 0.01 0.02 0.05 0.1 0.2 0.5 1

S∗ = 0 0.3173 0.4048 0.5663 0.7439 1.0104 1.7339 4.0426

S∗ = 0.01 0.3162 0.4034 0.5642 0.7411 1.0062 1.7241 4.0054

S∗ = −0.01 0.3184 0.4062 0.5683 0.7468 1.0146 1.7438 4.0801

S∗ = 0.02 0.3151 0.4020 0.5622 0.7383 1.0020 1.7143 3.9683

S∗ = −0.02 0.3194 0.4077 0.5704 0.7496 1.0189 1.7538 4.1177

S∗ = 0.05 0.3119 0.3979 0.5562 0.7300 0.9896 1.6857 3.8584

S∗ = −0.05 0.3228 0.4120 0.5766 0.7583 1.0319 1.7845 4.2318

S∗ = 0.1 0.3067 0.3912 0.5465 0.7166 0.9696 1.6397 3.6799

S∗ = −0.1 0.3284 0.4193 0.5873 0.7731 1.0541 1.8376 4.4250

S∗ = 0.2 0.2968 0.3784 0.5279 0.6910 0.9317 1.5542 3.3435

S∗ = −0.2 0.3403 0.4347 0.6096 0.8042 1.1010 1.9516 4.8215

S∗ = 0.5 0.2707 0.3446 0.4791 0.6240 0.8335 1.3421 2.5401

S∗ = −0.5 0.3797 0.4859 0.6846 0.9090 1.2614 2.3635 6.0632

S∗ = 1 0.2373 0.3014 0.4173 0.5399 0.7123 1.0991 1.7953

S∗ = −1 0.4583 0.5884 0.8358 1.1239 1.6014 3.3072 8.2427

S∗ = 2 0.1957 0.2481 0.3414 0.4382 0.5697 0.8390 1.2134

S∗ = −2 0.6552 0.8479 1.2297 1.7077 2.5964 5.8553 12.9282

This negative critical wave number is tabulated as a function of the shear rate S∗ and the angular frequency
ω∗ of the source

third and fourth wave do not exist when F > Fc, while both of these waves exist for
0 < F < Fc, and they merge into a common critical wave at F = Fc.

The dispersion relation with infinite depth was studied by Tyvand and Lepperød
[12]. The resonance condition with infinite depth defines the asymptotically valid
critical Froude number F∞ by the relationship

4ω∗F∞ = (1 + S∗F∞)2, (35)

with the restriction on the shear rate |S∗| < F−1. There is no deep-water resonance
when |S∗| > F−1. In our depth-based dimensionless representation, this asymptotic
limit (35) must be interpreted as a high-frequency limit. The associated critical wave
number with infinite depth is

k∗
c = F−2∞ − (S∗)2

4
, (36)

in terms of the present dimensionless variables. From Eq. (35), we reproduce the
resonance criterion in the absence of a shear flow (S = 0)

ω∗F∞ =
(

ωU0

g

)

critical
= 1

4
, (37)
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Table 2 The critical Froude number Fc tabulated as a function of the shear rate S∗ and the angular frequency
ω∗ of the source

ω∗ 0.01 0.02 0.05 0.1 0.2 0.5 1

S∗ = 0 0.9522 0.9246 0.8631 0.7869 0.6727 0.4477 0.2498

S∗ = 0.01 0.9571 0.9294 0.8677 0.7912 0.6765 0.4505 0.2511

S∗ = −0.01 0.9474 0.9199 0.8586 0.7827 0.6689 0.4450 0.2486

S∗ = 0.02 0.9619 0.9342 0.8722 0.7955 0.6803 0.4532 0.2523

S∗ = −0.02 0.9426 0.9152 0.8541 0.7785 0.6652 0.4424 0.2474

S∗ = 0.05 0.9767 0.9487 0.8861 0.8085 0.6920 0.4616 0.2562

S∗ = −0.05 0.9283 0.9012 0.8408 0.7660 0.6541 0.4345 0.2438

S∗ = 0.1 1.0019 0.9733 0.9096 0.8306 0.7118 0.4759 0.2630

S∗ = −0.1 0.9051 0.8784 0.8191 0.7457 0.6360 0.4217 0.2382

S∗ = 0.2 1.0540 1.0245 0.9586 0.8767 0.7533 0.5064 0.2778

S∗ = −0.2 0.8604 0.8347 0.7775 0.7068 0.6016 0.3978 0.2277

S∗ = 0.5 1.2249 1.1925 1.1201 1.0296 0.8924 0.6123 0.3346

S∗ = −0.5 0.7408 0.7177 0.6667 0.6040 0.5114 0.3376 0.2020

S∗ = 1 1.5544 1.5174 1.4344 1.3302 1.1706 0.8367 0.4789

S∗ = −1 0.5848 0.5657 0.5238 0.4727 0.3988 0.2675 0.1716

S∗ = 2 2.3372 2.2923 2.1912 2.0633 1.8654 1.4390 0.9465

S∗ = −2 0.3908 0.3775 0.3487 0.3145 0.2673 0.1910 0.1340

When S∗ = 0 (upper line) we have the low-frequency limit of Fc = 1 and the high-frequency limit of
Fc = 0.25

which is the classical resonance at infinite depth [4].
We have now studied resonance on the basis of the dispersion relation. We will

proceed to solve the radiation problem and derive the far-field wave amplitudes. With
ω and S∗ given, we expect to find infinite wave amplitude at resonance, where the
Froude number is F = Fc and the wave number is k∗

3 = k∗
4 = k∗

c .

4.3 The RadiatedWaves with Nonzero Surface Flow

The general Fourier integral solution for the surface elevation is given by (15)

ζ(x, t) = q0
1

2π

∫ ∞

−∞
B(ω, k)eikx−iωtdk (38)

and we can evaluate it by inserting from Eq. (23)

B = i
ω − kU0

sinh kh

1

(ω − kU0)2 coth kh + (ω − kU0)S − gk
, (39)

after substituting � = ω − kU0.
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Table 3 The far-field elevation amplitude |ζ∗
0 | for the non-resonant first and second wave at resonance

(where F = Fc) as functions of the shear rate S∗ and the angular frequency ω∗ of the source

ω∗ 0.01 0.02 0.05 0.1 0.2 0.5 1

S∗ = 0 0.2561 0.2598 0.2683 0.2796 0.2981 0.3387 0.3629

3.232 1.947 0.9365 0.4784 0.1764 0.0034 5 × 10−10

S∗ = 0.05 0.2497 0.2534 0.2619 0.2731 0.2915 0.3322 0.3558

3.266 1.971 0.9526 0.4911 0.1862 0.0043 10−9

S∗ = −0.05 0.2623 0.2660 0.2746 0.2859 0.3043 0.3448 0.3697

3.196 1.923 0.9200 0.4654 0.1667 0.0026 2 × 10−10

S∗ = 0.1 0.2432 0.2468 0.2552 0.2664 0.2847 0.3254 0.3485

3.299 1.994 0.9682 0.5037 0.1960 0.0053 2 × 10−9

S∗ = −0.1 0.2683 0.2720 0.2806 0.2920 0.3103 0.3506 0.3761

3.160 1.897 0.9031 0.4521 0.1571 0.0020 10−10

S∗ = 0.2 0.2298 0.2334 0.2416 0.2525 0.2706 0.3111 0.3331

3.360 2.038 0.9980 0.5278 0.2153 0.0082 10−8

S∗ = −0.2 0.2797 0.2834 0.2920 0.3033 0.3214 0.3610 0.3877

3.084 1.844 0.8682 0.4251 0.1382 0.0012 2 × 10−11

S∗ = 0.5 0.1888 0.1919 0.1992 0.2090 0.2255 0.2635 0.2837

3.510 2.145 1.074 0.5917 0.2705 0.0227 9 × 10−7

S∗ = −0.5 0.3073 0.3109 0.3190 0.3295 0.3463 0.3821 0.4121

2.835 1.674 0.7572 0.3419 0.0868 0.0002 2 × 10−13

S∗ = 1 0.1272 0.1294 0.1346 0.1418 0.1540 0.1839 0.2044

3.645 2.248 1.155 0.6660 0.3431 0.0656 0.0002

S∗ = −1 0.3285 0.3314 0.3379 0.3461 0.3589 0.3858 0.4161

2.393 1.373 0.5670 0.2101 0.0297 4 × 10−6 5 × 10−17

Upper number is |ζ∗
0 |k1 . Lower number is |ζ∗

0 |k2

There are four possible radiated waves with wavenumbers k j , ( j = 1, 2, 3, 4), and
we give a condensed common procedure for calculating their far-field amplitudes.
Each separate far-field wave (|x | → ∞) can be written as

ζ ( j)(x, t) = ∓q0
ω − k jU0

sinh k j h
eik j x−iωt lim

k→k j

k − k j
(ω − kU0)

2 coth kh + (ω − kU0)S − gk
.

(40)

Here the minus sign refers to the integral being closed in the upper part of the
complex k plane, while the plus sign refers to the integral being closed in the lower
part of the complex k plane. By applying L’Hôpital’s rule to Eq. (40) we find

ζ ( j)(x, t)

= ± q0(ω − k jU0)e
ik j x−iωt

(SU0 + g) sinh(k j h) + 2U0(ω − k jU0) cosh(k j h) + h(ω − kU0)
2csch(k j h)

, (41)
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Table 4 The wave numbers for the non-resonant first and second wave at resonance (where F = Fc) as
functions of the shear rate S∗ and the angular frequency ω∗ of the source

ω∗ 0.01 0.02 0.05 0.1 0.2 0.5 1

S∗ = 0 0.0051 0.0104 0.0268 0.0560 0.1197 0.3501 0.8715

0.6551 0.8527 1.253 1.769 2.754 7.045 23.34

S∗ = 0.05 0.0051 0.0104 0.0269 0.0561 0.1201 0.3526 0.8837

.6436 0.8372 1.228 1.729 2.680 6.778 22.53

S∗ = −0.05 0.0051 0.0104 0.0268 0.0558 0.1193 0.3474 0.8589

0.6669 0.8687 1.279 1.810 2.832 7.322 24.15

S∗ = 0.1 0.0051 0.0104 0.0269 0.0561 0.1204 0.3549 0.8952

0.6325 0.8222 1.204 1.691 2.608 6.523 21.71

S∗ = −0.1 0.0051 0.0104 0.0267 0.0557 0.1187 0.3444 0.8458

0.6790 0.8851 1.305 1.852 2.913 7.609 24.97

S∗ = 0.2 0.0051 0.0104 0.0268 0.0561 0.1207 0.3585 0.9164

0.6113 0.7937 1.158 1.619 2.473 6.042 20.11

S∗ = −0.2 0.0051 0.0103 0.0266 0.0552 0.1174 0.3377 0.8187

0.7044 0.9196 1.361 1.942 3.085 8.214 26.61

S∗ = 0.5 0.0050 0.0101 0.0263 0.0552 0.1196 0.3622 0.9593

0.5556 0.7187 1.040 1.433 2.133 4.842 15.54

S∗ = −0.5 0.0049 0.0100 0.0257 0.0531 0.1118 0.3139 0.7339

0.7895 1.035 1.550 2.250 3.686 10.26 31.53

S∗ = 1 0.0046 0.0094 0.0244 0.0513 0.1119 0.3453 0.9486

0.4847 0.6239 0.8916 1.207 1.734 3.509 9.727

S∗ = −1 0.0045 0.0092 0.0233 0.0479 0.0994 0.2691 0.6004

0.9604 1.270 1.942 2.907 4.986 14.22 39.80

Upper number is k∗
1 . Lower number is k∗

2

which is valid separately for each of the waves ( j = 1, 2, 3, 4) in their domains of
existence, provided the correct sign in front of this formula is selected. The upper plus
sign on the right hand side applies to the first, second and fourth wave. The lower
minus sign on the right hand side applies to the third wave, since it is the only wave
that is radiated in the −x direction. From the dispersion relation we determine the
integration path that picks the sign for each of these four different waves. We note that
the shear rate S has an explicit influence on the wave amplitudes, which we saw was
not the case in the absence of a surface flow (F = 0).

The critical wave at resonance is the joint upper limit for the domain of existence of
the third and fourth wave. There are two different ways of looking at the combination
kc(ω∗, S∗), Fc(ω∗, S∗) as the upper limit for the third and fourth wave. (i) If we fix
these parameters (ω∗ and S∗, while F is increased above Fc, the third and fourth
wave will have a cut-off at the critical Froude number F = Fc. At the cut-off they
merge into one joint wave with critical frequency and zero group velocity. (ii) If we
instead keep F , k∗ and S∗ fixed but increase ω∗ beyond its value at resonance, the
third and fourth wave will cease to exist. The critical wave can thus be viewed as
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either the marginal wave for upstream propagation at the strongest possible surface
current (represented by the Froude number), or as the highest possible frequency for
achieving upstream wave radiation at a given Froude number. We will see that the
parameter range available for radiating upstream waves is very limited when F > 1,
since this may only happen for S∗ > 0. It is much easier to emit waves propagating to
infinity in the downstream direction. In general, at least two downstream waves will
always exist, and these are the first and the second wave.

The dimensionless version of the wave amplitude derived in Eq. (41) is

|ζ∗
0 | =

∣
∣
∣
∣

ω∗ − k∗F
(S∗F + 1) sinh k∗ + 2F(ω∗ − k∗F) cosh k∗ + (ω∗ − k∗F)2 csch k∗

∣
∣
∣
∣
, (42)

and it is valid for all the four waves, in their domains of existence.
The obstacle for achieving a general overview of this radiation problem, is the

complexity of the dispersion relation. The key to understanding the dispersion relation
is the critical Froude number Fc, since the number of radiated waves depends on
whether F is smaller than or greater than Fc. Above we have shown how Fc varies
with ω∗ and S∗.

In Table 2 the Froude number Fc for resonance has been tabulated as a function of
ω∗ and S∗. With this value Fc for the Froude number, the elevation amplitudes ζ0 for
the non-resonant first and second wave according to Eq. (42) are tabulated in Table 3.
The corresponding wave numbers for the non-resonant waves are tabulated in Table 4.

From numerical studies of nonlinear resonance [1] we know that it is challenging to
extract the different wave components, while the non-resonant waves may or may not
obey linearized theory. Linear theorywill be useful for identifying thewavenumbers of
these non-resonantwaves, tabulated in Table 4. Table 3 is less reliable for predicting the
far-field amplitudes of these waves, but it will be important if we search for parameter
ranges where one of the non-resonant waves may possibly become negligible. In [1]
such precise values for the wavenumbers and radiation amplitudes of the non-resonant
waveswere useful for planning and interpreting the fully nonlinear computations.With
this background, we consider Tables 1, 2, 3 and 4 to be a resource for fully nonlinear
theories of radiation of water waves with resonance on a shear flow.We do not discuss
these tables further here, because the behavior of non-resonant waves at the critical
Froude number (assuming the frequency given) is not a central theme of the general
linearized problem, where all the different waves are explicitly separated from one
another. This is not the case in fully nonlinear theory, where the total wave with all its
intermingled constituents can be computed. The tabulated non-resonant waves at the
critical Froude number will then become important, in contrast to the peripheral role
of these waves in a strictly linear theory.

The general formula (42) represents all the far-field amplitudes of the radiated
waves. Figure 5 shows computations for these wave amplitudes for a supercritical
Froude number F = 1.2, accompanying the corresponding dispersion relation in
Fig. 4. Only the first and second waves exist, and both of them are radiated in the
downstream direction. The chosen shear rates S∗ = ±0.1 in this figure are known
from Fig. 4 to have only small influence on the dispersion relation. The case of zero
shear flow is included with dots both in Figs. 4 and 5.
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Fig. 5 The dimensionless far-field elevation amplitude |ζ∗
0 | of the radiated waves, as function of the dimen-

sionless wave number |k∗|, for three different shear rates. A supercritical value F = 1.2 is chosen for
the Froude number, so there are only two radiated waves. This figure shows the same case as Fig. 4. Dot-
ted curves represent S∗ = 0 (uniform flow). Solid curves represent S∗ = 0.1. Dashed curves represent
S∗ = −0.1. The three closely spaced (blue) curves represent 10 |ζ∗

1 (k1)| for the first (the longer down-
stream) wave. The three other curves (brown) represent |ζ∗

2 (k2)| for the second (the shorter downstream)
wave

Figure 6 represents a moderate Froude number F = 0.5, accompanying Fig. 3
with the dispersion relation. The four different radiated wave amplitudes are given as
functions of their wave numbers. We have chosen the small shear rates S∗ = ±0.25,
including also the comparable case from Tyvand and Torheim [14] where vorticity is
absent (S∗ = 0). We note the frequency of resonance where the third and fourth wave
merge, and the associated wave amplitudes diverge.

Figure 7 represents a the Froude number F = 0.25 with the shear rates zero and
S∗ = ±0.5, where the corresponding dispersion relation has been displayed in Fig. 2
above. A positive shear rate will not have a monotonous influence on the radiation
amplitude, reducing the amplitude for small frequencies but increase the amplitude
for greater frequencies close to resonance.

In Figs. 7 and 8 we study smaller Froude numbers, where the behavior is more
complicated, even though the wave radiation is less sensitive with respect to vorticity
in the basic flow. Figure 8 enhances these tendencies of non-monotonous influence of
shear on the radiation amplitude for the third wave, even though the Froude number
F = 0.2 reduces by only 20% the previously chosen value (F = 0.25) in Fig. 7.
A qualitative novelty in Fig. 8 is that the radiation amplitude for the third wave is
quite large for small frequencies, whereby a local minimum emerges for the radiation
amplitude as the source frequency is increased towards resonance. This is a qualitative
novelty compared with Fig. 7, with only a small change in the Froude number. We
omit plotting the dispersion relation corresponding to Fig. 8, and we choose not to
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Fig. 6 The dimensionless far-field elevation amplitude |ζ∗
0 | of the radiated waves, as function of the dimen-

sionless wave number |k∗|, for three different shear rates. A moderate value F = 0.5 is chosen for the
Froude number. Dotted curves represent S∗ = 0 (uniform flow). Solid curves represent S∗ = 0.25. Dashed
curves represent S∗ = −0.25. The monotonously decreasing curves represent 10 |ζ∗

1 (k1)| for the first (the
longer downstream) wave. The other curves go to infinity at the critical wave number k∗

c . The left-hand
branches of these discontinuous curves represent |ζ∗

3 (k3)| for 0 < |k∗
3 | < |k∗

c |. Their right-hand branches
represent |ζ∗

2 (k2)| and |ζ∗
4 (k4)| for |k∗| > |k∗

c |

pursue further these complications of smaller Froude numbers, sticking with results
that maintain a certain relationship to the simpler physical problemwith uniform basic
flow [14].

4.4 On the Low-Frequency Limit

The low-frequency limit ω∗ → 0 includes the expected long-wave limits for the first
wave and the third wave

ω∗ → 0 as k∗
1 → 0+ and k∗

3 → 0−, (43)

which will be applied to expand the implicit dispersion relation (26). This means that
the low-frequency limit for the first and third wave has first-order Taylor expansions
for these wave numbers in terms of the frequency, without a constant zeroth-order
term. Such leading-order Taylor expansions with a linear relationship between the
frequency and a wavenumber will exist when 2F �= S∗ and F2 �= 1 + FS∗. They
imply the following low-frequency approximations valid for a long first wave and a
long third wave
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Fig. 7 The dimensionless far-field elevation amplitude |ζ∗
0 | of the radiated waves, as function of the dimen-

sionless wave number |k∗|, for three different shear rates. The value F = 0.25 is chosen for the Froude
number. Dotted curves represent S∗ = 0 (uniform flow). Solid curves represent S∗ = 0.5. Dashed curves
represent S∗ = −0.5. The monotonously decreasing curves represent 10 |ζ∗

1 (k1)| for the first (the longer
downstream) wave. The other curves go to infinity at the critical wave number k∗

c . The left-hand branches
of these discontinuous curves represent |ζ∗

3 (k3)| for 0 < |k∗
3 | < |k∗

c |. Their right-hand branches represent
|ζ∗
2 (k2)| and |ζ∗

4 (k4)| for |k∗| > |k∗
c |

Fig. 8 The dimensionless far-field elevation amplitude |ζ∗
0 | of the radiated waves, as function of the dimen-

sionless wave number |k∗|, for three different shear rates. The relatively small value F = 0.2 is chosen for
the Froude number. Dotted curves represent S∗ = 0 (uniform flow). Solid curves represent S∗ = 1. Dashed
curves represent S∗ = −1. The continuous curves represent |ζ∗

1 (k1)| for the first (long downstream) wave.
The other curves go to infinity at the critical wave number k∗

c . The left-hand branches of these discontinuous
curves represent |ζ∗

3 (k3)| for 0 < |k∗
3 | < |k∗

c |. Their right-hand branches represent |ζ∗
2 (k2)| and |ζ∗

4 (k4)|
for |k∗| > |k∗

c |
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k∗
1 = ω∗

∣
∣
∣
∣

S∗ − 2F

1 + FS∗ − F2

∣
∣
∣
∣
, k∗

3 = −ω∗
∣
∣
∣
∣

S∗ − 2F

1 + FS∗ − F2

∣
∣
∣
∣
. (44)

These formulas are expected to be valid near the origin (k∗, ω∗) = (0, 0) for the
diagrams k∗(ω∗).

The second and fourth wave will have a different type of zero-frequency limit ω →
0: It is a limit where the wavenumbers k2 and k4 obey a common finite-wavenumber
limit

ω∗ → 0 as k∗
2 → k∗

0 and k∗
4 → −k∗

0 , (45)

where only the sign is different, due to the opposite directions of the respective phase
velocities. By taking the limit ω∗ → 0 in the dispersion relation (26) the wavenumber
k0 for these zero-frequencywaves are found to be given by the transcendental equation

k∗
0 coth k

∗
0 = 1 + FS∗

F2 , (46)

or, in terms of the shear rate

S∗ = Fk∗
0 coth k

∗
0 − 1

F
. (47)

We recall that k∗
2 = |k∗

0 | in this limit, while k∗
4 = −|k∗

0 |. The two equivalent formulas
(46) and (47) need no assumptions concerning the sign or magnitude of the wave
number k0, and can be compared with Figs. 2 and 3.

The exact zero-frequency case represents a steady source, which is a different
physical process beyond the reach of the present mathematical model. It must be
treated as an initial value problem. In the asymptotic low-frequency limit, the second
and fourth wave approach zero phase velocity, but they have finite (downstream) group
velocity, and they will also have a finite amplitude. The far-field amplitude for this
asymptotic low-frequency limit can be expressed as

|ζ∗
0 | =

∣
∣
∣
∣
∣

k∗
j F

(S∗F + 1) sinh k∗
j − 2F2k∗

j cosh k
∗
j + (k∗

j F)2 csch k∗
j

∣
∣
∣
∣
∣
, ( j = 2, 4), (48)

obtained by letting ω∗ → 0 in the general formula (42). Inserting S∗F + 1 =
F2k∗

j coth k
∗
j , implied by Eq. (47), gives

|ζ ∗
0 | =

∣
∣
∣
∣
∣

F−1

(sinh k∗
j − 2) cosh k∗

j + k∗
j csch k∗

j

∣
∣
∣
∣
∣
, ( j = 2, 4). (49)

This is the common low-frequency limit formula for the radiated amplitude of the
second and fourth wave, with the important distinction that k∗

2 = |k∗
0 | while k∗

4 =
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−|k∗
0 |. The positive wavenumber k0 is known as an implicit function of F and S∗ by

Eq. (46). We note that |ζ ∗
0 | changes its value under the transformation k∗ → −k∗.

Therefore the asymptotic low-frequency elevation for the second wave is not equal to
that for the fourth wave.

Asymptotic low-frequency relationships for the group velocity c∗
g of the second and

fourth wave follow from Eq. (30), after determining k∗
2 = −k∗

4 = |k∗
0 |, according to

Eq. (47).

5 Summarizing Discussion

We have performed an analytical study of surface waves generated by oscillatory
bottom vibrations in an open-channel flow with uniform vorticity. A concentrated
(singular) oscillatory source at the bottom may serve to construct the Green function
for water waves radiated from monochromatic bottom oscillations. The exact far-field
wave amplitudes have been calculated, according to linear theory with the radiation
condition of outgoing group velocity at infinity.

The present work is part two of an investigation of radiation of water waves from
bottom oscillations with a shear flow. In this paper we take a nonzero surface flow into
account. The radiation problem without a surface flow has been solved by Tyvand and
Sveen [13]. The previous investigation with zero surface flow was simpler in several
ways: All Doppler effects were absent. There was no resonance, and there were two
distinct radiated waves: The first (longer) wave with phase velocity and group velocity
in the downstream direction. The second (shorter) wave with both phase and group
velocity in the upstream direction. The dispersion relation without a surface flow
was qualitatively straightforward, even though it was implicit and must be calculated
numerically. The asymmetry between the wavelengths and amplitudes in the upstream
and downstream directions increases with the shear rate. The amplitude as a function
of wave number had an inflection point at zero wave number, representing a common
long-wave limit for the upstream and downstream waves. Our previous paper [13]
confirmed the efficiency of a shear flow in strongly impeding the energy flux in the
upstream direction, which was suggested by Brevik [2] as a blocking mechanism
for water waves. Tyvand and Sveen [13] found that these upstream waves are never
completely blockedwhen the surfaceflow is zero, as there is always nonzero subsurface
energy flux in the upstream direction.

The presentmodel includes a nonzero surface velocity, giving an implicit dispersion
relation which has a complicated form. We have illustrated the dispersion relation for
three chosen values of the Froude number, for the present model with finite depth.
Tyvand and Lepperød [12] has given a more exhaustive presentation of the dispersion
relation for this shear flow, with the simplifying assumption of an infinite depth.

The general radiation problem is very complicated because of the complexities in
the implicit dispersion relationwhich depends on three physical parameters: the source
frequency, the Froude number of the surface flow and the vorticity. The presence of a
surface flow makes it possible to have resonance with zero group velocity, which is a
qualitatively novelty in comparison with zero surface flow [13].
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Our previous work treated the interesting limit of zero frequency, and linked it to
the formation of bores. The zero-frequency limit is more complicated with a nonzero
surface flow. The first and third wave will usually have zero wavenumber in the zero-
frequency limit, but we identified certain exceptional combinations of Froude number
and shear rate where this may not be the case. As a contrast, the zero-frequency limit
gives finite wavenumbers for the second and fourth wave. While each of these waves
have zero phase velocity, the group velocity will be finite, in the downstream direction.
As pointed out byBrevik and Sollie [3], the concept of energy flux ismore complicated
in the presence of a surface flow, and is omitted from the present calculations.
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