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Abstract
Accurate biphasic flow pattern recognition is essential in the design of coatings for the oil and gas sector because it enables 
engineers to create materials that are tailored to specific flow conditions. This results in enhanced corrosion protection, 
erosion resistance, flow efficiency, and overall performance of equipment and infrastructure in the challenging environ-
ments of the oil and gas industry. The development of flow maps has been based on empirical correlations that incorporate 
characteristics such as superficial velocities, volume fractions, and physical properties such as the density and viscosity of 
the analyzed substances. In addition, geometric parameters such as the inclination and the internal diameter of the pipes are 
considered. However, due to the difficult working conditions on offshore platforms and the limitations in monitoring internal 
flow patterns, technological advances have been implemented to improve this process using artificial intelligence techniques. 
In this context, this study proposes using a long-term memory (LSTM) recurrent neural network to predict the flow patterns 
generated in vertical pipes. This LSTM network was trained and validated using data obtained from a literature database. 
The results obtained showed that the model has a prediction error of less than 1%. These technological advances represent 
an important step towards optimizing the flow pattern identification process in the hydrocarbons industry. By leveraging the 
capabilities of artificial intelligence, more accurate and reliable forecasts can be obtained, enabling informed decisions and 
improving the efficiency and safety of operations.
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1 Introduction

Multiphase flow transport must be considered in designing 
and optimizing many engineering systems, such as food pro-
cessing equipment, fuel cells, and the petrochemical industry 
[1]. The latter has focused its current research on crude oil 
transport [2]. The optimization of production in oil fields 
occurs with the continuous monitoring of flow rates, tem-
perature, and pressure of the fluid extracted from wells. Per-
formance can be measured against extraction costs, which is 
possible with reliable data that provide a clear perspective 

on fluid transport. Based on the abovementioned concepts, 
studies have been developed to model multiphase flows in 
transport lines worldwide [3]–[4].

Predicting flow patterns in the oil and gas sector is essen-
tial to optimize operational efficiency, maximize production, 
ensure safety, comply with regulations, prevent equipment 
wear, and minimize environmental impact. It also facilitates 
the implementation of predictive maintenance strategies 
and contributes to continuous and reliable operation while 
reducing costs and improving risk management in a critical 
industry [5]. Coatings and thin films are often applied to 
surfaces in the oil and gas industry to protect equipment and 
infrastructure from corrosion caused by contact with cor-
rosive fluids [6]. Understanding the biphasic flow patterns 
of these fluids can help design coatings that are optimized 
for specific flow conditions, ensuring effective corrosion 
protection. Moreover, solid particles suspended in the fluid 
can cause erosion of surfaces over time. Recognizing flow 
patterns helps design coatings that are resistant to erosive 
wear, extending the lifespan of equipment and reducing the 
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need for frequent maintenance [7]. Certain flow patterns can 
lead to the accumulation of hydrates and waxes, which can 
obstruct pipelines and impede fluid flow. Coatings and thin 
films can be engineered to inhibit the adherence of these 
substances to surfaces, maintaining efficient flow even under 
challenging conditions.

The studies developed by [8] demonstrate the predictive 
ability of artificial neural networks fed by a class of data-
driven virtual flow meters (VFM). This work showed that 
neural networks could be a promising tool for predicting 
multiphase flow rates using pressure and temperature data. 
Conversely, as indicated by the research presented in refer-
ence [9], the update frequency of a steady-state VFM model 
is critical for sustaining optimal performance over time, par-
ticularly in dynamic, non-stationary conditions.

The study of multiphase flows integrates concepts directly 
related to transport phenomena in modeling and flow char-
acterization, using the principles of conservation of mass 
and conservation of momentum. These principles allow for 
a mathematical approximation of flow characteristics inside 
pipelines [10]. The description of multiphase flow behavior 
requires the use of experimental data or correlations due to 
the complexity involved in their study. Although advanced 
computational methods are being developed, data and cor-
relations are generally still needed to implement multiphase 
flow modeling effectively [11].

Multiphase flows can be found in multiple engineering 
practices, especially in the oil industry, where two-phase 
and tri-phase flows can be found [12]. Two-phase flow refers 
to the interactive flow of two distinct phases (each phase 
representing a mass or volume of matter) with common 
interfaces in a channel. Possible combinations are solid–liq-
uid, where solid particles are dispersed primarily in liquid; 
solid–gas, where a gas stream transports solid particles; and 
liquid–vapor (gas), where the volume fraction of one phase 
relative to the other results in different flow regimes and 
combination of the above [13].

At present, there is a large number of studies on the 
behavior of multiphase flows. One approach being explored 
is data-driven modeling, a technique that analyzes system 
data and looks for relationships between input and output 
variables without relying on knowledge of the underlying 
physical equations [14, 15]. This promising approach makes 
it possible to take advantage of the information contained in 
the data and discover patterns and correlations that can be 
used to understand and predict the behavior of multiphase 
flows efficiently and accurately. This poses challenges when 
supplying input data; thus, it is essential to give adequate 
statistical treatment and avoid a poor fit in model parameters 
[16]. This process is achieved by implementing artificial 
neural networks, which start by calculating a function with 
the inputs given, propagating the calculated values from the 
input neurons to the output neurons and using the weights as 

intermediate parameters. Learning occurs by changing the 
weights that connect the neurons [17] to have predictions 
that fit reality.

The study in [18] used daily data on the production of 
oil, water, and gas generated from an oil field as the primary 
input variable to model a neural network, resulting in predic-
tions of multiphase production in the short term. The long 
short-term memory (LSTM) algorithm was implemented to 
generate the model. This approach showed that, compared 
to the model based on numerical simulation physics, this 
neural network approach was less dependent on engineer-
ing calculations and offered faster and more robust solu-
tions. In [19], an investigation was conducted using artificial 
intelligence systems with actual data from an oil platform in 
the South China Sea to develop a virtual flow meter model. 
This work demonstrated how LSTM considers the influence 
of previous time steps on the evaluated flow rate, captur-
ing the relationship between parameters such as tempera-
ture and pressure on the predicted flow rate. LSTM is also 
highlighted in [20], where it was shown that precision is 
improved if the input and output sequence lengths are equal 
and how to remove this limitation without losing precision 
in the neural network.

This work presents the development of a recurrent neural 
network model implementing the LSTM algorithm to predict 
flow patterns generated within vertical two-phase liquid–liq-
uid flow pipes of lubricating oil and water. First, two-phase 
flow data is collected and processed. The following section 
discusses structuring the LSTM neural network, followed by 
the evaluation and optimization approaches. Finally, results 
are presented for different network configurations, followed 
by concluding remarks.

2  Methodology

2.1  Data processing

The data used in this study was collected by [21], who com-
piled relevant information on the two-phase flow of oil and 
water in a vertical pipe. For this, the works of 18 authors 
previously published in the literature were analyzed. These 
collected data provide a solid and representative basis for 
the development of this work, allowing an exhaustive and 
well-founded analysis of the behavior of the biphasic flow in 
this specific configuration. Table 1 presents the information 
in the database, summarizing the quantitative characteristics 
of each analyzed work.

Different types of two-phase flows were considered in the 
study, including dispersed oil-in-water (D O/W), dispersed 
water-in-oil (D W/O), churn oil-in-water (churn O/W), churn 
water-in-oil (churn W/O), core flow, stratified oil-in-water 
(S O/W), stratified water-in-oil (S W/O), flow in transition 



Emergent Materials 

(TF), very fine dispersed oil-in-water (VFD O/W), and very 
fine dispersed water-in-oil (VFD W/O); see Fig. 1. These 
different types of two-phase flows represent various con-
figurations and flow patterns that can occur in oil and water 
systems and were considered in order to better understand 
the characteristics and behavior of multiphase flows.

The variables used to build the database are the super-
ficial velocities of the water phase ( jw ) and oil phase ( jo ). 
These velocities are function of injection rates and the 

cross-sectional area of the pipe, as well as the mixture 
velocity ( J ) and the volumetric fractions of oil–water flu-
ids ( �o and �w ) that characterize the flow. Other impor-
tant parameters included in the data collection are the oil 
viscosity ( �o ), oil density ( �o) , and the internal diameter 
of the pipe ( D ). Specific geometrical configurations are 
generated for each combination of parameters, grouped for 
this work into the ten flow patterns, which are the output 
data of the intelligent model to be developed. Table 2 pre-
sents the specific amount of data available for each flow 
pattern.

2.1.1  Normalization

To train the neural network, it is crucial to normalize the 
information that will be used as inputs to the intelligent 
model, providing precise data that allows the network to 
relate the supplied variables with the predicted pattern. 
Normalization is defined as a scale change of the original 
data such that it falls within a specific range [38]. The 
input vector of the network is normalized, which con-
tains x =

[

jo, jw, j, �o, �w,D,�o

]

 . Equation (1) presents the 
mathematical definition used to normalize the numerical 
information:

The variable Xmax represents the maximum value of the 
series under study, while Xmin represents the minimum 
value of the series, and x corresponds to the point value 
to be normalized.

(1)Xnormalized =
x − Xmin

Xmax − Xmin

Table 1  Summary of the collected database from reference authors 

Author D[m] �
o
[Pa.s] �

o
[kg/m3] N°. flow 

patterns
N°. data

[3] 0.0284 0.488 925 3 392
[22] 0.1064 0.00188 800 6 49
[23] 0.02 0.011 856 3 101
[24] 0.05 0.02 850 5 126
[25] 0.04 0.035 860 4 92
[26] 0.0263 0.0201 851 2 15
[27] 0.02 0.125 801 4 175
[28] 0.127 0.001 801 2 9
[8] 0.027 0.02 801 4 109
[29] 0.0254 0.001 792 4 55
[30] 0.0254 0.001 792 5 32
[31] 0.01 0.287 1823 3 1421
[32] 0.026 0.0011 793 5 90
[33] 0.03 0.03 856 4 252
[34] 0.0284 0.5 930 1 92
[35] 0.03 0.044 860 4 98
[36] 0.02 0.09732 857 7 1699
[37] 0.04 0.0041 824 1 57

Fig. 1  Two-phase flow patterns 
in vertical pipes  

Table 2  Quantification of data for each flow pattern

Flow pattern type D O/W D W/O Churn O/W Churn W/O Core flow S O/W S W/O TF VFD O/W VFD W/O

Amount of data 947 1292 21 127 481 460 657 315 366 205
% of total 19% 27% 0.40% 3% 10% 9% 13% 6% 8% 4%
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2.1.2  Codification

Given that the flow pattern is defined in the database as 
a categorical variable, it is necessary to encode the label 
that is assigned to the ten different configurations. To carry 
out this encoding, a number from 0 to 9 is assigned to 
each of the defined flow patterns. Since there are different 
data labels, simple encoding is insufficient. In this case, 
encoding is achieved using the OneHotEncoder function, 
a well-established technique commonly employed in the 
fields of data science and machine learning. The funda-
mental concept behind one-hot encoding is to represent 
categorical variables as binary vectors. Each category is 
transformed into a separate column with binary values (1 
or 0) to indicate the presence or absence of that category in 
a data row. This process eliminates the encoded variable as 
a whole and introduces a binary variable for each unique 
integer value. Table 3 shows the result of encoding the ten 
flow patterns with their respective binary representation.

2.2  LSTM model structuring

The identification of two-phase flow patterns in vertical oil 
pipelines is an inherently sequential and time-dependent 
problem. Flow patterns change in response to previous 
events and evolve continuously. In this context, the use of 
long short-term memory networks (LSTM) is justified due 
to its ability to capture sequential dependencies and handle 
time series data. While support vector machines (SVM), 
artificial neural networks (ANN), K-means, K-nearest neigh-
bors (KNN), and similar techniques are highly effective in 
classification and clustering problems, they do not possess 
the inherent capacity of LSTM to effectively model and 
predict data sequences. With all the processed information 
from the reference database, we proceed with the definition 
of the internal structure of the LSTM. A general scheme of 
the structure of this type of neural network is presented in 
Fig. 2, as well as the vector with the input parameters that 
will be used to generate the predictions. Figure 2 shows how 
the hidden layers are connected sequentially to process the 

Table 3  OneHotEncoder 
codification for the flow patterns

ID Flow pattern OneHotEncoder application

0 D O/W 1 0 0 0 0 0 0 0 0 0

1 D W/O 0 1 0 0 0 0 0 0 0 0
2 Churn O/W 0 0 1 0 0 0 0 0 0 0
3 Churn W/O 0 0 0 1 0 0 0 0 0 0
4 CoreFlow 0 0 0 0 1 0 0 0 0 0
5 S O/W 0 0 0 0 0 1 0 0 0 0
6 S W/O 0 0 0 0 0 0 1 0 0 0
7 TF 0 0 0 0 0 0 0 1 0 0
8 VFD O/W 0 0 0 0 0 0 0 0 1 0
9 VFD W/O 0 0 0 0 0 0 0 0 0 1

Fig. 2  General structure of an 
LSTM with input, hidden, and 
output layers
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data from inputs layers. In LSTM, the combination of the 
current input and the previous hidden state, along with the 
LSTM’s various gates (including the forget gate, input gate, 
and output gate), determines how the cell state is updated 
and what information is retained or forgotten in the memory. 
The input vector could be interpreted as a three-dimensional 
array, composed of samples, time series, and features. Once 
the input vector with the parameters is defined, the categor-
ical representation is generated, which will be the output 
of the predictive model. In this case, the output has been 
assigned the flow pattern developed inside the vertical pipes.

The operation of an LSTM is based on the internal pro-
cess that occurs in its state cells. These cells integrate acti-
vation functions to process both new information and infor-
mation from previous state cells, thus allowing sequential 
processing and retention of relevant information over time. 
This mechanism of integration and processing of informa-
tion in the state cells is essential for the effective operation 
of the LSTM. Figure 3 presents a diagram of the logical 
sequence that a state cell follows internally. Several steps 
occur before obtaining a hidden state or an output from the 
cell, which involve multiple transformations of the data.

The logical sequence developed within the LSTM cells 
allows for a detailed explanation of the order in which infor-
mation is processed within them. Thus, Fig. 3a presents a fil-
ter for which information is retained and which is discarded 
in the cell state. This operation is carried out thanks to the 
sigmoid layer ( � ) known as the forget gate:

This gate analyzes ht−1 and Xt , which correspond to the 
current input and the output of the previous state, and gen-
erates a number between 0 and 1 for each number in the 
cell state Ct−1 . W  is the weighting function adjusted inside 
the algorithm during the training and b is the bias. Thus, 
when the function generates a 1, it saves this information, 
while when it generates a value of 0, it skips the processed 
information.

Then, the neural network selects the information that will 
be stored in the cell state (Fig. 3b). This processing is done 
in two parts: in the first part, a sigmoid layer evaluates the 
values to be updated in the input gate it , and in the second 
part, a layer with the hyperbolic tangent function ( tanh ) cre-
ates a new vector with candidate values Ct , some of which 

(2)ft = �
(

Wf

[

ht−1, xt
]

+ bf
)

Fig. 3  Logic sequence developed inside the LSTM state cell: a first 
logic order, b second logic order, c third logic order, d completion 
of the sequence. Sigmoid layer �, hyperbolic tangent function tanh, 

input h
t−1 , and output X

t
 of the previous state. The hidden layers pro-

duce the current hidden state h
t
 as the output 
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will be added to the cell state. This sequence is synthesized 
in Eqs. (3) and (4):

After selecting the information to be included in the cell 
state, the cell state is updated (Fig. 3c). The previous state, 
Ct−1 , is converted to C̃t by multiplying it with ft , and then 
adding itCt . This results in Eq. (5):

Finally, in Fig. 3d, the value that will continue the process 
to the upper cells is selected. The output gate ot is based on 
the state of the cell, and a sigmoid layer is executed to decide 
which parts of the cell state are generated. Then, the cell 
state is processed with a hyperbolic tangent function that 
converts the values to a range between − 1 and 1, which is 
multiplied by the output of the sigmoid gate such that only 
the selected parts are endorsed, generating Eqs. (6) and (7):

In problem-solving using neural networks, objective func-
tions tend to be nonlinear. The nature of artificial neurons is 
logistic regression, which results in a linear function:

Equation (8) shows the logistic regression function, which 
is a discrete binary function, while Eq. (9) represents a linear 
function. When multiple neurons are grouped into multiple 
layers, the network becomes a super neuron, whose goal is 
a linear function. In this way, activation functions are imple-
mented for neural networks, which generate non-linearity in 
the objective function. Neural networks use activation func-
tions that are nonlinear to develop the learning process [39].

2.3  Model evaluation and optimization 

The loss function is essential to evaluate the performance of 
an intelligent model. In this context, key statistical param-
eters are used to determine the performance and accuracy 
of the proposed models. The mean square error (MSE) and 
the cross-entropy are two of the statistical parameters used 
for this purpose. These parameters allow us to quantify and 
measure the discrepancy between the model predictions and 

(3)it = �
(

Wi

[

ht−1, xt
]

+ bi
)

(4)C̃t = tanh
(

Wc

[

ht−1, xt
]

+ bc
)

(5)Ct = ftCt−1 + itCt

(6)ot = �
(

Wo ∙
[

ht−1, xt
]

+ bo
)

(7)ht = ottanh(Ct)

(8)P =
1

1 + e−y

(9)y = a1x1 +⋯ + anxn

the actual values, providing a quantitative assessment of the 
accuracy and quality of the model predictions. The mean 
square error reads

where yi is the target value for the test instance xi , �
(

xi
)

 is 
the expected target value for the test instance xi , and n is the 
number of test instances.

For cross-entropy, H is the cross-entropy function, P is 
the target distribution, and Q is the approximation of the 
target distribution. Cross-entropy is calculated using prob-
abilities of events from P and Q as

In order to optimize the final model, taking into account 
its evaluation, different configurations are defined by varying 
parameters of the neural network structure, such as the num-
ber of cells per layer, the number of stacked hidden layers, 
the activation function of the model, and the loss function. 
All these adjustments are made using open-source code in 
Python v3.9. The parameters for each type of LSTM con-
figuration are presented in Table 4.

During the structuring and development phases of the 
predictive model, it is crucial to pay attention to the com-
pilation stage, where all the parameters selected to train 
the network are carefully considered. In the particular case 
of the LSTM 3 network, the model is compiled specifying 
the Adam optimizer and the categorical cross-entropy loss 
function. This configuration is implemented with the aim 
of achieving better performance in the classification of the 
series, taking into account the type of information that is 
being used.

The model is adjusted by updating the weights for each 
parameter included in the training set, considering that pre-
vious cell states are integrated into each of them. All LSTM 
structures were trained with 80% of the collected data. In 
the evaluation, the remaining 20% of the data is used to 
verify the results in each of the metrics specified at the time 
of compiling the model. A graphical analysis is carried out 
in Fig. 4 with the aim of selecting the model with the best 
performance. The values of the loss function for each model 
are examined both in the training phase and in the valida-
tion phase, considering a total of 300 epochs. Through this 
analysis, we seek to identify the model that presents a lower 
loss and, therefore, a better fit to the data and a greater pre-
dictive capacity.

After evaluating the performance of the different con-
figurations, notice that during training, LSTM 1 tends to 
decrease the error faster than the other models, making it the 
optimal configuration for predicting flow patterns. Figure 4a 

(10)MSE =

∑n

i=1

�

yi − �
�

xi
��2

n

(11)H(P,Q) = −
∑

x∈X
P(x) × log(Q(x))
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shows the performance of each of the four models on the 
training data, with LSTM 1 being selected over the oth-
ers due to its performance in the validation phase, having 
the lowest error of all models. On the other hand, LSTM 4 
implements a different loss equation from the others, start-
ing its training with a considerable error and taking longer 
to decrease it. This is due to the characteristics of the loss 
function, which does not binary classify the expected flow 
patterns, but treats them as an integer encoding. When com-
pared to the expected output, it creates a discrepancy in the 
output of the network. Figure 4b shows the performance of 
the networks on the validation data, detailing the behavior of 
the networks when faced with unknown data. The error fluc-
tuates compared to that obtained in the training data. Values 
tend to converge if the loss function is the same. However, 
when testing with the MSE loss function, it presents an error 
greater than 2%, demonstrating that it is the model with the 
lowest performance.

Figure 5a presents the accuracy values obtained for each 
model during the training. LSTM models 1, 2, and 3 tend to 
increase their accuracy. Only LSTM model 4, which has a 
different loss function, presents a linear behavior stagnating 
at an accuracy of less than 0.1. This behavior is due to the 
complexity of the prediction, and this complexity is given 
by the need to predict one flow pattern within ten different 
types. With OneHotEncoder encoding, better performance is 
obtained than with normal encoding, due to OneHotEncoder 
encoding the data in a binary format. More data is needed 
to increase the accuracy of the network. On the other hand, 
Table 2 shows how a certain flow pattern represents less 
than 1% of the total data. This may incur in overfitting of the 
network, causing the model to remember the supplied data, 
but be inaccurate with model evaluation data.

The adjustment of the number of epochs tends to be 
irrelevant if it is prolonged over time, due to its convergent 
trend. The LSTM 1 model was selected to test the generation 

Table 4  Parameter definition 
for the structured LSTM 
configurations

Algorithms Hyperparameter Selection Other parameters Selection

LSTM 1 Learning rate 0.001 Activation function Sigmoid
Number of hidden layers 2 Loss function Categorical cross-entropy
Number of cells per layer 80 Optimizer Adam
Batch size 128 Epochs 300

LSTM 2 Learning rate 0.001 Activation function Sigmoid
Number of hidden layers 2 Loss function Categorical cross-entropy
Number of cells per layer 30 Optimizer Adam
Batch size 32 Epochs 300

LSTM 3 Learning rate 0.001 Activation function Sigmoid
Number of hidden layers 3 Loss function Categorical cross-entropy
Number of cells per layer 30 Optimizer Adam
Batch size 128 Epochs 300

LSTM 4 Learning rate 0.001 Activation function Relu
Number of hidden layers 2 Loss function MSE
Number of cells per layer 80 Optimizer Adam
Batch size 1 Epochs 300

Fig. 4  Evaluation of models 
with respect to the loss func-
tion: a training phase and b 
validation phase
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of flow maps, because the error obtained in this model is 
less than 1%, and its accuracy grows exponentially with the 
epochs, reaching a value close to 0.9 in the training. In this 
model, the supplied data was parameterized to observe the 
behavior of the model.

3  Results

In this section, the performance of the LSTM 1 model in pre-
dicting flow patterns is evaluated, and the error seen in the 
previous section is verified. Different flow maps generated 
by the LSTM 1 network using reference data are presented. 
After selecting the model with the best performance, in this 
case, LSTM 1, a flow map generation test was carried out. 
For this, 300 data sets were provided as input to the network. 
Figure 6 shows the number of times the model correctly pre-
dicted the flow pattern. Yellow marks represent the flow pat-
tern of the provided data, while blue marks indicate the pre-
dictions generated by the network. An error of only 0.3% is 
observed, which agrees with the results presented in Fig. 4a. 
The loss function used to evaluate the model demonstrates 

excellent classification performance, indicating that the 
model accurately fits the actual data. In this case, there was 
a mismatch in a single prediction, and as the amount of data 
increases, the error is expected to increase to 0.8% when all 
data is considered. Although the data provided to generate 
this graph only includes 8 of the 10 possible flow patterns, 
it is still a significant sample due to the amount of data used. 
The model, however, incorrectly predicted a pattern for that 
specific data.

The model did not generate additional patterns beyond the 
eight present in the range. For the specific data points in the 
input vector x =

[

jo, jw, j, �o, �w,D,�o

]

 , the model predicted 
a pattern of D W/O, while the expected pattern was VFD 
W/O. However, this is within the expected error margins.

The flow map generated with the complete dataset from 
reference data is presented in Fig. 7, which shows the flow 
pattern depending on Jw and Jo . in logarithmic scale. The 
flow map indicates that the decrease in the magnitudes of 
water and oil velocities induces the formation of the flow 
pattern of S W/O and D W/O. Figure 7 also shows that the 
increase in the magnitude of Jw and Jo generates the forma-
tion of the other types of flow patterns. Notice that the S 

Fig. 5  Evaluation of model 
accuracy: a training phase and b 
validation phase

Fig. 6  Evaluation of the algo-
rithm LSTM 1 for the different 
flow patterns
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O/W flow pattern presents overlapping points, which rep-
resent the influence of other variables in the formation of 
a flow pattern, such as internal diameter and oil viscosity.

Figure 8 shows the flow patterns obtained by implement-
ing LSTM 1 network. The differences between the maps 
presented in Fig. 7 and Fig. 8 can be seen in the region of the 
flow map where the transition between flow patterns occurs, 
generated when the oil velocity is high and the water veloc-
ity is low. The magnitude ranges of the superficial velocities 
of the substances are 0.01 to 1 m/s for Jw and 0.1 to 1 m/s 
for Jo.

In this study, two flow maps were developed considering 
the information provided by each corresponding author. Fig-
ure 9 presents the flow map structured with the information 
presented by [24], in which five flow patterns (CoreFlow, D 

O/W, D W/O, TF, VFD O/W) and a total of 125 data points 
are identified. Additionally, the separation zone between the 
D W/O and D O/W flow patterns is presented. Consider-
ing the magnitudes of the velocities developed by the sub-
stances, 60% of the data points are in the D O/W flow pat-
tern. On the other hand, the CoreFlow pattern is presented 
in the zone of high superficial velocities for water and low 
velocities for oil.

The implementation process of the LSTM 1 network 
resulted in the flow map presented in Fig. 10. The perfor-
mance of the network is low in the fluid transition zone, 
showing multiple prediction errors and generating patterns 
that are not defined in that zone. In this case, there are nine 
correct predictions out of 18, which is due to the behavior 
of the fluid in the transition area. The transition involves the 

Fig. 7  Flow map with data from 
reference values in Table 1

Fig. 8  Flow map generated 
from LSTM 1 algorithm
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change of the dominant fluid, and different authors have lim-
ited information about this zone due to its chaotic behavior, 
which cannot be fully controlled. However, it is worth noting 
that the LSTM 1 network accurately predicts the flow pat-
terns developed in the other zones of the flow map.

Additionally, Fig. 11 presents the flow map developed 
using the information from [33], which shows a greater 
number of points in the transition zone, and also pre-
sents fewer flow patterns (D O/W, D W/O, S O/W, TF). 
Figure 12 shows the results obtained by processing the 
data with the LSTM 1 network, in which 31 correct flow 
patterns out of the 38 expected are identified, showing 
better performance compared to the flow chart generated 
in Fig. 10. The model generates VFD O/W, which cor-
responds to an intermediate pattern delimited by TF and 

D W/O, demonstrating correct behavior of the neural net-
work. Moreover, it shows that only two patterns are gen-
erated outside the range delimited by the reference data, 
which are the VFD O/W and VFD W/O patterns. Further-
more, in the velocity range of 0.01 to 0.1 m/s for Jw and 
0.09 to 0.1 m/s for Jo , the flow pattern S O/W is presented, 
for which the predictions developed by the implemented 
network show high precision when the injection veloci-
ties of water and oil are low, exhibiting only one error 
out of 52 predictions in this area. From this analysis, it 
is concluded that an increase in the oil injection velocity 
results in a displacement of the zone towards the vicinity 
of the transition zone. As a result, a greater imprecision 
is observed in the flow patterns obtained when using the 
LSTM 1 model.

Fig. 9  Flow map with data from 
Flores et al. [24]

Fig. 10  Flow map generated 
from Flores et al. [24], applying 
the LSTM 1 model
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4  Conclusions

In this study, various LSTM models were built for the 
prediction of data series containing liquid–liquid biphasic 
fluid characteristics of oil and water. These characteristics 
include oil and water injection rates, oil and water volume 
fractions, oil viscosity, and internal diameter of the pipe 
through which they flow. The objective was to determine 
the flow pattern present in a determined value of each 
characteristic. Four different configurations for the LSTM 
network were proposed, and once compiled and trained, 
the error was evaluated against the expected predictions. 
The results showed that LSTM 1 had the smallest error, 
with 0.98%, followed by LSTM 2 with 1.2%, LSTM 3 
with 1.4%, and LSTM 4 with 3.5%. The LSTM 1 setup 
consisted of two hidden layers with 80 memory cells in 

each, using categorical cross-entropy as the loss function. 
This allowed flow pattern prediction accuracy in a vertical 
pipe with less than 1% error.

The low performance of the LSTM 1 model in the tran-
sition zone is due to the scarcity of data available in these 
areas. In addition, it was shown that the performance of the 
model improves significantly when a large amount of data 
is available, increasing the accuracy from 50 to 83%. This 
highlights the importance of providing a larger amount of 
data for network training.

This study has shown that it is possible to develop models 
based on the prediction of time series using injection veloci-
ties, volume fractions, diameter, and viscosity, to determine 
liquid–liquid biphasic flow patterns of oil and water in a 
vertical pipeline. LSTM networks are particularly well-
suited for this task due to their ability to model sequential 

Fig. 11  Flow map with data 
from Mydlarz-Gabryk et al. [33]

Fig. 12  Flow map generated 
from Mydlarz-Gabryk et al. 
[33], applying the LSTM 1 
model
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data, including time-dependent behavior in flow patterns. 
By structuring the data into temporal sequences, LSTM 
enables the discernment of patterns that other techniques 
might overlook, offering a detailed and insightful analysis 
of flow behavior. This represents a significant advantage in 
addressing the dynamic nature of flow patterns in complex 
systems. In the future, it is planned to investigate the behav-
ior of the model with data from offshore platforms and use 
physically informed networks to obtain samples, with the 
aim of improving the quality and representativeness of the 
data used in network training.
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