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Abstract
In this work, we examined the kinematic vortex state in a low-temperature, mesoscopic superconducting thin film in presence 
of an external applied current J , at zero magnetic field. We analyzed the voltage-current ( V − I ), resistivity-current ( R− I ) 
curves, as well as the vortex-anti-vortex velocity Vm and the superconducting-electron density (norm of the superconduting 
order parameter � ) as an applied current function. Additionally, we have calculated the voltage as a function of characteristic 
time ( V − t ). The sample presents a roundabout shaped pinning center fabricated with a lower low-temperature superconduct-
ing material, which allows for control over the vortex dynamics within the sample. To study this system, we have solved the 
generalized time-dependent Ginzburg-Landau equations for a single-condensate system. Our results demonstrate that the 
kinematic vortices enter the sample through regions where the superconductivity is depleted, revealing an intriguing and 
novel behavior of the phase-slip lines in the defect. We found that when a higher J is applied and the defect is not centered, 
the point where the vortex anti-vortex pairs enter the film moves away from the defect and are located in a point tangent to 
the outer circle of the defect. Besides, our results show a way to control the dynamics of the vortices, critical currents, and 
points of annihilation or creation of the cinematic vortices by including defects in the sample, important in the design and 
development of devices applied in industry and engineering.
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1 Introduction

Vortex-antivortex pairs can spontaneously form and move 
within a superconducting material when it is in a mixed 
state. In this state, first proposed by Andronov et al. and 

experimentally conducted by Sivakov et al., [1, 2], vorti-
ces and anti-vortices self-organize into a lattice-like struc-
ture, commonly referred to as the Abrikosov lattice. The 
presence of these pairs enables the material to maintain 
its superconducting properties even in the presence of an 
external magnetic field. The behavior and interactions of 
vortex-antivortex pairs in superconductors constitute a sub-
ject of extensive research within the field of condensed mat-
ter physics. Understanding their dynamics is of paramount 
importance for various applications, including the design 
of superconducting devices such as superconducting wires, 
detectors, and superconducting quantum bits (qubits) for 
quantum computing [3]. Also, as it is well-known, when an 
external current is applied to mesoscopic superconducting 
sample, it can induce resistive states caused by the appear-
ance of phase-slips (topological fluctuations of the order 
parameter and occur as the barrier separating two competing 
order parameter configurations vanishes) or by the motion 
of kinematic vortices, also a phase slip occurs when the 
superconducting state vanishes somewhere in the sample, 
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enabling discontinuities in the phase by some multiple of 
2� [4–6].

In the realm of superconductivity research and develop-
ment, B. D. Josephson made significant contributions by 
analyzing the junctions of superconducting materials. He 
demonstrated the appearance of an supercurrent via tun-
neling between a insultor region, a hallmark of quantum 
mechanics, (this study led to the development a Supercon-
ducting Quantum Interference Devices). There were two 
main models, DC and AC, which differed in the number 
of Josephson junctions. In its original design, lead Pb and 
niobium Nb were used, both being among the first known 
superconducting elements with low critical temperatures of 
7.2 K and 9.2 K , respectively. The junctions were formed 
due to an oxide layer on the material’s surface, with the 
primary focus being on the quest for evidence of magnetic 
flux quantization [7, 8].

The manipulation and control of vortex-antivortex pairs’ 
motion can be crucial for optimizing the performance of 
superconducting materials in practical applications. This 
includes the minimization of energy losses and the mainte-
nance of the superconducting state under various conditions. 
Researchers employ various techniques, such as pinning 
sites and external currents, to control and investigate the 
behavior of these pairs. It is worth noting that recent efforts 
have been directed toward the practical application of these 
findings. For instance, Elfeky et al. explored the analysis 
of the impact of quasiparticles, including vortex-antivortex 
pairs, on the fidelity of quantum circuit development [9]. 
Takahara et al., studied the magnetic transport properties in 
thin films of doped EGTO ( Eu1−xLaxTiO3 ) to observe the 
evolution of ferromagnetic properties [10]. Additionally, 
it is interesting to mention how Hijano et al., utilized the 
Mattis-Bardeen theory to observe the response of supercon-
ductors in Hall response devices, as a result of research that 
has expanded the Usadel equation, allowing the analysis of 
the disordered Hall effect in superconductors, including its 
dependence on frequency [11].

Furthermore, it is noteworthy that V. M. Bevz et al., 
determined the maximum velocity of magnetic flux quanta 
through the energy relaxation of unpaired electrons. They 
introduced an approach for the quantitative determination of 
the number and velocity of vortices based on Aslamazov and 

Larkin’s prediction of kinks in current-voltage curves when 
the number of fluxons crossing the constriction is increased 
by one. They found a vortex velocity of v = 12km∕s . These 
experimental observations are complemented by results 
from time-dependent Ginzburg-Landau modeling [12].

2  Theoretical formalism

In the present work, we will study the superconducting 
matter in a single-codensate thin sample of size 12� × 8� ; 
with a roundabout-like defect of external (internal) circu-
lar radius ro = 2.6� (ri = 0.6� ), positioned at coordinates 
x1 = 3� , x2 = 6� and x3 = 9� , in the x-axis (see Fig. 1). The 
width of the electrodes is a = 2� , through which a uniform 
DC current density J is injected, the same size was used for 
the thickness of the rectangular section of the weak link 
region. To conclude the description of the analyzed system, 
it is worth noting that the thickness of the film, denoted as 
d ≪ 𝜉 , therefore, we will extrapolate to the two-dimensional 
problem [13–19]. The general form of the time-dependent 
Ginzburg Landau (TDGL) equation in dimensionless units 
in the (x, y)-plane is given by [20–22]:

 which is coupled to the equation for the electrostatic 
potential:

In the Eq. 1, the weak link (roundabout-like defect) is char-
acterized by the anisotropy coefficient f (x, y) = 1.0 , outside 
the weak link and f (x, y) = −0.5 in the weak link region [23]. 
The distances are scaled by the coherence length � , time is 
in units of the Ginzburg Landau time tGL = �ℏ

/
8kBTcu , the 

electrostatic potential � is given in units of �0 = ℏ
/
2etGL , 

and the vector potential A is scaled by Hc2� , where Hc2 is 
the bulk upper critical field. We use the parameters u = 5.79 
and Γ = tE�0∕ℏ = 10 , tE is the inelastic scattering time 
[24]. Neumann boundary conditions are taken at all sample 
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Fig. 1  Layout of the stud-
ied sample: a thin film with 
L = 12� , W = 8� , a = 2� , 
r
i
= 0.6� , and r

0
= 2.6� , with 

d ≪ 𝜉 , J is the external applied 
current. For our analysis, we 
choose x

1
= 3� , x

2
= 6� and 

x
3
= 9�



Emergent Materials 

boundaries, except at the electrodes, where we used � = 0 
and ∇� ∣n= −J , where J is the external applied current den-
sity in units of J0 = c�ℏ∕2etGL , � is normal electrical con-
ductivity, and the mesh grid of resolution � = 0.1 . Although 
we consider T = 0 in our simulations, the generalizd time 
dependent-Ginzburg-landau equations can be applied to 
superconductors at T ≥ 0.5Tc , or equivalently, the sizes 
can be adjusted according to �(T) = �(0)∕

√
1 − T∕Tc.1 For 

instance, for T = 0.96Tc , and �(0) = 10 nm, we have � = 50 
nm. This gives L = 600 nm and W = 400 nm [25].

3  Results and discussion

We have considered three scenarios for to study the role 
of the defect on the vortex-state of the sample: Case 1, the 
defect is localized at position x1 = 3� ; case 2, the defect 
localized at the central position of the sample, x2 = 6� ; and 
finally considered a case 3, where we localized the defect in 
x3 = 9� . We do not consider external applied magnetic field 
and a DC current density J is uniformly applied through 
the electrodes. It is important to emphasize that the two-
dimensional plate being simulated represents a superconduc-
tor with a specific critical temperature.

3.1  V − I and R − I characteristic curves

The first thing we are interested to study is the response 
of the superconductor system to an external DC current 
density J, for this, we plot the voltage-current I-V and 
resistivity-voltage curves I-R for the three studied cases. In 
the Fig. 2 (a), is plotted the time average voltage V and in 
the Fig. 2(b), is plotted the resistivity ( �V∕�J) , both as a 
function of the applied current density J for the three afore-
mentioned positions of the defect. The arrows indicate the 
critical currents densities (current in which the first and 
subsequent vortex-antivortex pairs appears in the sample). 
So, we can see that J1L ≈ 0.243 , J2L ≈ 0.813 , J3L ≈ 0.906 ; 
J1C ≈ 0.366 , J2C ≈ 0.317 , and finally J1R ≈ 1.99 , J2R ≈ 2.67 , 
and J3R ≈ 3.167 . As it is known, the appearance of phase 
slip-lines is due to the non-homogeneity of the supercon-
ducting currents in the sample. We considered cases where 
the position of the defect highly affects the configuration and 
symmetry of the supercurrents, leading to a high depend-
ence of the position of the defect on the critical currents. We 
can appreciate a significant enhancement of the first critical 
current density for a case 3, so, the defect is in a position 
more distant from the left metallic contacts, therefore, the 
current distribution in the defect is symmetrical and homo-
geneous, leading to the appearance of the vortex-anti-vortex 
pairs at higher currents. For the case 1, the supercurrent is 
highly inhomogeneus bear to defect, leading to a lower criti-
cal current. The IR resistive curve exhibits typical behavior: 
within the range, J1 ≤ J ≤ J2 , curves have a local maximum 
that is related to the dynamics of the phase-slip-lines. In 
the interval J2 ≤ J ≤ J3 , the system is in a partially normal 
state, where the superconductivity is nearly destroyed in the 

Fig. 2  (a) Time average voltage V and b) Curve of the resistivity ( �V∕�J) , both as a function of the applied current density J for the three cases 
of positions of the defect. The subindices are left (L) (case 1); center (C), (case 2); and right (R), (case 3) denoting the position of the defect

1 It is very important to note that we propose a numerical solution for 
the TDGL equations where we use symmetry in the direction parallel 
to the direction of application of the external current, in such a way 
that the scalar potential is only solved for half of the sample, where 
the other half has reflection symmetry. The potential is an odd func-
tion. Let’s note that this does not apply to cases 1 and 3..
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film. Above J3 , the normal state sets in (except for the case 
2 where the sample reach the normal state in J2C).

3.2  Kinematic‑vortex velocity V
m

In the Fig. 3 (a, b), is plotted the average velocity Vm of the 
Vortex-anti-vortex pairs for (a) case 1 and 3 and (b) Case 
2. It is very interesting to note that for the asymmetrical 
case 1 and case 3 (Fig. 3 (a)), for applied currents J ≥ 3.2 
for the case 3, and J ≥ 3.5 , Vm → 0 , this means that the 
kinematic-vortex is no longer formed, and then, this pairs 
experiences a decreasing of its velocity, we can explain this 
phenomenon by the surface-barrier-effect role, the surface 
barrier energy (in the external surface and in the internal sur-
face of the defect) decreases due to the increase of the Lor-
entz force for higher J. As a consequence, the vortex pairs 
increasing its kinetic energy to leave the sample [25]. Oth-
erwise, for the symmetrical case 2 (Fig. 3 (b)), we see that 
the velocity Vm increases with J, for J ≥ 1.5 , Vm increases. 
The velocity of annihilation of vortex-anti vortex pairs is 
Vm(1, 3) ≈ 10(Vm(2)) , is very interesting to note that the pin-
ning center position could be related by the velocities of gap-
like samples, given that Vm in gap-like samples can be ten 
times larger than those of gapless systems, and it is related 
to its larger superconducting-normal transition current [25]. 
The difference in the velocities is also case-dependent, due 

that the defect leading to a depreciation of the superconduc-
tivity and allowing a faster motion of the vortices. In the 
Fig. 4, is plotted the time average voltage V as a function of 
the time t for the three studied cases. As is well-known, the 
temporal behavior of the voltage curve produced by the vor-
tex anti-vortex dynamics is highly affected by the configura-
tion, dimensionality, or nature of the system. If we appreci-
ate the Fig. 3(a), the average velocity at J ≥ 2.2 presents a 
non-conventional behavior for the case 1 and for the case 3. 
This leads us to not find a determined pattern in the oscilla-
tion frequency of the kinematics-vortex in the voltage-time 
curve. We considered that the presence of the defect and its 
asymmetric position play a fundamental role in the value of 
the surface energy barriers and super currents.

3.3  Kinematic‑vortex state

In this subsection, we plot the logarithm of the modulus of 
the order parameter ∣ ln(�) ∣ for the studied cases, each of 
them at specific, J with the aim of observing the processes of 
creation and annihilation of vortex-antivortex pairs. Within 
of the Fig. 5, we have plotted the logarithm of the modulus 
of the order parameter ln(∣ � ∣) . In the left panel, denoted as 
Case 1, at J = 0.28 , we can observe the ingress of vortex-
antivortex pairs taking place at the upper ends of the system. 
Over time, these pairs travel through the neck of the defect, 

Fig. 3  Average velocity of the 
Vortex-anti-vortex pairs, Vm, 
for (a) case 1 and 3 and (b) 
Case 2

Fig. 4  Average voltage V as a function of the time t for the three studied cases. (Inset)(a) three studied cases
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converging at the left end of the inner circle. It’s notewor-
thy to mention that this inner circle is also a superconduc-
tor, with equal critical temperature of the sample. Notably, 
the red (blue) regions represent a superconducting (normal) 
state, denoted as � = 1(0) . Additionally, it’s interesting to 
note that the entire process occurs within the defect. As the 
pairs approach each other, a higher normal state is achieved, 
resulting in a significant increase in resistivity. Eventually, 
the pairs meet and annihilate, returning to a superconduct-
ing state, but with higher resistance than initially. For the 
right panel (Case 2), in (a) at J = 0.38 , the vortex anti-vortex 
pairs are created in the center of the defect, Subsequently, 
these pairs travel through the neck of the defect until they 
annihilate at the upper ends. It’s worth noting that when the 
pair creation process occurs in the center and annihilation 

takes place at the ends, a lower resistive state is observed 
over time, as opposed to previous cases. In (b), for Case 2 at 
J = 1.00 , pairs are once again created at the ends and anni-
hilated in the center, resulting in a high resistive state during 
both the creation and annihilation processes.

In the Fig. 6, we plot the results for the case 3, where the 
defect is positioned on the right-hand side of the sample. We 
present the temporal evolution of the kinematics vortex at a) 
J = 0.5 , b) J = 1.0 , and c) J = 2.0 . For J = 0.5 , b) J = 1.0 , 
we can appreciate that the formation of vortex-antivortex 
pairs occurs in the external border of the sample at a verti-
cal line across xr = x3 + ri = 9.6� , with a subsequent anni-
hilation in the inner circle, specifically in a point localized 
in the internal defect, xr = x3 + ri = 9� + 0.6� = 9.6� and 
yr = W∕2 = 4� . In the scenario for J = 0.5 occurs a resistive 

Fig. 5  Logarithm of the modulus of the order parameter ln(∣ � ∣) . (left) Case 1 at a) J = 0.28 , b) J = 0.50 , (right) Case 2 at a) J = 0.38 ; b) 
J = 1.00 . Red (blue) regions represents a superconducting (normal) state � = 1(0)
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state during the early stages of pair creation, followed by a 
reduction until annihilation, where the resistive state once 
again becomes prominent. This initial stage is not observed 
when J = 1.00 , in which the resistive state progressively 
strengthens as annihilation approaches. Finally, for J = 2.00 
(and for J = 1.0 ), the vortex anti-vortex creation is observed 
at a vertical line across x3 − ri = 9� − 0.6�8.4� , and anni-
hilation occurs in a left point on the equator of the defect, 
xl = x3 − ri = 8.4� and yl = W∕2 = 4� , maintaining a con-
sistently high resistive state throughout the process.

In Fig. 7, it is evident that achieving analogous resis-
tive effects between the case 1 and case 3 requires a higher 
value of J. For J = 1.0 we observe that kinematic-vortex 
enter on the right side of the defect on a line passing out-
side the inner circle but inside the outer circle (Fig. 7(up) 
(a)). As the J increases, the point where the next vor-
tex anti-vortex pairs enter the film moves away from the 
defect and are located in a point tangent to the outer circle 
xr = x1 + ro = 3� + 2.6� = 5.6� . A similar scenario can be 
observed in the Fig. 7 down)(b) at J = 2.76 for the case 3. 
With a similar way of the case 1, the kinematic-vortex enter 
on the left side of the defect on a line passing outside the 
inner circle but inside the outer circle, then is J increases, 
the point where the next vortex anti-vortex pairs enter the 

film moves away from the defect and are located in a point 
tangent to the outer circle xl = x3 − ro = 9� − 2.6� = 6.4� . 
It is interesting to note that for the cases where the defect 
is located asymmetrically on the sample, at high J, the 
phase-slip lines occur in points equidistant from the center 
Δx = 0.4�.

4  Conclusions

In this contribution, we solve the generalized Ginzburg-
Landau equations to study the superconducting state of a 
thin-film with an internal shape pinning-center made of 
a material at low critical temperature. We analyze cur-
rent-voltage I − V  , resistivity-voltage I − R and voltage-
time V − t curves, velocity of vortex anti-vortex pairs 
annihilation, and superconducting electronic density 
considering three positions of the defect in the sample. 
We found a high dependence of the defect position on 
the critical currents, points where the vortex anti-vor-
tex pairs enters to sample and its velocity, it is due to 
asymmetry on the currents caused by the position of the 
defect. Finally, we found an interesting and novel behav-
ior of the phase slip line, a distinctive deformation in 

Fig. 6  Logarithm of the 
modulus of the order parameter 
ln(∣ � ∣) , for the case 3. At (a) 
J = 0.50 , (b) J = 1.00 , and c) 
J = 2.00 . Red (blue) regions 
represents a superconducting 
(normal) state � = 1(0)
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the current flow is observed, resulting in a counterflow 
effect. When pairs are created from the center towards 
the ends, this counterf low assumes an ovular shape. 
Conversely, when pairs are generated at the ends and 
move towards the center, this counterflow develops with 
a focus on the vortices, eventually forming a pattern 
resembling a figure in shape of X at their convergence, 
with the counterf low concentrated within the vortex 
cores. Also, we found that for higher J, the point where 
the vortex anti-vortex pairs enter the film moves away 
from the defect and are located in a point tangent to the 
outer circle (case 1 and case 3) of the defect. Our results 
show a way to control the dynamics of the vortices, criti-
cal currents, and points of annihilation or creation of 
the cinematic vortices by including defects in the sam-
ple, important in the design and development of devices 
applied in industry and engineering. Understanding the 
mechanisms of dissipation in mesoscopic superconduc-
tors is not only of fundamental value but also crucial for 
further technological advancements, particularly in the 
development of superconducting devices such as single-
photon and single-electron detectors.
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