Skip to main content
Log in

Nickel oxide nanoparticles synthesized by Rose hip extract exert cytotoxicity against the HT-29 colon cancer cell line through the caspase-3/caspase-9/Bax pathway

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In this study, the extract of Rose hip was used for the first time to synthesize nickel oxide nanoparticles (NiO NPs). The NiO NPs synthesized were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), field emission electron microscopy (FESEM), and energy dispersive X-ray analysis (EDX). The PXRD showed that the nanoparticles had phase purity. In addition, FTIR and compositional studies (EDX) revealed no impurities, and FESEM imaging demonstrated an average particle size of 73.05 nm with spherical/semi-spherical morphology. The MTT test demonstrated that NiO NPs were cytotoxic against HT-29 cells (IC50: 500 µg/mL). According to flow cytometry and DAPI staining results, the HT-29 cells exposed to NiO NPs were found to undergo apoptosis, supported by the enhanced expression of caspase-3, caspase-9, and Bax, as main apoptosis-related genes. Regarding the cytotoxic effects of NiO NPs against the HT-29 cell line, they have the potential to be used as anti-tumor compounds. The effects of these NPs on other types of cancer cells are suggested to be evaluated in future studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. M.E.T. Yazdi et al., Biosynthesis, characterization, and antibacterial activity of silver nanoparticles using Rheum turkestanicum shoots extract. Res. Chem. Intermed. 44(2), 1325–1334 (2018)

    Google Scholar 

  2. S.M. Mousavi-Kouhi et al., Plant gel-mediated synthesis of gold-coated nanoceria using Ferula gummosa: characterization and estimation of its cellular toxicity toward breast cancer cell lines. J. Funct. Biomater. 14(7), 332 (2023)

    CAS  Google Scholar 

  3. Fateme Momen Eslamieh-ei, N.S., Samira Amin Poustchi Tousi, Samira Basharkhah, Javad Mottaghipisheh, Ali Es-haghi, Mohammad Ehsan Taghavizadeh Yazdi & Marcello Iriti, Synthesis and its characterisation of selenium/silver/chitosan and cellular toxicity against liver carcinoma cells studies. Natural Prod. Res. (2023)

  4. T. Alabyadh et al., ZnO/CeO2 nanocomposites: metal-organic framework-mediated synthesis, characterization, and estimation of cellular toxicity toward liver cancer cells. J. Funct. Biomater. 13(3), 139 (2022)

    CAS  Google Scholar 

  5. S.M. Mousavi-Kouhi et al., Silver-zinc oxide nanocomposite: from synthesis to antimicrobial and anticancer properties. Ceram. Int. 47(15), 21490–21497 (2021)

    CAS  Google Scholar 

  6. S.M. Mousavi-Kouhi et al., Biological synthesis and characterization of gold nanoparticles using Verbascum speciosum Schrad. and cytotoxicity properties toward HepG2 cancer cell line. Res. Chem. Intermed. 48(1), 167–178 (2022)

    CAS  Google Scholar 

  7. K. Shakerimanesh, et al., Biomimetic synthesis and characterisation of homogenouse gold nanoparticles and estimation of its cytotoxity against breast cancer cell line. Mater. Technol. 1–8 (2022)

  8. M.E.T. Yazdi, M.S. Amiri, M. Darroudi, Biopolymers in the synthesis of different nanostructures, in Reference Module in Materials Science and Materials Engineering. (Elsevier, 2020), pp.29–43. https://doi.org/10.1016/B978-0-12-803581-8.10560-0

    Chapter  Google Scholar 

  9. H. Zarharan et al., The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. Arab. J. Chem. 16(7), 104806 (2023)

    CAS  Google Scholar 

  10. A. Es-haghi et al., Application of response surface methodology for optimizing the therapeutic activity of ZnO nanoparticles biosynthesized from Aspergillus niger. Biomimetics 6(2), 34 (2021)

    CAS  Google Scholar 

  11. M. Javad Farhangi et al., MOF-mediated synthesis of CuO/CeO2 composite nanoparticles: characterization and estimation of the cellular toxicity against breast cancer cell Lline (MCF-7). J. Funct. Biomater. 12(4), 53 (2021)

    CAS  Google Scholar 

  12. F.M. Eslamieh-Ei, et al., Synthesis and its characterisation of selenium/silver/chitosan and cellular toxicity against liver carcinoma cells studies. Natural Prod. Res. 1–9 (2023)

  13. M.E.T. Yazdi et al., Ultrasound-based synthesis of ZnO· Ag 2 O 3 nanocomposite: characterization and evaluation of its antimicrobial and anticancer properties. Res. Chem. Intermed. 47(3), 1285–1296 (2021)

    Google Scholar 

  14. A.M. Hameed, M.A. Hameed, Spectroscopic characteristics of highly pure metal oxide nanostructures prepared by DC reactive magnetron sputtering technique. Emergent Mater. 6(2), 627–633 (2023)

    CAS  Google Scholar 

  15. M.E. Taghavizadeh Yazdi et al., Recent advances in nanoparticles applications in respiratory disorders, a review. Front. Pharmacol. 14, 1059343 (2023)

    Google Scholar 

  16. B. Wang, et al., Inorganic nanomaterials for intelligent photothermal antibacterial applications. Front. Bioeng. Biotechnol. 10, 1047598 (2022). https://doi.org/10.3389/fbioe.2022.1047598

  17. V. Mohammadzadeh et al., Applications of plant-based nanoparticles in nanomedicine: A review. Sustain. Chem. Pharm. 25, 100606 (2022)

    CAS  Google Scholar 

  18. Y. Wang et al., Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim. Acta 437(1–2), 106–109 (2005)

    CAS  Google Scholar 

  19. A. Sreenavya, F. Muhammed, A. Sakthivel, Porous nickel oxide derived from Ni (OH) 2: preparation, characterization, and catalytic applications. Emergent Mater. 4, 803–809 (2021)

    CAS  Google Scholar 

  20. A.T. Khalil et al., Sageretia thea (Osbeck) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells Nanomed. Biotechnol. 46(4), 838–852 (2018)

    CAS  Google Scholar 

  21. M.A.J. Kouhbanani et al., The inhibitory role of synthesized nickel oxide nanoparticles against Hep-G2, MCF-7, and HT-29 cell lines: the inhibitory role of NiO NPs against Hep-G2, MCF-7, and HT-29 cell lines. Green Chem. Lett. Rev. 14(3), 444–454 (2021)

    Google Scholar 

  22. G. Filomeni, D. De Zio, F. Cecconi, Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 22(3), 377–388 (2015)

    CAS  Google Scholar 

  23. S.H. Hosseinali et al., Biophysical, molecular dynamics and cellular studies on the interaction of nickel oxide nanoparticles with tau proteins and neuron-like cells. Int. J. Biol. Macromol. 125, 778–784 (2019)

    CAS  Google Scholar 

  24. B. Beig et al., Biodegradable polymer encapsulated nickel nanoparticles for slow release urea promotes Rhode grass yield and nitrogen recovery. J. Polym. Environ. 31(5), 1866–1883 (2023)

    CAS  Google Scholar 

  25. Y.-L. Cho et al., Dual role of oxidative stress-JNK activation in autophagy and apoptosis induced by nickel oxide nanoparticles in human cancer cells. Free Radical Biol. Med. 153, 173–186 (2020)

    CAS  Google Scholar 

  26. F. Ibraheem et al., In vitro cytotoxicity, MMP and ROS activity of green synthesized nickel oxide nanoparticles using extract of Terminalia chebula against MCF-7 cells. Mater. Lett. 234, 129–133 (2019)

    CAS  Google Scholar 

  27. S.G. Al-Shawi et al., Synthesis of NiO nanoparticles and sulfur, and nitrogen co doped-graphene quantum dots/nio nanocomposites for antibacterial application. J. Nanostruct. 11(1), 181–188 (2021)

    CAS  Google Scholar 

  28. M.S. AlSalhi et al., Synthesis of NiO nanoparticles and their evaluation for photodynamic therapy against HeLa cancer cells. J. King Saud Univ.-Sci. 32(2), 1395–1402 (2020)

    Google Scholar 

  29. R. Rameshbabu et al., Ultrasound-assisted synthesis of rGO supported NiO-TiO2 nanocomposite: an efficient superior sonophotocatalyst under diffused sunlight. J. Environ. Chem. Eng. 10(3), 107701 (2022)

    CAS  Google Scholar 

  30. V. Benitha et al., New sol–gel synthesis of NiO antibacterial nano-pigment and its application as healthcare coating. J. Coat. Technol. Res. 16, 59–70 (2019)

    CAS  Google Scholar 

  31. C. Manjunatha, R.H. Krishna, S. Ashoka, Green synthesis of inorganic nanoparticles using microemulsion methods, in Green sustainable process for chemical and environmental engineering and science. (Elsevier, 2021), pp.41–67

    Google Scholar 

  32. A. Ghorani-Azam et al., Resveratrol-mediated gold-nanoceria synthesis as green nanomedicine for phytotherapy of hepatocellular carcinoma. Front. Biosci.-Landmark 27(8), 227 (2022)

    CAS  Google Scholar 

  33. M.R. Hashemzadeh et al., Stem cell therapy in the heart: biomaterials as a key route. Tissue Cell 71, 101504 (2021)

    CAS  Google Scholar 

  34. M.E. Taghavizadeh Yazdi et al., Eco-friendly and plant-based synthesis of silver nanoparticles using Allium giganteum and investigation of its bactericidal, cytotoxicity, and photocatalytic effects. Mater. Technol. 34(8), 490–497 (2019)

    Google Scholar 

  35. M. Darroudi, M.E. Taghavizadeh Yazdi, M.S. Amiri, Plant-mediated biosynthesis of nanoparticles. CRC Press (2020)

  36. F. Mobaraki et al., Apoptotic, antioxidant and cytotoxic properties of synthesized AgNPs using green tea against human testicular embryonic cancer stem cells. Process Biochem. 119, 106–118 (2022). https://doi.org/10.1016/j.procbio.2022.05.021

    Article  CAS  Google Scholar 

  37. M. Modarres, M.E. Taghavizadeh Yazdi, Elicitation improves phenolic acid content and antioxidant enzymes activity in salvia leriifolia cell cultures. Iranian J. Sci. Technol. Trans. A: Science 45(3), 849–855 (2021)

    Google Scholar 

  38. M. Nadaf, et al., Phenolic content and antioxidant activity of different Iranian populations of Anabasis aphylla L. Natural Prod. Res. 1–5 (2022). https://doi.org/10.1080/14786419.2022.2150621

  39. Z. Seyedi et al., Icariin: a promising natural product in biomedicine and tissue engineering. J. Funct. Biomater. 14(1), 44 (2023)

    CAS  Google Scholar 

  40. M.E. Taghavizadeh Yazdi et al., Antimycobacterial, anticancer, antioxidant and photocatalytic activity of biosynthesized silver nanoparticles using Berberis Integerrima. Iranian J. Sci. Technol. Trans. A: Science 46(1), 1–11 (2022)

    Google Scholar 

  41. T. Yazdi et al., Assessment of phytochemical components and antioxidant activity of Rheum turkestanicum Janisch. Stud. Med. Sci. 31(2), 75–81 (2020)

    Google Scholar 

  42. J. Aarthi et al., Green synthesis and characterization of NiO nanoparticles using Catharanthus roseus leaf extract. Mater. Today: Proceedings 69, 1455–1461 (2022)

    Google Scholar 

  43. Halimi Khalil Abad, M.M.N., M.E.T. Yazdi, Biosynthesis of ZnO.Ag2O3 using aqueous extract of Haplophyllum obtusifolium: characterization and cell toxicity activity against liver carcinoma cells. Micro. Nano Lett. 18 (2023)

  44. V. Mohammadzadeh et al., Poly-γ-glutamic acid nanoparticles as adjuvant and antigen carrier system for cancer vaccination. J. Control. Release 362, 278–296 (2023)

    CAS  Google Scholar 

  45. M.E.T. Yazdi et al., Green synthesis of silver nanoparticles using helichrysum graveolens for biomedical applications and wastewater treatment. BioNanoScience 10(4), 1121–1127 (2020)

    Google Scholar 

  46. V. Haritha et al., Biogenic synthesis of nickel oxide nanoparticles using Averrhoa bilimbi and investigation of its antibacterial, antidiabetic and cytotoxic properties. Inorg. Chem. Commun. 144, 109930 (2022)

    CAS  Google Scholar 

  47. N. Thakur, et al., Encapsulation of Tinospora cordifolia plant in Ni doped TiO2 nanoparticles for the degradation of malachite green dye. Nanofabrication 8 (2023)

  48. L. Thomassen, An X-ray investigation of the system Cr2O3-NiO1. J. Am. Chem. Soc. 62(5), 1134–1136 (1940)

    CAS  Google Scholar 

  49. M. Alagiri, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiO nanoparticles by sol–gel method. J. Mater. Sci.: Mater. Electron. 23, 728–732 (2012)

    CAS  Google Scholar 

  50. L. Wu et al., Synthesis and characteristics of NiO nanowire by a solution method. Mater. Lett. 58(21), 2700–2703 (2004)

    CAS  Google Scholar 

  51. Vijaya Kumar, P., A. Jafar Ahamed, M. Karthikeyan, Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF-7 cancer cell models. SN Appl. Sci. 1, 1–15 (2019)

  52. Saquib, Q., et al., Nickel oxide nanoparticles induced transcriptomic alterations in HEPG2 cells. Cell. Mol. Toxicol. Nanoparticles 163–174 (2018)

  53. P. Landini et al., Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl. Microbiol. Biotechnol. 86, 813–823 (2010)

    CAS  Google Scholar 

  54. A.A. Ezhilarasi et al., Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J. Photochem. Photobiol., B 164, 352–360 (2016)

    CAS  Google Scholar 

  55. M. Abudayyak, E. Guzel, G. Özhan, Nickel oxide nanoparticles induce oxidative DNA damage and apoptosis in kidney cell line (NRK-52E). Biol. Trace Elem. Res. 178, 98–104 (2017)

    CAS  Google Scholar 

  56. C.A. Sousa, H.M. Soares, E.V. Soares, Nickel oxide (NiO) nanoparticles induce loss of cell viability in yeast mediated by oxidative stress. Chem. Res. Toxicol. 31(8), 658–665 (2018)

    CAS  Google Scholar 

  57. M.R. Parsaeian et al., Evaluating the biological activities of functionalized magnetic iron oxide nanoparticles with different concentrations of aqueous pine leaves extract. J. Indian Chem. Soc. 99(10), 100707 (2022)

    CAS  Google Scholar 

  58. M. Alavi, R.S. Varma, Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: Recent advances. Sustain. Chem. Pharm. 21, 100412 (2021)

    CAS  Google Scholar 

  59. T.I. Shabatina et al., Metal and metal oxides nanoparticles and nanosystems in anticancer and antiviral theragnostic agents. Pharmaceutics 15(4), 1181 (2023)

    CAS  Google Scholar 

  60. C. Karthikeyan et al., Biocidal (bacterial and cancer cells) activities of chitosan/CuO nanomaterial, synthesized via a green process. Carbohyd. Polym. 259, 117762 (2021)

    CAS  Google Scholar 

  61. M.G. Berhe, Y.T. Gebreslassie, Biomedical applications of biosynthesized nickel oxide nanoparticles. Int. J. Nanomed. 4229–4251 (2023)

  62. U, R.S., et al., Biogenic synthesis of NiO nanoparticles using Areca catechu leaf extract and their antidiabetic and cytotoxic effects. 26(9) (2021)

  63. A.A. Ezhilarasi et al., Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J. Photochem. Photobiol., B 180, 39–50 (2018)

    Google Scholar 

  64. J. Singh et al., ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16(1), 84 (2018)

    CAS  Google Scholar 

  65. S. Ying et al., Green synthesis of nanoparticles: current developments and limitations. Environ. Technol. Innov. 26, 102336 (2022)

    CAS  Google Scholar 

  66. P.E. Cardoso-Avila et al., One-pot green synthesis of gold and silver nanoparticles using Rosa canina L. extract. RSC Adv. 11(24), 14624–14631 (2021)

    CAS  Google Scholar 

  67. M.M. Alves et al., Enhanced antibacterial activity of Rosehip extract-functionalized Mg(OH)(2) nanoparticles: an in vitro and in vivo study. Colloids Surf. B Biointerfaces 217, 112643 (2022)

    CAS  Google Scholar 

  68. I. Rasoulpour, S. Jafarirad, Synthesis of biocapped CuO nanoparticles: an investigation on biorganic-Cu2+ interactions, in vitro antioxidant and antimicrobial aspects. Inorg. Nano-Metal Chem. 47(11), 1599–1604 (2017)

    CAS  Google Scholar 

  69. B. Ahmad et al., Green synthesis of NiO nanoparticles using Aloe vera gel extract and evaluation of antimicrobial activity. Mater. Chem. Phys. 288, 126363 (2022)

    CAS  Google Scholar 

  70. A. Rheima et al., Novel method to synthesis nickel oxide nanoparticles for antibacterial activity. Iranian J. Phys. Res. 20(3), 51–55 (2020)

    Google Scholar 

  71. N. Venkatalakshmi, H.J. Kini, H.B. Naik, Green-synthesized nickel oxide nanoparticles: magnetic and biomedical applications. Inorg. Chem. Commun. 151, 110490 (2023)

    CAS  Google Scholar 

  72. M.H. Boskabady et al., Pharmacological effects of rosa damascena. Iran. J. Basic Med. Sci. 14(4), 295–307 (2011)

    CAS  Google Scholar 

  73. F. Kunc et al., Physical characterization and cellular toxicity studies of commercial NiO nanoparticles. Nanomaterials 12(11), 1822 (2022)

    CAS  Google Scholar 

  74. M. Abudayyak, E. Guzel, G. Özhan, Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells. Neurochem. Int. 108, 7–14 (2017)

    CAS  Google Scholar 

  75. K. Mohamed et al., NiO nanoparticles induce cytotoxicity mediated through ROS generation and impairing the antioxidant defense in the human lung epithelial cells (A549): preventive effect of Pistacia lentiscus essential oil. Toxicol. Rep. 5, 480–488 (2018)

    CAS  Google Scholar 

  76. K.P. Raj et al., Cytotoxicity assessment of synthesized nickel oxide nanoparticles on MCF-7 and A-549 cancer cell lines. J. Chem. Pharm. Sci. ISSN 974, 2115 (2014)

    Google Scholar 

  77. M. Ahamed et al., Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere 93(10), 2514–2522 (2013)

    CAS  Google Scholar 

  78. B.Y. Hussein, A.M. Mohammed, Biosynthesis and characterization of nickel oxide nanoparticles by using aqueous grape extract and evaluation of their biological applications. Results Chem. 3, 100142 (2021)

    CAS  Google Scholar 

  79. A.A. Mariam et al., Bio-synthesis of NiO and Ni nanoparticles and their characterization. Dig. J. Nanomater. Biostruct. 9(3), 1007–1019 (2014)

    Google Scholar 

  80. N. Van Opdenbosch, M. Lamkanfi, Caspases in cell death, inflammation, and disease. Immunity 50(6), 1352–1364 (2019)

    Google Scholar 

  81. D.R. McIlwain, T. Berger, T.W. Mak, Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 5(4), a008656 (2013)

    Google Scholar 

  82. Y. Shi, Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci. 13(8), 1979–1987 (2004)

    CAS  Google Scholar 

  83. A.B. Parrish, C.D. Freel, S. Kornbluth, Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. 5(6) (2013)

  84. M.F. Altaee, L.A. Yaaqoob, Z.K. Kamona, Evaluation of the biological activity of nickel oxide nanoparticles as antibacterial and anticancer agents. Iraqi J. Sci. 2888–2896 (2020)

  85. M.H. Cambre et al., Cytotoxicity of NiO and Ni (OH) 2 nanoparticles is mediated by oxidative stress-induced cell death and suppression of cell proliferation. Int. J. Mol. Sci. 21(7), 2355 (2020)

    CAS  Google Scholar 

  86. Z. Liu et al., Direct activation of Bax protein for cancer therapy. Med. Res. Rev. 36(2), 313–341 (2016)

    CAS  Google Scholar 

  87. A. Pryczynicz et al., Bax protein may influence the invasion of colorectal cancer. World J. Gastroenterol. 20(5), 1305–1310 (2014)

    Google Scholar 

  88. S. Carberry, et al., The BAX/BAK-like protein BOK is a prognostic marker in colorectal cancer. 9(2), 125 (2018)

  89. E. Fröhlich, Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr. Drug Metab. 14(9), 976–988 (2013)

    Google Scholar 

  90. R. Canaparo et al., Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials 14(1), 53 (2020)

    Google Scholar 

  91. P. Makhdoumi, H. Karimi, M. Khazaei, Review on metal-based nanoparticles: role of reactive oxygen species in renal toxicity. Chem. Res. Toxicol. 33(10), 2503–2514 (2020)

    CAS  Google Scholar 

  92. J. Li et al., Silver nanoparticles modulate mitochondrial dynamics and biogenesis in HepG2 cells. Environ. Pollut. 256, 113430 (2020)

    CAS  Google Scholar 

  93. V. Natarajan et al., Titanium dioxide nanoparticles trigger loss of function and perturbation of mitochondrial dynamics in primary hepatocytes. PLoS One 10(8), e0134541 (2015)

    Google Scholar 

  94. D.D. Ma, W.X. Yang, Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget 7(26), 40882–40903 (2016)

    Google Scholar 

  95. P. Jawaid et al., Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress. Cell Death Discov. 6(1), 83 (2020)

    CAS  Google Scholar 

  96. E.-J. Park, K. Park, Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 184(1), 18–25 (2009)

    CAS  Google Scholar 

  97. R.P. Nishanth et al., Inflammatory responses of RAW 2647 macrophages upon exposure to nanoparticles: role of ROS-NFκB signaling pathway. Nanotoxicology 5(4), 502–516 (2011)

    CAS  Google Scholar 

  98. P. Paciorek, M. Żuberek, A. Grzelak, Products of lipid peroxidation as a factor in the toxic effect of silver nanoparticles. Materials 13(11), 2460 (2020)

    CAS  Google Scholar 

  99. Potter, T.M., B.W. Neun, and S.T. Stern, Assay to detect lipid peroxidation upon exposure to nanoparticles. Charact. Nanoparticles Intended Drug Deliv. 181–189 (2011)

  100. A. Arsalan, H. Younus, Enzymes and nanoparticles: modulation of enzymatic activity via nanoparticles. Int. J. Biol. Macromol. 118, 1833–1847 (2018)

    CAS  Google Scholar 

  101. S. Elmore, Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35(4), 495–516 (2007)

    CAS  Google Scholar 

  102. S. Qian, et al., The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 12 (2022)

  103. W. Duan et al., Size effects on properties of NiO nanoparticles grown in alkalisalts. J. Phys. Chem. C 116(49), 26043–26051 (2012)

    CAS  Google Scholar 

  104. J. Zhao et al., Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway. J Nanobiotechnology 7, 2 (2009)

    Google Scholar 

  105. I. Arato, et al., Nickel oxide nanoparticles exposure as a risk factor for male infertility: “in vitro” effects on porcine pre-pubertal Sertoli cells. Front. Endocrinol. 14, 1063916 (2023). https://doi.org/10.3389/fendo.2023.1063916

  106. M. Abudayyak, E. Güzel, Cytotoxic, genotoxic, and apoptotic effects of nickel oxide nanoparticles in intestinal epithelial cells. 17(4), 446-451 (2020)

  107. M. Leist, M. Jäättelä, Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2(8), 589–598 (2001)

    CAS  Google Scholar 

  108. M. Hammad Aziz et al., Photodynamic effect of Ni nanotubes on an HeLa cell line. PLoS One 11(3), e0150295 (2016)

    Google Scholar 

  109. S.M. Hussain et al., In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitro 19(7), 975–983 (2005)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciatively acknowledge for support and assistance provided by the Islamic Azad University of Mashhad branch.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Es-haghi or Mohammad Ehsan Taghavizadeh Yazdi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, R., Es-haghi, A., Zare-Zardini, H. et al. Nickel oxide nanoparticles synthesized by Rose hip extract exert cytotoxicity against the HT-29 colon cancer cell line through the caspase-3/caspase-9/Bax pathway. emergent mater. 6, 1877–1888 (2023). https://doi.org/10.1007/s42247-023-00572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00572-2

Keywords

Navigation