
Water Waves (2019) 1:131–143
https://doi.org/10.1007/s42286-019-00001-0

ORIG INAL ART ICLE

The Pressure Boundary Condition and the Pressure
as Lagrangian for Water Waves

Thomas J. Bridges1

Received: 24 July 2018 / Accepted: 2 January 2019 / Published online: 11 March 2019
© The Author(s) 2019

Abstract
The pressure boundary condition for the full Euler equations with a free surface
and general vorticity field is formulated in terms of a generalized Bernoulli equa-
tion deduced from the Gavrilyuk–Kalisch–Khorsand conservation law. The use of
pressure as a Lagrangian density, as in Luke’s variational principle, is reviewed and
extension to a full vortical flow is attempted with limited success. However, a new
variational principle for time-dependent water waves in terms of the stream function
is found. The variational principle generates vortical boundary conditions but with a
harmonic stream function. Other aspects of vorticity in variational principles are also
discussed.

Keywords Oceanography · Lagrangian · Vorticity · Streamfunction · Variational
principle

1 Introduction

The dynamic boundary condition in the theory of water waves reduces, in the case
of inviscid flow, to continuity of the pressure field. In inviscid irrotational flow this
condition is replaced by the Bernoulli equation evaluated at the surface. In this paper,
it is shown that there is a generalized Bernoulli equation valid for all inviscid flows.
Restricting to two space dimensions with a free surface at y = h(x, t), the Bernoulli
equation is

�t +U�x + gh − 1
2U

2 − 1
2V

2 + Pa = f (t) , (1.1)

where (U , V ) is the velocity field evaluated at the free surface, Pa(x, t) is the imposed
external pressure field, and f (t) is an arbitrary function of time. The function �(x, t)
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is a generalized potential function

�x = U + Vhx . (1.2)

This potential is just an anti-derivative as it places no restriction on the velocity field.
However, it reduces to a classical velocity potential when the flow is irrotational. The
Bernoulli Eq. (1.1) is implicit inGavriluk et al. [8]. They introduce a conservation
law at the free surface and the Bernoulli equation here (1.1) is obtained by integration
using (1.2). Both (1.2) and (1.1) are exactwithout restriction on the velocity or vorticity
fields.

The pressure can be used as a density for a Lagrangian variational principle for
water waves and this strategy forms the basis of Luke’s variational principle [13].
The use of pressure as a Lagrangian density is reviewed and then the Bernoulli Eq.
(1.1) is extended into the fluid interior to form a Lagrangian. However, this varia-
tional principle does not produce all the required governing equations and boundary
conditions.

By introducing a stream function, to automatically satisfy the continuity equation,
the Bernoulli Eq. (1.1) leads to a new variational formulation for water waves, with
vortical boundary conditions, but vanishing vorticity in the interior, via a harmonic
stream function. An interesting outcome of this variational principle is that δL/δh = 0
gives precisely the vortical Bernoulli Eq. (1.1) with (U , V ) replaced by (ψy,−ψx )

evaluated at the free surface, and δL/δψ
∣
∣
y=h = 0 generates the identity (1.2).

An outline of the paper is as follows. The governing equations are reviewed in
§2 and the Bernoulli Eq. (1.1) derived. In §3 the Bernoulli equation is extended into
the interior and it is proposed as the basis of a variational principle for vortical free
surface flow. The new variational principle with the stream function representation is
proposed in §5. In the concluding remarks, other aspects of vorticity in variational
principles are discussed.

2 Euler Equations for Water Waves

The Euler equations for free surface flow are recorded here for reference. The fluid is
inviscid and incompressible, with constant density ρ absorbed into the pressure. The
fluid domain consists of the set of all (x, y) ∈ R

2 such that 0 < y < h(x, t) with
x ∈ R and t ≥ 0. The governing equations and boundary conditions for the velocity
field (u, v) and pressure field p are

ut + uux + vuy + px = 0
vt + uvx + vvy + py + g = 0
ux + vy = 0 ,

⎫

⎬

⎭
0 < y < h(x, t) , x ∈ R , t > 0. (2.1)

The boundary conditions are

v = 0 at y = 0 , (2.2)
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Fig. 1 Schematic of water wave problem

and at the free surface

p = pa and ht + uhx = v at y = h(x, t) , (2.3)

where pa(x, y, t) is the external atmospheric pressure field. No particular boundary
conditions are applied at fixed x locations as the main focus is on the pressure field.
At each point on the surface there is an orthonormal moving frame which can be taken
to be (t,n) with

t = 1

�

(

1
hx

)

and n = 1

�

(−hx
1

)

, with � =
√

1 + h2x . (2.4)

2.1 The Pressure Boundary Condition

It is clear from the statement of the problem that an arbitrary function of time can be
added to the pressure field without affecting the velocity field. Hence an equivalent
boundary condition for the pressure at the free surface is

∇ p · t = ∇ pa · t , at y = h(x, t) ,

or with

P(x, t) = p(x, h(x, t), t) and Pa(x, t) = pa(x, h(x, t), t) ,

the pressure boundary condition is

∂P

∂x
= ∂Pa

∂x
, at y = h(x, t).

This boundary condition is interesting as the Euler equations can be directly substi-
tuted. Substituting for px and py from (2.1)

− ∂Pa
∂x

= − [

px + pyhx
]
∣
∣
∣

y=h = Du

Dt

∣
∣
∣
∣

y=h

+ Dv

Dt

∣
∣
∣
∣

y=h

hx + ghx . (2.5)
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Although apparently more complicated, this equation simplifies when expressed in
terms of surface variables. Let

U (x, t) = u(x, h(x, t), t) and V (x, t) = v(x, h(x, t), t).

Then

Ut +UUx = [

ut + uyht + uux + uuyhx
] ∣
∣
y=h =

[
Du

Dt
+ uy(ht + uhx − v)

] ∣
∣
∣
∣

y=h

,

with a similar expression for Vt + UVx . Hence, modulo the kinematic free surface
condition, (2.5) simplifies to

−∂Pa
∂x

= Ut +UUx + (Vt +UVx )hx + ghx ,

or upon rearranging

−∂Pa
∂x

= Kt + (UK + gh − 1
2U

2 − 1
2V

2)x ,

with

K := U + Vhx , (2.6)

or

Kt +
(

UK + gh − 1
2U

2 − 1
2V

2 + Pa
)

x
= 0. (2.7)

Hence the pressure boundary condition can be expressed as a conservation law. In fact
this is the conservation law of Gavrilyuk et al. [8], hereafter the GKK conservation
law. It is an exact conservation law at the free surface with no restriction on the velocity
or vorticity field. It is shown in [8] that this conservation law also extends to the case
where the surface is represented parametrically and so can be multi-valued.

2.2 AVortical Bernoulli Equation at the Free Surface

It is now a short step to integrate (2.7) using the generalized potential � defined in
(1.2). Substituting � into (2.7) renders it integrable to

�t +U�x + gh − 1
2U

2 − 1
2V

2 + Pa = 0 , (2.8)

modulo an arbitrary function of time, which can be absorbed into �. The Eq. (2.8)
replaces the pressure boundary condition (2.3). It is exact with no restriction on the
vorticity field. Combining (2.8) with the kinematic free surface boundary condition
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gives the following general boundary conditions at the free surface for the Euler
equations

�t +U�x = 1
2U

2 + 1
2V

2 − gh − Pa
ht +Uhx = V .

}

at y = h(x, t). (2.9)

When the velocity field is expressed in terms of a velocity potential the boundary
condition (2.8) reduces exactly to the classic Bernoulli boundary condition for time
dependent irrotational flow with a free surface. To see this, take (u, v) = (φx , φy)

then

�x = K = U + Vhx = [

φx + φyhx
]∣
∣y=h = 	x ,

where 	(x, t) := φ(x, h(x, t), t). With � = 	 (modulo an arbitrary function of
time), and using

	t +U	x = φt + φ2
x + φ2

y , at y = h ,

it follows that

�t +U�x + gh − 1
2U

2 − 1
2V

2 + Pa = φt + 1
2 (φ

2
x + φ2

y) + gh + Pa , at y = h ,

and the latter equation is the classic irrotational Bernoulli equation at a free surface.
Hence (2.8) is a true generalization of the Bernoulli boundary condition to free surface
flow with vorticity.

3 A Vortical Bernoulli Equation in the Interior

In [8] the GKK conservation law is extended into the interior. The extension of K into
the interior is

K χ := u(t, x, χ) + v(t, x, χ)Yx , (3.1)

where Y (t, x, χ) is a semi-Lagrangian change of coordinates from y to χ (in [8] the
symbol λ is used instead of χ , but here λ is used as a Lagrange multiplier). At each
t this change of coordinates foliates the (x, y) domain by contact lines indexed by
χ ∈ [0, 1] with χ = 0 the bottom and χ = 1 the free surface (see pages 1805–1806
in [8] for further detail). Along constant χ curves the following conservation law is
obtained in [8]

∂K χ

∂t
+ ∂

∂x

(

uK χ + gY − 1
2u

2 − 1
2v

2 + p
)

= 0 , χ fixed. (3.2)
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Define the χ−dependent potential

∂�χ

∂x
:= u + vYx . (3.3)

Then the following Bernoulli equation is generated in the interior

(

�χ
)

t + u
(

�χ
)

x + gY − 1
2u

2 − 1
2v

2 + p = f (t) , (3.4)

where f (t) is an arbitrary function of time. Solving for p(x, χ, t) generates an explicit
expression for p. As in Luke’s variational principle, can this expression for p form
the basis of a Lagrangian variational principle for free surface flow with vorticity?

4 Pressure as Lagrangian Density

The idea that the pressure can play the role of a Lagrangian density when constructing
variational principles for inviscid fluid flow has been widely used. The idea appears
to have been first proposed by Hargreaves [11], used by Bateman [2] (see page 164
in [2]), Seliger and Whitham [14] and Casetta and Pesce [3], and forms the basis of
Luke’s variational principle [13]. It is sometimes called the Bateman–Luke variational
principle.

On the other hand, the conventional approach to constructing variational principles
in mechanics is to start with a Lagrangian density consisting of the kinetic energy
minus the potential energy. When that is not sufficient constraints can be added with
Lagrange multipliers (e.g. Dutykh and Clamond [4] and references therein).

For the case of water waves with an irrotational velocity field, the pressure as
Lagrangian is precisely equal to the kinetic minus potential—as long as the right
constraints are added (Luke [13] has a remark to this effect). To see this, start with
the exact Bernoulli equation for irrotational flow integrated over the flow field

∫ x2

x1

∫ h

0

[

p + φt + 1
2

(

φ2
x + φ2

y

) + gy − f (t)
]

dydx = 0 ,

where f (t) is an arbitrary function of time. Absorb f (t) into φ or p and re-cast as

∫ h

0
p dy = −

∫ h

0

[

φt + 1
2

(

φ2
x + φ2

y

) + gy
]

dy. (4.1)

The integral over x is understood, as it will not play a central role. The expression
(4.1) shows that the integral of the pressure over the flow field is exactly equal to the
density in Luke’s variational principle.

On the other hand with an elementary integral by parts argument, the right hand
side can be reformulated in terms of the kinetic and potential energies. Define

KE :=
∫ h

0

1
2 (φ

2
x + φ2

y) dy and PE :=
∫ h

0
gy dy , (4.2)
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and noting that
∫ h

0
φt dy = ∂

∂t

∫ h

0
φ dy − 	ht ,

the pressure expression (4.1) can be recast as

∫ h

0
p dy = −

∫ h

0

[

φt + 1
2

(

φ2
x + φ2

y

) + gy
]

dy

= 	ht − KE − PE − ∂

∂t

∫ h

0
φ dy

= KE − PE + 	(ht + Vn) − 2KE − 	Vn − ∂

∂t

∫ h

0
φ dy ,

where

Vn := [

φxhx − φy
]
∣
∣
∣

y=h
.

But

2KE + 	Vn =
∫ h

0

(

φ2
x + φ2

y

)

dy + 	(φxhx − φy)
∣
∣y=h

= −
∫ h

0
φ�φ dy − φφy

∣
∣
∣
y=0

+ ∂

∂x

∫ h

0
φφx dy.

Hence
∫ h

0
p dy = KE − PE + 	(ht + φxhx − φy)

∣
∣
∣

y=h + ∂B , (4.3)

where

∂B =
∫ h

0
φ�φ dy + φφy

∣
∣
∣
y=0

− ∂

∂x

∫ h

0
φφx dy − ∂

∂t

∫ h

0
φ dy. (4.4)

The integral of the pressure is equal to the conventional kinetic energy minus potential
energy Lagrangian density if the kinematic free surface boundary condition is applied
as a constraint, taking into account that φ is harmonic and φy vanishes at y = 0
with appropriate conditions at x boundaries (e.g. Neumann boundary conditions or
periodic boundary conditions at x = x1 and x = x2), and variationswithfixed endpoint
conditions (e.g. δφ

∣
∣
t2
t1

= 0).

4.1 Pressure as Lagrangian Density—WithVorticity

The above argument, and the vast literature on “pressure as Lagrangian density”,
suggests that the pressure field for free surface flow with vorticity generated by the
Bernoulli Eq. (3.4) can serve as a Lagrangian density
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δ

∫ t2

t1

∫ x2

x1

∫ 1

0

[(

�χ
)

t + u
(

�χ
)

x + gY − 1
2u

2 − 1
2v

2
]

Yχ dχdxdt = 0. (4.5)

As the reader can easily verify, this variational principle fails to produce the governing
equations and boundary conditions for the full Euler equations with a free surface. It
does generate the dynamic free surface boundary condition (assuming δYχ/δh �= 0)
but does not capture the interior equations or kinematic condition. The first obvious
problem is that �χ is not defined and so (3.3) should be added as a constraint

δ

∫ t2

t1

∫ x2

x1

∫ 1

0

[(

�χ
)

t + u
(

�χ
)

x + gY − 1
2u

2 − 1
2v

2 + λ
(

u + vYx − (�χ)x
)]

Yχ dχdxdt = 0,

where λ is a Lagrange multiplier. However, this variational principle is also ineffec-
tive. It fails to produce evolution equations in the interior. One can continue to add
constraints but there is no obvious strategy for generating all the governing equations
and boundary conditions.

It appears that the idea of using the pressure as a Lagrangian density is effective
only in the case of irrotational flows. In this case, the kinetic energy generates the
interior equation (harmonic velocity potential or harmonic stream function). Anymore
complex interior equations, like the Euler equations, do not appear to be captured by
a pressure-based variational principle.

5 Stream-Function Based Variational Formulation

Represent the velocity in terms of a stream function,

u = ψy , v = −ψx , with (x, t) := ψ(x, h(x, t), t). (5.1)

The stream function satisfies the continuity equation exactly and there is no assumption
of irrotationality at this point.

Now go back to (4.3) and instead of using pressure as Lagrangian density, start
with a variational principle based on kinetic minus potential energy, and then add
constraints as appropriate.

A posteriori it will become apparent that the kinematic free surface boundary con-
dition will have to be added as a constraint. In terms of the stream function it takes
the form

0 = ht + uhx − v = ht + ψx + ψyhx = ht + x at y = h(x, t) ,

where  is defined in (5.1). The constraint ψx = 0 at y = 0 is also included for a tidy
representation of the bottom boundary condition.
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The proposed variational principle is

δ

∫ t2

t1

∫ x2

x1
L dxdt = 0 , (5.2)

with

L =
∫ h

0

1
2

(

ψ2
x + ψ2

y

)

dy − 1
2gh

2 + �(ht + x )

∣
∣
∣

y=h + λψx

∣
∣
∣
y=0

, (5.3)

where �(x, t) and λ(x, t) are Lagrange multipliers. The symbol � anticipates a con-
nection with (1.2).

Taking variations

δL =
∫ h

0

(

ψxδψx + ψyδψy
)

dy +
[
1
2

(

ψ2
x + ψ2

y

)

− gh
] ∣
∣
∣

y=h
δh

+ δ� (ht + x )

∣
∣
∣

y=h + �(δht + δx )

∣
∣
∣

y=h

+ δλψx

∣
∣
∣
y=0

+ λδψx

∣
∣
∣
y=0

.

(5.4)

But

∫ h

0

(

ψxδψx + ψyδψy
)

dy = K δψ
∣
∣y=h − ψyδψ

∣
∣
∣
y=0

−
∫ h

0
�ψ δψ dy

+ ∂

∂x

∫ h

0
ψxδψdy ,

using K = [u + vhx ]
∣
∣y=h = [ψy − ψxhx ]

∣
∣y=h , and

�(δht + δx ) = −�tδh − �xδ + (�δh)t + (�δ)x

= −�tδh − �xδψ
∣
∣
y=h − �xψyδh + (�δh)t + (�δ)x

= −(�t +U�x )δh − �xδψ
∣
∣y=h + (�δh)t + (�δ)x ,

using U = ψy
∣
∣y=h and δ = δψ

∣
∣y=h + ψy

∣
∣y=h

δh. Substituting into δL in (5.4),

δL = (K − �x )δψ

∣
∣
∣

y=h + δ� (ht + x )

∣
∣
∣

y=h

−
[

�t +U�x − 1
2

(

ψ2
x + ψ2

y

)

+ gh
] ∣
∣
∣

y=h
δh

−
∫ h

0
�ψδψ dy + δλψx

∣
∣
∣
y=0

+ (ψy − λx )δψ

∣
∣
∣
y=0

+ ∂B.

(5.5)

where

∂B = ∂

∂x

∫ h

0
ψxδψdy + (λδψ)x

∣
∣
∣
y=0

+ (�δh)t + (�δ)x . (5.6)
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By assuming fixed endpoint conditions or appropriate boundary conditions the terms
in ∂B vanish. Then setting each term in δL to zero gives the governing equations and
boundary conditions: at the free surface

ht + x = 0 and �t +U�x + gh − 1
2 |∇ψ |2 = 0 at y = h , (5.7)

in the interior

ψxx + ψyy = 0 for 0 < y < h , (5.8)

and at the bottom

ψx = 0 at y = 0 , (5.9)

with the constraints

�x = [

ψy − ψxhx
]
∣
∣
∣

y=h
and λx = ψy

∣
∣
∣
y=0

. (5.10)

There are several interesting outcomes emerging from this variational principle. The
dynamic free surface boundary condition arises naturally as the vortical Bernoulli Eq.
(2.8),

δL

δh
= −

[

�t +U�x − 1
2

(

ψ2
x + ψ2

y

)

+ gh
] ∣
∣
∣

y=h
,

and � generates the generalized potential (1.2)

δL

δψ

∣
∣
∣
∣

y=h

= K − �x .

In terms of the stream function this latter equation is

�x = �∇ψ · n at y = h ,

where n is the outward pointing normal at the free surface (2.4). Hence the stream
function gradient at the surface has the decomposition

�∇ψ = −ht t + �xn at y = h(x, t).

On the other hand, a curiosity of this variational principle is that it does not impose
irrotationality a priori, yet the outcome is zero vorticity. The free surface boundary
conditions (5.7) and the bottom boundary condition are exactly the same when the
flow has vorticity. The only thing missing is the vorticity ω on the right hand side of
(5.8). The variational principle is unaware of this vorticity field.
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5.1 Natural Versus Imposed Boundary Conditions

Variational principles based on a velocity potential, as in Luke’s variational principle
generate natural boundary conditions at rigid boundaries. This can be clearly seen
with the boundary condition at y = 0 generated by Luke’s variational principle. Take
the variation of the kinetic energy term and isolate the term at y = 0,

δ

∫ h

0

1
2 (φ

2
x + φ2

y)dy = −φyδφ
∣
∣
y=0 + · · · .

Taking δφ
∣
∣
y=0 to be arbitrary then generates the correct boundary condition φy

∣
∣
y=0 =

0. It is a natural boundary condition.
On the other hand, consider the case where the stream function is used in the kinetic

energy and the same argument is applied

δ

∫ h

0

1
2 (ψ

2
x + ψ2

y )dy = −ψyδψ
∣
∣
y=0 + · · · .

Now thenatural boundary condition generated by the varational principle,ψy
∣
∣
y=0 = 0,

is false. Therefore, either constrained variations are required (ψ is a constant on y = 0
so δψ

∣
∣
y=0), or the correct boundary conditions can be imposed as a constraint. It is

the latter approach that is the strategy here and it is very effective. It is implemented
via the term λψx

∣
∣
y=0 in (5.3). When boundary conditions are included at x = x1 and

x = x2 a similar strategy is required to ensure vanishing of the terms in ∂B in (5.6).

6 Concluding Remarks

Integrating the GKK conservation law gives a Bernoulli equation and a representation
of the pressure boundary condition at the free surface in terms of this Bernoulli equa-
tion. However, generating the full equations with vorticity via a Lagrangian variational
principle has had mixed success.

Although the interest in this paper has been restricted to Lagrangian variational
principles, it is noteworthy that on the Hamiltonian side non-canonical Lie–Poisson
brackets can be introduced to represent vorticity (e.g. Lewis et al. [12]), and when
the vorticity is constant canonical Hamiltonian formulations can be constructed (e.g.
Wahlén [15] and Groves and Wahlén [10]).

On the other hand, vorticity can be generated in a Lagrangian variational principle
by introducing a Clebsch representation for the velocity field. It was already noted by
Bateman [2] (see §2.52 of [2]) that a Clebsch representation for the velocity field

u = φx + αβx and v = φy + αβy ,

can be used to capture the vorticity field,

ω = αxβy − αyβx .
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Moreover a Bernoulli equation can be generated as well as a Lagrangian variational
principle. Luke notes this as well (see Eq. (12) in [13]). However, Clebsch variables are
difficult toworkwith: they are not unique, can have difficultywith boundary conditions
(e.g. Fukagawa and Fujitani [6]), and can have singularities in the potentials evenwhen
the velocity field is smooth (e.g. Graham and Henyey [9]).

Another approach, advocated in Gavrilyuk [7], is to use virtual motions and virtual
displacements in the Lagrangian setting mapped to the Eulerian setting. A group theo-
retic approach for the Lagrange to Euler map is Euler-Poincaré reduction resulting in
constrained variations. Starting with a variational principle for the Lagrangian particle
path description for water waves, where the vorticity arises naturally in the variational
principle, and then performing reduction via the particle relabelling group, suggests
that the velocity variations are not free and should be modified to

δu = wt + [u,w] ,

where w is a free variation and [·, ·] is a Lie bracket of vector fields. The Euler-
Poincaré strategy is used in Cotter and Bokhove [5] and Alemi Ardakani et al. [1].
But constrained variations make analysis of the variational principle more difficult.

Instead of constrained variations, one can keep adding constraints until all effects
are included (e.g. [4]). For example, the Lagrangian density

L =
∫ h

0

[

1
2 (u

2 + v2) − gy + λ(ux + vy) + μ(ω − vx + uy) + γ
Dω

Dt

]

dy

is of the form kinetic minus potential and enforces incompressibility and introduces
vorticity. Taking γ = 0, variations with respect to u and v generate the Hodge decom-
position of the velocity field

u = λx + μy and v = λy − μx .

However including γ �= 0 generates a more complicated velocity representation.
Moreover, an additional constraint is required to capture the kinematic free surface
boundary condition. On the other hand, with enough constraints, one may be able to
recover the full Euler equations with a free surface and general vorticity field.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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