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Abstract
A blend of genetic algorithm with multiple linear regression (GA-MLR) method was utilized in generating a quantitative 
structure–activity relationship (QSAR) model on the antimalarial activity of aryl and aralkyl amine-based triazolopyrimidine 
derivatives. The structures of derivatives were optimized using density functional theory (DFT) DFT/B3LYP/6–31 + G* basis 
set to generate their molecular descriptors, where two (2) predictive models were developed with the aid of these descrip-
tors. The model with an excellent statistical parameters; high coefficient of determination  (R2) = 0.8884, cross-validated  R2 
 (Q2cv) = 0.8317 and highest external validated  R2  (R2

pred) = 0.7019 was selected as the best model. The model generated 
was validated through internal (leave-one-out (LOO) cross-validation), external test set, and Y-randomization test. These 
parameters are indicators of robustness, excellent prediction, and validity of the selected model. The most relevant descriptor 
to the antimalarial activity in the model was found to be GATS6p (Geary autocorrelation—lag 6/weighted by polarizabili-
ties), in the model due to its highest mean effect. The descriptor (GATS6p) was significant in the in-silico design of sixteen 
(16) derivatives of aryl and aralkyl amine-based triazolopyrimidine adopting compound DSM191 with the highest activity 
 (pEC50 = 7.1805) as the design template. The design compound D8 was found to be the most active compound due to its 
superior hypothetical activity  (pEC50 = 8.9545).
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1 Introduction

Despite decades of efforts to curb and eradicate the malaria 
pandemic, it still retains its status as one of the most dan-
gerous and fatal infections in the tropical and subtropical 
endemic countries, having over 500 million reported cases 
with approximately one million deaths yearly [1]. The dis-
ease is caused by Plasmodium falciparum (P. falciparum), 
the most lethal of all the five Plasmodium species, others are; 
Plasmodium malariae (P. malariae), Plasmodium knowlesi 
(P. knowlesi), Plasmodium falciparum (P. falciparum), Plas-
modium vivax (P. vivax), and Plasmodium ovale (P. ovale) 
[2–4]. The protozoan parasite Plasmodium falciparum pro-
duced in the red blood cell (RBCs) requires various hosts for 

its growth and survival. The host is unable to manufacture 
purine rings de novo, hence purine is reclaimed from the 
host by the parasite [5]. Within the digestive vacuole of the 
parasite, the hemoglobin releases heme molecules that are 
toxic to the parasite. The heme is crystallized into hemo-
zoin to nullify its toxicity. A large amount of hemoglobin is 
accumulated in the digestive vacuole [6]. The rate of heme 
release must equal to that of hemozoin crystallization for 
the survival of the parasite otherwise toxic heme buildup in 
the parasite [7].

Several compounds including chloroquine, artemisinin, 
amodiaquine, and quinine have been reported to have 
antimalarial activity and are employed in the treatment of 
malaria [8]. The treatment of malaria is faced with great 
challenges which include the rapid resistance developed by 
Plasmodium parasites to the available antimalarial drugs as 
well as the lack of an effective antimalarial vaccine. This 
resistance ensures that the available antimalarial drugs 
become ineffective in the treatment of pandemic disease. 
Hence, the need to develop new and novel antimalarial 
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agents through chemical modification of existing compounds 
becomes a necessity [9].

Triazolopyrimidines identified with either lack of potency 
or poor plasma exposure due to metabolic stability were 
found to have improved potency as a result of the substi-
tution of arylamine moiety [10]. In light of this, aryl and 
aralkyl amine-based triazolopyrimidine compounds reported 
for their antimalarial activity against the multi-drug resistant 
Plasmodium falciparum strain, 3D7 [10] could provide an 
alternative application to the orthodox antimalarial drugs.

Quantitative structure–activity relationship (QSAR) is an 
essential tool in the drug design field by reducing the time 
as well as the cost of drug development [11]. QSAR relates 
the physicochemical properties of congeneric compounds 
with the structural features responsible for their activity [12].

Several QSAR studies related to the design of anti-
malarial drugs were reported. In 2018, Hadanu and co. 
investigated the antimalarial activity of nitrobenzothiazole 
derivatives [13]. Beheshti and Co study the modeling of 
antimalarial activity of urea derivatives [14]. Prediction of 
anti-malarial activity in a set of new imidazolopiperazines 
using artificial neural networks was reported [9], but no sys-
tematic QSAR studies were conducted on a series of aryl 
and aralkyl amine-based triazolopyrimidine compounds as 
an antimalarial. This research is aimed at establishing a vir-
gin QSAR regression model for predicting the antimalarial 
activity of 32 derivatives of aryl and aralkyl amine-based 
triazolopyrimidine compounds through the application of 
a hybrid of GA–MLR approach. Thereafter, we performed 
in silico design of a template (a compound with the high-
est activity), into new derivatives with enhanced activity 
against P. falciparum with the aid of the most contributive 
molecular descriptor determined by the descriptors mean 
effect, which saves time and cost enquired in the drug devel-
opment analysis.

2  Material and Methods

2.1  Sources of Data

The dataset of thirty-two aryl and aralkyl amine-based tria-
zolopyrimidine derivatives consisting of their structures and 
activities (Table 1) were extracted from the literature [15]. 
Their biological activities were expressed as  pEC50 (-Log10 
drug concentration to cause a 50% reduction in cell prolif-
eration) suitable for QSAR analysis (Tables 2 and 3).

2.2  Geometry Optimization

The structures of the compounds were drawn with the 
help of ChemDraw software, while Spartan 14 software 
(Spartan 14v114) was utilized in the optimization of the 

molecular geometries [16] based on the density func-
tional theory (DFT) level using Becke’s three parameters 
Lee–Yang–Parr hybrid functional (B3LYP) in combination 
with the 6–31 + G* basis set. The optimized Spartan 14 
structures are saved in SDF format.

2.3  Descriptors Calculation

The lowest energy-optimized geometries were imported into 
the PaDel-Descriptor version 2.20 for descriptors calcula-
tion. About 1500 varieties of molecular descriptors were 
calculated for each molecular geometry present in Table 1. 
The descriptors range from Atom Count, Autocorrelation, 
BaryszMatrix, BCUT, Burden Modified Eigenvalues, Car-
bon Types, Electrotopological State Atom Type, Extended 
Topochemical Atom, Autocorrelation3D, and RDF descrip-
tors were calculated [17].

2.4  Dataset Division

The dataset was split in the ratio 78:22 with 25 training com-
pounds (78% of the data set) and 7 test compounds (covering 
the remaining 22%) with the aid of the DatasetDivision1.2 
program [18] by employing the Kennard-Stone’s algorithm 
method.

2.5  QSAR Model Development

The training set was utilized in the development of the 
QSAR model, where the activities (dependent variable) 
and the molecular descriptors (independent variables) were 
exposed to model development by the Genetic Function 
Approximation (GFA) method contained in the material stu-
dio software. The Genetic algorithms (GAs), a copycat of 
biological evolution, are currently the ultimately used vari-
able selection method that addresses both the constrained 
and unconstrained optimization challenges based on an 
essential selection process [19, 20]. GA is a prying search 
method that looks for the correct or approximate solutions to 
any optimization challenges [21]. Its ability to produce more 
than one blend of descriptors useable in model construction 
is an added advantage. With GAs, users have the liberty of 
imposing the equation length and employs a lack of fit (LOF) 
function to check over-fitting in the models produced. The 
lack-of-fit (LOF) was calculated in the material studio to 
estimate the model fitness using Eq. 1.

where SSE stands for the sum of squares of errors, c, num-
ber of terms other than the constant in the model, d stands 
for the user-defined smoothing parameter, p is the number 

(1)LOF = SSE∕
(

1−c+dp∕M
)2
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of descriptors in the model, and M, represent the samples 
counts in the training set.

2.6  Multi‑co‑linearity analysis

The possibility of a huge degree of correlation among the 
model descriptors was evaluated using a variance inflation 
factor (VIF). For a descriptor, i, the  VIFi was calculated from 
Eq. 2.

(2)VIFi =
(

1 − R2

ij

)−1

where  R2
ij represents the multiple regression’s correlation 

coefficients between the descriptor i and the remaining j 
model descriptors.

2.7  Model Validation

2.7.1  Internal Validation

The leave- one- out (LOO) cross-validation technique was 
deployed to internally validate the model. It involves the elimi-
nation of one compound from the data set at random in each 
cycle and the model is built with the remaining compounds. 
The constructed model is used for predicting the activity of 

Table 1  Molecular structures of substituted aryl amine-based triazolopyrimidine derivatives and their biological activities against P. falciparum 
strain 3D7

NB: *Test Sets

Compd Name Ar EC50 (μM) pEC50 Predicted  pEC50 Residuals

1 DSM101 4-ethyl-Ph 3.3 5.481 5.673  − 0.192
2 DSM102 4- n-propyl-Ph 6.8 5.167 5.264  − 0.097
3* DSM104 4- n-butyl-Ph 4.8 5.319 4.466 0.853
4 DSM103 4-iso-propyl-Ph 0.78 6.108 5.776 0.332
5 DSM316 4-cyclo-propyl-Ph 1.4 5.854 5.812 0.042
6* DSM115 4-venyl-Ph 0.34 6.469 5.802 0.667
7* DSM157 4-ethynyl-Ph 5.1 5.292 5.761  − 0.468
8 DSM217 4-S-CF3-Ph 0.27 6.569 6.599  − 0.030
9 DSM161 4-SF5-Ph 1.3 5.886 5.861 0.025
10 DSM130 4-N(CH3)2-Ph 2.7 5.569 5.353 0.215
11 DSM251 4-C(CH3)2CN-Ph 3.7 5.432 5.808  − 0.376
12* DSM228 3-F-4-C(CH3)3-Ph 0.097 7.013 8.339  − 1.325
13 DSM215 3-F-4-Cl-Ph 3.5 5.456 5.435 0.021
14 DSM238 3,4-di-CF3-Ph 2.3 5.638 5.786  − 0.147
15 DSM190 3,5-di-F-4-CF3-Ph 1.1 5.959 5.655 0.303
16 DSM159 5,6,7,8-tetrahydro-2-naphthyl 0.16 6.796 6.429 0.367
17 DSM160 5-indanyl 0.8 6.097 6.466  − 0.369
18 DSM127 5-benzodioxolyl 21 4.678 4.791  − 0.113
19 DSM191 5-benzothiophenyl 0.066 7.180 6.962 0.218
20 DSM86 2-CF3-5-benzo- imidazolyl 25 4.602 4.486 0.116
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Table 2  Molecular structures of alicyclic/aralkyl and alkyl amine-based triazolopyrimidine derivatives and their biological activities against P. 
falciparum strain 3D7

NB: *Test Sets

Compd Name R EC50 (μM) pEC50 Predicted  pEC50 Residuals

21 DSM162 2-indanyl 0.4 6.398 6.353 0.045
22 DSM218 5-F-2-indanyl 1.3 5.886 5.645 0.241
23 DSM220 5-Br-2-indanyl 6.6 5.180 5.280  − 0.100
24 DSM219 5,6-di-OCH3-2-indanyl 7.7 5.114 4.954 0.160
25 DSM192 1,2,3,4-tetrahydro-2-naphthyl 1.8 5.745 6.126  − 0.382
26 DSM236 6-F-1,2,3,4-tetra-hydro-2-naphthyl 2.5 5.602 5.646  − 0.044
27 DSM237 6-Cl-1,2,3,4-tetra-hydro-2-naphthyl 10 5.000 4.999 0.001
28* DSM77 3-phenylpropyl 25 4.602 4.880  − 0.278
29 DSM76 n-heptyl 13 4.886 5.000  − 0.114

Table 3  Molecular structures of pyrimidine ring-modified triazolopyrimidine derivatives and their biological activities against P. falciparum 
strain 3D7

NB: *Test Sets

Compd Name R1/R2 Ar EC50 (μM) pEC50 Predicted  pEC50 Residuals

30* DSM247 C2H5/H 4-CF3-Ph 2.3 5.638 5.636 0.002
31 DSM252 Cl/H 4-CF3-Ph 3.4 5.469 5.593  − 0.124
32* DSM174 -C3H6- 3-F-4-CH3-Ph 8.3 5.081 4.978 0.103



141Chemistry Africa (2021) 4:137–148 

1 3

the compound eliminated. This process is carried out again 
and again until the entire compounds are eliminated once. The 
cross-validated squared coefficient of correlation,  R2

cv  (Q2) 
was calculated from the equation below.

where Yobs is the observed activity of the training set, Ypred 
represents the predicted activity of the training set and Ŷ is 
the mean observed activity of the training set.

2.7.2  External Validation

The developed model was externally validated to determine 
its predictive strength, through predicting the activity of 
some dataset (test set) separated from the training set. This is 
achieved using Eq. 4 below.

where  Yobs (test) and  Y(test) indicates the test set predicted 
and observed activity values respectively, Ŷtraining, indicates 
training set means activity.  R2

pred is the predicted coefficient 
of correlation estimated from the predicted test set activity.

2.8  Y‑Randomization

The possibility of the model occurring by chance was deter-
mined through the Y-randomization test, which also ascertains 
the robustness of the developed model. The Y-Randomiza-
tion test involves constructing a model with a randomizing 
the activities of the training set. A detour in the square of the 
mean correlation coefficient of the randomized activity model 
 (R2r) from that of the non-randomized activity model  (R2) is 
reflected in the value of  R2m parameter calculated with help 
of the Eq. 5 [22].

Normally, the average value of  R2r for the randomized activ-
ity model is expected to be zero, implying equal values of 
 R2m and  R2r for the developed model, necessitate the use 
of  cRp2 in place of  R2m. A model is deemed not due to a 
chance when the coefficient of determination  (cRp2) is found 
to be greater than 0.5 [23]. The value of  cRp2 was calculated 
for each randomized activity model with the aid of Eq. 6 
given below.

(3)Q2 = 1 −

∑
�

Yobs − Ypred
�2

∑
�

Yobs − Ŷ
�2

(4)R2

pred
= 1 −

∑
�

Yobs(test) − Ypred(test)
�2

∑
�

Yobs(test) − Ŷtraining
�2

(5)R2

m
= R2X

√

(

R2 − R2

r

)

(6)cR2

p
= RX

√

(

R2 − R2

r

)

2.9  Model Applicability Domain

The applicability domain (AD) provides an assessment 
of the model in terms of its ability to predict the activity 
of unknown compounds excellently in form of chemical 
space. Every model is only able to predict the activity of 
a certain number of compounds; such prediction is condi-
tioned on the satisfaction of the assumptions applied in the 
construction of the model [24]. The chemical space of the 
AD is designed by plotting the values of leverage against 
the standardized residuals (Williams plot) of the entire 
data set. The leverages are obtained from the diagonals of 
a hat matrix obtainable from Eq. 7 [17].

where, Hi , is the hat matrix of the training/test set, Xi is the 
original matrix of training/test set, and XT

i
 is the transpose 

matrix of the training/test set.
Being a prediction tool, the AD has warning leverage 

(h*) defining the limit of normal values for X outliers and 
it’s defined as h∗ = 3(z + 1)∕n , where n is the number of 
the training set, and z is the number of descriptors in the 
model. Only compounds with leverages less than or equal 
to the warning (h*) are considered to be within the chemi-
cal space and their activities are reliably predicted by the 
model. In addition to the AD, a plot of the normalized 
mean distance of the model descriptors against the stand-
ardized residuals of the predicted activities of the data set 
(UZAIRU’S plot) was employed to detect outliers present 
in the data set [25].

2.10  Mean Effect (MF)

The model descriptor’s relevance was analyzed by evaluat-
ing the descriptors mean effect (MF). The contribution by 
individual descriptor to the model are reflected by the size 
as well as the signs of their mean effect. The most con-
tributive descriptor has the largest mean effect, while the 
small mean effect size is for the least contributive descrip-
tor. The mean effect is evaluated from Eq. 7.

where �j is the coefficient of j,  Dj is the value of each train-
ing set in the descriptor matrix and m is the tally of model 
descriptors and n is the tally of molecules used as the train-
ing set [26].

(7)Hi = Xi

(

XT
i
Xi

)−1
XT
i

(8)Mean Effect =
�j
∑n

i
Dj

∑m

j

�

�j
∑n

i
Dj

�
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2.11  Molecular Design

The relevance of the model’s descriptors cannot be over-
emphasized as such the interpretations of the most con-
tributive descriptor could provide a guide to design several 
hypothetical derivatives of aryl and aralkyl amine-based 
triazolopyrimidine having enhanced antimalarial activi-
ties. This is made possible by selecting the compound 
with the highest activity as a design template. The struc-
tural feature of the most informative descriptor forms the 
basis of manipulating the design template by substituting 
group(s) based on the information from the size of the 
descriptors mean effect, to design some theoretical com-
pound possessing higher antimalarial activity than the 
design template through replacing atom/group of atoms 
at different positions on the template. The design deriva-
tives were then optimized and their descriptor calculated 
from which the antimalarial activity was obtained.

3  Results and Discussion

3.1  QSAR Studies

Two QSAR models developed through the genetic func-
tion algorithm analysis of the datasets were as presented 
in Table 4:

3.2  QSAR Model Selection

The second tetra parametric equation (model II) was 
announced as the best QSAR model based on its statisti-
cal data obtained from multiple linear regression (MLR) 
of the material studio. The model was used in evaluating 
the theoretical activity of the aryl and aralkyl amine-based 

triazolopyrimidine derivatives used in the analysis. The 
model may not have the highest  R2 (0.8884) compared to 
that of the model I (0.8931), but its higher square coefficient 
of correlation for the test set  (R2

ext = 0.7019) which is in 
line with the prerequisite for a dependable, foretelling and 
robust QSAR model [27] ensures model II emerges as the 
best model. The definition of the descriptors in the model as 
well as their class were reported in Table 5.

The meager residual values of the data set (Tables 1, 2, 
and 3) calculated by the best model, is an indication of a 
good agreement between the observe and predicted activity 
as well as the reliability of the model, this was supported by 
the distribution of the data set around the legend, displayed 
in the plot of experimental  pEC50 vs predicted  pEC50 pre-
sented as Fig. 1.

3.3  Model Validation

A significant QSAR model is one that can predict the activi-
ties of an external data set,  (R2

ext) not just in its ability to 
clone the training set  (Q2 LOO). Hence, the training set pre-
diction was affirmed by the leave-one-out (LOO) cross-val-
idation method. The large  Q2 LOO value, 0.8317 calculated 
is a good indication of an excellent internal validation. The 
results of the external validation,  R2

ext = 0.7019, show the 
predictive strength of the model and hence its robustness. 
Analysis of the correlation matrix shown in Table 6, shows 
a large value of correlation coefficients between the descrip-
tors and the activity, an indication of a great interrelation 
between the two. Whereas the low correlation coefficients 
between the descriptors themselves indicate noncollinearity 
between the descriptors. The descriptor’s multicollinearity 
is explained with variation inflation factors (VIF). The VIF 
values of the model’s descriptors as reflected in Table 6, all 
fall within, 1 < VIF ≤ 5 range, which is a VIF criterion for 

Table 4  Generated models with 
their statistical parameters

*Best model

S/N MODEL R2 R2
adj Q2cv LOF R2

pred

I pEC50 = 2.5963(MATS4e) − 1.87976(
GATS5m) − 8.01883(GATS6p) + 0.1
42531(RDF50p) + 14.0942

0.8931 0.8717 0.7911 0.1500 0.5106

II* pEC50 =  − 2.3661(MATS6i) + 2.1115(
GATS5e) − 7.93447(GATS6p) + 0.0
926193(RDF30m) + 10.0917

0.8884 0.8661 0.8317 0.1566 0.7019

Table 5  List of the 
physiochemical descriptors that 
constitute the model

S/N Symbol Names of descriptors Class

1 MATS6i Moran autocorrelation—lag 6/weighted by first ionization potential 2D
2 GATS5e Geary autocorrelation—lag 5/weighted by Sanderson electronegativities 2D
3 GATS6p Geary autocorrelation—lag 6/weighted by polarizabilities 2D
4 RDF30m Radial distribution function—030/weighted by relative mass 3D
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model acceptance [28, 29]. The results of the VIF confers 
orthogonality and acceptability on the model. The outcome 
of the Y-randomization inquiry after scrambling the activity 
ten folds shows that the  R2 and  Q2 values for the scram-
bling activity model are significantly low, confirming the 
robustness of the model. Table 7, shows the Y-randomization 
parameters with cR2

p
 greater than 0.5 reaffirming the model’s 

quality. The standardized residuals plotted against the cal-
culated leverage values (Williams plot) gives a graphical 
identification of both the outliers and the influential sub-
stances within a model. The applicability domain (Fig. 2), 
is entrenched within ± 3 standardized residual range and 

a leverage threshold (h* = 0.6). Figure 2, clearly shows 
no compound of the data set beyond the standard devia-
tion, ± 3d, and a leverage value, h > 0.6. Hence, the entire 
data set contain neither an outlier nor an influential sub-
stance. Furthermore, the Uzairu’s plot (the normalized mean 
distance of the model descriptors versus the standardized 
residuals of the predicted activities of the data set) presented 
in Fig. 3, also confirms the absence of an outlier.

3.4  Interpretation of Descriptors

In this research, the four molecular descriptors chosen by 
GA play a significant role in the discovery of new drugs 
for the treatment of malaria. The contributions of each 
descriptor to the model were carried out in the MF analysis 
displaced in Fig. 4. The first two descriptors are MATS6i 
and GATS5e, which are both 2D-autocorrelated descrip-
tors obtained from a molecular graph through the addi-
tion of the atomic weight of the terminal atoms of the 

y = 0.8884x + 0.6328
R² = 0.8884
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Fig. 1  The predicted  pEC50 against the experimental values for the data set

Table 6  The correlation matrix 
of the descriptors and their VIF

pEC50 MATS6i GATS5e GATS6p RDF30m VIF

pEC50 1
MATS6i 0.2912 1 1.5299
GATS5e 0.4527 0.0292 1 1.1060
GATS6p  − 0.6946  − 0.5528 0.1164 1 1.8359
RDF30m  − 0.1496  − 0.0638  − 0.1797 0.3686 1 1.2886

Table 7  Y-randomization model 
parameters

Average r 0.3974

Average r^2 0.1655
Average Q^2  − 0.3099
cRp^2 0.8056
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considered path length. While MATS6i descriptor encodes 
the ionization potential of the substituted aryl amine-based 
triazolopyrimidine analogs, it expresses the tendency of 
an electron cloud or molecule to interact with a target 
[30], from the MF analysis, the descriptor has the least 

contribution (MF = 0.00298) to the antimalarial activity 
and its positive sign is an indication of a direct relationship 
with the activity. The GATS5e relates to the electronega-
tivity of the compound which has an inverse relation with 
the activity as a result of the MF sign.
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The third descriptor, GATS6p is also a 2D descriptor [31] 
that reflects the topological structure of the molecules. The 
difference in the atomic polarizabilities of the molecule is 
explained by the descriptor [32]. This descriptor is the most 
relevant with MF = 1.66902, and its positive MF sign indi-
cates increasing the value of the descriptor, increases the 
antimalarial activity.

The last descriptor, RDF30m indicates the existence of 
some linear dependence between the inhibitory activities 
of aryl amine-based triazolopyrimidine derivatives and the 
3-dimensional molecular distribution of mass determined 
at a radius of 4.0 Å from the centers of all molecule. The 
descriptor’s negative MF is a reflection of its indirect rela-
tion with the activity. A decrease in the value of the descrip-
tor increases the antimalarial activity.

3.5  Molecular Design

The compound with the highest antimalarial activity, 
DSM191  (pEC50 = 7.1805) was exploited as the design 
template. The most contributive descriptor, GATS6p 
(MF = 1.6690) influences the antimalarial activity of the 
derivatives of aryl and aralkyl amine-based triazolopy-
rimidine greatly, and relate to the atomic polarizabilities of 
the molecule. With the positive mean effect, antimalarial 
activity increases with an increase in the descriptor value 
(atomic polarizabilities) of the molecule. Atomic polariz-
ability increases with an increase in the number of elec-
trons (leading to a reduction in the effective nuclear charge). 
Therefore, various electron-donating groups such as; -CH3, 

-CH2CH3, -COCH3, -OCH3, -OH, -NH2, and -N(CH3)2 
were added to the design template at ortho/para positions to 
release electron density into the ring thereby creating deriva-
tives of the template which increase the polarizability and by 
extension, increase the antimalarial activity of the designed 
derivatives. Sixteen (16) derivatives of the template were 
designed, out of which nine of the designed compounds (2D, 
4D, 8D, 11D, 12D, 13D, 14D, 15D, and 16D) have improved 
hypothetical antimalarial activity than the design template 
as well as Chloroquine  (pEC50 = 4.6352) and Pyrimethamine 
 (pEC50 = 6.2593) standards as shown in Table 8. Compound 
D8,  N7-(benzo[b]thiophen-5-yl)-N6,N6,5-trimethyl-[1,2,4]
triazolo[1,5-a]pyrimidine-6,7-diamine was identified 
with the highest antimalarial activity  (pEC50 = 8.9545) as 
reflected (Table 8), hence is the most active designed deriva-
tive (Fig. 5).

4  Conclusions

This research is focused on designing antimalarial deriva-
tives through the developed QSAR model used for predict-
ing the activities of aryl and aralkyl amine-based triazo-
lopyrimidine derivatives. The PaDel-Descriptor version 
2.20 software was employed to calculate several descrip-
tors used for the regression analysis carried conducted by 
the GA–MLR process and the developed model validated 
comprehensively. The selected model revealed descriptors; 
MATS6i, GATS5e, GATS6p, and RDF30m played a sig-
nificant role in the antimalarial activity of the compounds. 
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The mean effect analysis indicated GATS6p as the most 
contributive descriptor (MF = 1.6690) which estimates 
the polarizability of the molecule whose positive values 
increasing the activity of the compounds. Sixteen com-
pounds were designed using DSM191 (a compound with 
the highest antimalarial activity) as the design template 
and various electron-donating groups used to increase the 
atomic polarizability were directed at the ortho/para posi-
tions of the aromatic rings of the template. Compound 
D8,  N7-(benzo[b]thiophen-5-yl)-N6,N6,5-trimethyl-[1,2,4]
triazolo[1,5-a]pyrimidine-6,7-diamine, was found to have 

the highest hypothetical activity  (pEC50 = 8.9545) than the 
template  (pEC50 = 7.1805) and the fellow designed com-
pounds. These designed compounds when synthesized 
could be clinically validated for antimalarial treatment. 
Hence, the studies will reduce trial and error as well as 
minimize the time and cost involved in drug design. Fur-
thermore, in the future, we could conduct the molecular 
docking studies of the design compounds against their tar-
get to observe the nature of interactions responsible for the 
antimalarial activity.
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Table 8  The structures of the design template, designed derivatives 
of aryl and aralkyl amine-based triazolopyrimidine along with their 
respective theoretical activities

Compd R1 R2 R3 Theoretical activities

EC50 (μM) pEC50

Design template H H H 0.066 7.1805
D1 H CH3 H 0.1068 6.9714
D2 CH2CH3 H H 0.0290 7.5373
D3 OCOCH3 H H 0.4937 6.3065
D4 OCH3 H H 0.0231 7.6358
D5 OH H H 0.4446 6.3520
D6 H OH H 0.2542 6.5948
D7 H NH2 H 0.1219 6.9139
D8 N(CH3)2 H H 0.0011 8.9545
D9 NH2 CH3 H 0.2663 6.5746
D10 OCH3 H OH 0.0960 7.0178
D11 N(CH3)2 CH3 H 0.0012 8.9186
D12 OCH3 CH3 H 0.0231 7.6359
D13 OCH3 NH2 H 0.0279 7.5548
D14 N(CH3)2 NH2 H 0.0022 8.6498
D15 N(CH3)2 OH H 0.0063 8.2020
D16 OCH3 OH H 0.0387 7.4125
Pyrimethamine 0.5504 6.2593
Chloroquine 23.1608 4.6352
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Fig. 5  Design Template, DSM191, N-(benzo[b]thiophen-5-yl)-5-me-
thyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine  (pEC50 = 7.1805)
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