Skip to main content
Log in

Advances in development of green composites based on natural fibers: a review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In general, agricultural waste is left to nature or utilized as fuel material in houses. However, such use of agricultural waste negatively influences the environment. To diminish the negative effect of agricultural waste on the environment, it can be employed as natural filler in the fabrication of green composites because of its cellulosic structure. Employing of low-value agricultural waste for the development of composites is important for the reduction of environmental problems of petro-based polymers. Green composites based on agricultural waste can replace petro-based fiber composites due to excellent mechanical properties, low cost, and low density. This work has reported recent advances in the field of natural fibers especially agricultural waste fiber based green composites. To this aim, the properties of some important agricultural wastes (almond shell, arecanut husk, argan nutshell, bambara nutshell, brewer’s spent grain, buckwheat husk, corn husk, cotton burr, hazelnut shell, macadamia shell, oil palm empty fruit bunch, olive pit, orange peel and pulp, pineapple leaf, pistachio shell, potato peel, pumpkin seed husk, rice husk, sunflower husk, walnut shell, wheat bran, and yerba mate) are discussed, and detailed examples for their composites are presented from the scientific literature studies. Fabrication of these green composites and obtained results were presented. From the results, it was concluded that the elastic modulus, flexural modulus, hardness, and tensile strength improved by approximately 1.5–115%, 10.7–46%, 5–8%, and 12–212%, respectively, depending on the type of polymer and natural fibers. However, in some studies, reduction in the tensile strength was reported by about 9–44% with the addition of natural fibers. A drop in elongation at break, flexural strain, flexural strength, and impact strength was observed by approximately 10–98%, 32.8–80%, 0.03–85%, and 68.5–92%, respectively, depending on the type of polymer and natural fibers. According to these results, agricultural waste fiber based composites would find wider acceptance, and added value new applications of agricultural waste fiber based composites would provide cheaper materials for international market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data reported in this review can be obtained from the original manuscripts as cited in the review.

References

  1. A.M. Youssef, A. El-Gendy, S. Kamel, Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Mater. Chem. Phys. 152, 26–33 (2015)

    Article  CAS  Google Scholar 

  2. H.Q. Ali, M.A. Raza, A. Westwood, F.A. Ghauri, H. Asgar, Development and mechanical characterization of composites based on unsaturated polyester reinforced with maleated high oleic sunflower oil-treated cellulose fiber. Polym. Compos. 40, 901–908 (2019)

    Article  CAS  Google Scholar 

  3. H. Essabir, S. Nekhlaoui, M. Malha, M.O. Bensalah, F.Z. Arrakhiz, A. Qaiss, R. Bouhfid, Bio-composites based on polypropylene reinforced with almond shells particles: mechanical and thermal properties. Mat. Des. 51, 225–230 (2013)

    Article  CAS  Google Scholar 

  4. E.G. Okonkwo, C.N. Anabaraonye, C.C. Daniel-Mkpume, S.V. Egoigwe, P.E. Okeke, F.G. Whyte, A.O. Okoani, Mechanical and thermomechanical properties of clay-bambara nut shell polyester bio-composite. Int. J. Adv Manuf. Technol. 108, 2483–2496 (2020)

    Article  Google Scholar 

  5. W. Liu, T. Liu, H. Liu, J. Xin, J. Zhang, Z.K. Muhidinov, L. Liu, Properties of poly(butylene adipate-co-terephthalate) and sunflower head residue biocomposites. J. Appl. Polym. Sci. 134, 44644 (2017)

    Google Scholar 

  6. E. Kuram, Rheological, mechanical and morphological properties of hybrid hazelnut (Corylus avellana L.)/walnut (Juglans regia L.) shell flour‑filled acrylonitrile butadiene styrene composite. J. Mater. Cycles Waste Manag. 22, 2107–2117 (2020a)

  7. E. Kuram, Rheological, mechanical and morphological properties of acrylonitrile butadiene styrene composite filled with sunflower seed (Helianthus annuus L.) husk flour. J. Polym. Res. 27, 219 (2020b)

  8. P. Luthra, R. Singh, G.S. Kapur, Development of polypropylene/banana peel (treated and untreated) composites with and without compatibilizer and their studies. Mater. Res. Express 6, 095313 (2019)

  9. H. Awais, Y. Nawab, A. Amjad, A. Anjang, H.M. Akil, M.S.Z. Abidin, Environmental benign natural fibre reinforced thermoplastic composites: a review. Compos. Part C: Open Access 4, 100082 (2021)

  10. T. Väisänen, A. Haapala, R. Lappalainen, L. Tomppo, Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Manag. 54, 62–73 (2016)

    Article  CAS  Google Scholar 

  11. R. Dunne, D. Desai, R. Sadiku, J. Jayaramudu, A review of natural fibres, their sustain- ability and automotive applications. J. Reinf. Plast. Compos. 35, 1041–1050 (2016)

    Article  CAS  Google Scholar 

  12. S. Jayavani, H. Deka, T.O. Varghese, S.K. Nayak, Recent development and future trends in coir fiber-reinforced green polymer composites: review and evaluation. Polym. Compos. 37, 3296–3309 (2016)

    Article  CAS  Google Scholar 

  13. Z.N. Azwa, B.F. Yousif, A.C. Manalo, W. Karunasena, A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 47, 424–442 (2013)

    Article  CAS  Google Scholar 

  14. I. Prgomet, B. Gonçalves, R. Domínguez-Perles, N. Pascual-Seva, A.I. Barros, Valorization challenges to almond residues: phytochemical composition and functional application. Molecules 22, 1774 (2017)

    Article  CAS  Google Scholar 

  15. C.V. Srinivasa, A. Arifulla, N. Goutham, T. Santhosh, H.J. Jaeethendra, R.B. Ravikumar, S.G. Anil, D.G. Santhosh Kumar, J. Ashish, Static bending and impact behaviour of areca fibers composites. Mater. Des 32(4), 2469–2475 (2011)

    Article  CAS  Google Scholar 

  16. A. Nourbakhsh, A. Ashori, A.K. Tabrizi, Characterization and biodegradability of polypropylene composites using agricultural residues and waste fish. Compos. Part B: Eng. 56, 279–283 (2014)

    Article  CAS  Google Scholar 

  17. S.K. Chattopadhyay, R.K. Khandal, R. Uppaluri, A.K. Ghoshal, Mechanical, thermal and morphological properties of maleic anhydride-g-polypropylene compatibilized and chemically modified banana fiber reinforced polypropylene composites. J. Appl. Polym. Sci. 117, 1731–1740 (2010)

    CAS  Google Scholar 

  18. S.K. Nayak, S. Mohanty, S.K. Samal, Influence of interfacial adhesion on the structural and mechanical behavior of PP banana/glass hybrid composite. Polym. Compos. 31, 1247–1257 (2010)

    CAS  Google Scholar 

  19. R.S. Orozco, P.B. Hernóndez, G.R. Morales, F.U. Núñez, J.O. Villafuerte, V.L. Lugo, N.F. Ramíez, C.E.B. Díaz, P.C. Vózquez, Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production. Bio. Res. 9, 1873–1885 (2014)

    Google Scholar 

  20. M. Masłowski, J. Miedzianowska, K. Strzelec, Natural rubber biocomposites containing corn, barley and wheat straw. Polym. Test. 63, 84–91 (2017)

    Article  CAS  Google Scholar 

  21. S. Öztürk, Ö. Özboy, İ Cavidoğlu, H. Köksel, Effects of brewer’s spent grain on the quality and dietary fibre content of cookies. J. Instit. Brewing 108, 23–27 (2002)

    Article  Google Scholar 

  22. K. Merkel, H. Rydarowski, J. Kazimierczak, A. Bloda, Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibres isolated from waste plant biomass such as hemp. Compos. Part B: Eng. 67, 138–144 (2014)

    Article  CAS  Google Scholar 

  23. S.T. Cholake, R. Rajarao, P. Henderson, R.R. Rajagopal, V. Sahajwalla, Composite panels obtained from automotive waste plastics and agricultural macadamia shell waste. J. Clean. Prod. 151, 163–171 (2017)

    Article  Google Scholar 

  24. A. Hassan, A.A. Salema, F.N. Ani, A.A. Bakar, A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials. Polym. Compos. 31, 2079–2101 (2010)

    Article  CAS  Google Scholar 

  25. N. Saba, M.T. Paridah, K. Abdan, N.A. Ibrahim, Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Construct. Build. Mater. 123, 15–26 (2016)

    Article  CAS  Google Scholar 

  26. E. Rosamah, M.S. Hossain, H.P.S. Abdul Khalil, W.O. Wan Nadirah, R. Dungani, A.S. Nur Amiranajwa, N.L.M. Suraya, H.M. Fizree, A.K. Mohd Omar, Properties enhancement using oil palm shell nanoparticles of fibers reinforced polyester hybrid composites. Adv. Compos. Mater. 3046, 1–14 (2016)

  27. V. Tserki, P. Matzinos, S. Kokkou, C. Panayiotou, Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Compos. Part A: Appl. Sci. Manuf. 36, 965–974 (2005)

  28. G. Rodríguez, A. Lama, R. Rodríguez, A. Jiménez, R. Guillén, J. Fernández-Bolaños, Olive stone an attractive source of bioactive and valuable compounds. Bioresour. Technol. 99, 5261–5269 (2008)

    Article  CAS  Google Scholar 

  29. Z. Daud, M.Z.M. Hatta, A.S.M. Kassim, A.M. Aripin, Analysis of the chemical compositions and fiber morphology of pineapple (ananas comosus) leaves in Malaysia. J. Appl. Sci. 14, 1355–1358 (2014)

    Article  CAS  Google Scholar 

  30. M.C. Righetti, P. Cinelli, N. Mallegni, A. Stäbler, A. Lazzeri, Thermal and mechanical properties of biocomposites made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and potato pulp powder. Polymers 11, 308 (2019)

    Article  CAS  Google Scholar 

  31. H.G.B. Premalal, H. Ismail, A. Baharin, Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym. Test. 21, 833–839 (2002)

    Article  CAS  Google Scholar 

  32. J.H. Kwon, N. Ayrilmis, T.H. Han, Enhancement of flexural properties and dimensional stability of rice husk particleboard using wood strands in face layers. Compos. Part B: Eng. 44, 728–732 (2013)

    Article  CAS  Google Scholar 

  33. S.R. Kamireddy, C. Schaefer, M. Defrese, J. Degenstein, Y. Ji, Pretreatment and enzymatic hydrolysis of sunflower hulls for fermentable sugar production. J. Agr. Biol. Eng. 5, 62–70 (2012)

    CAS  Google Scholar 

  34. T.S. Lin, S.S. Juang, Agricultural reports of Taichung District 6, Taichung District Agricultural Improvement Station, Taichung, Taiwan, (1999) p. 9–15

  35. R.M. Saunders, in Topics in Dietary Fiber Research, ed. By G.A. Spiller (Springer, New York, 1978) p. 43–58

  36. A. Caprez, E. Arrigoni, R. Amadò, H. Neukom, Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. J. Cereal. Sci. 4, 233–239 (1986)

    Article  Google Scholar 

  37. B. Hansen, C. Borsoi, M.A.D. Júnior, A.L. Catto, Thermal and thermo-mechanical properties of polypropylene composites using yerba mate residues as reinforcing filler. Ind. Crops Prod. 140, 111696 (2019)

  38. Z. Kárpáti, D. Kun, E. Fekete, J. Móczó, Structural biomaterials engineered from lignocellulosic agricultural waste. J. Appl. Polym. Sci. 138, 50617 (2021)

    Article  CAS  Google Scholar 

  39. A.V. García, M.R. Santonja, A.B. Sanahuja, M.C.G. Selva, Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polym. Degrad. Stab. 108, 269–279 (2014)

    Article  CAS  Google Scholar 

  40. M. Ramos, F. Dominici, F. Luzi, A. Jiménez, M.C. Garrigós, L. Torre, D. Puglia, Effect of almond shell waste on physicochemical properties of polyester-based biocomposites. Polymers 12, 835 (2020)

    Article  CAS  Google Scholar 

  41. M. Barczewskia, D. Matykiewicza, A. Piaseckib, M. Szostak, Polyethylene green composites modified with post agricultural waste filler: thermo-mechanical and damping properties. Compos. Interfaces 25, 287–299 (2018)

    Article  CAS  Google Scholar 

  42. H. Moustafa, A.E.-A.A. El-Wakil, M.T. Nour, A.M. Youssef, Kenaf fibre treatment and its impact on the static, dynamic, hydrophobicity and barrier properties of sustainable polystyrene biocomposites. RSC Adv. 10, 29296 (2020)

    Article  CAS  Google Scholar 

  43. M.M. Ibrahim, H. Moustafa, E.N. Abd EL Rahman, S. Mehanny, M.H. Hemida, E. El-Kashif, Reinforcement of starch based biodegradable composite using Nile rose residues. J. Mater. Res. Technol. 9, 6160–6171 (2020)

    Article  CAS  Google Scholar 

  44. A.E.-A.A. El-Wakil, H. Moustafa, A.M. Youssef, Antimicrobial low-density polyethylene/low-density polyethylene-grafted acrylic acid biocomposites based on rice bran with tea tree oil for food packaging applications. J. Thermoplast. Compos. Mater. 1–19 (2020)

  45. H. Moustafa, C. Guizani, C. Dupont, V. Martin, M. Jeguirim, A. Dufresne, Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. ACS Sustainable Chem. Eng. 5, 1906–1916 (2017)

    Article  CAS  Google Scholar 

  46. R. Arjmandi, A. Hassan, K. Majeed, Z. Zakaria, Rice husk filled polymer composites. Int. J. Polym. Sci. 2015, 501471 (2015)

  47. T. Väisänen, O. Das, L. Tomppo, A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 149, 582–596 (2017)

    Article  CAS  Google Scholar 

  48. N. Sutivisedsak, H.N. Cheng, C.S. Burks, J.A. Johnson, J.P. Siegel, E.L. Civerolo, A. Biswas, Use of nutshells as fillers in polymer composites. J. Polym. Environ. 20, 305–314 (2012)

    Article  CAS  Google Scholar 

  49. C.R. Di Franco, J.P. Busalmen, R.A. Ruseckaite, A. Vázquez, Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polym. Degrad. Stab. 86, 95–103 (2004)

    Article  CAS  Google Scholar 

  50. N. Sharmin, R.A. Khan, S. Salmieri, D. Dussault, M. Lacroix, Fabrication and characterization of biodegradable composite films made of using poly(-caprolactone) reinforced with chitosan. J. Polym. Environ. 20, 698–705 (2012)

    Article  CAS  Google Scholar 

  51. R. Reixach, F. Espinach, E. Franco-Marqués, F. Ramirez de Cartagena, N. Pellicer, J. Tresserras, P. Mutjé, Modeling of the tensile moduli of mechanical, thermomechanical, and chemi-thermomechanical pulps from orange tree pruning. Polym. Compos. 34, 1840–1846 (2013)

    Article  CAS  Google Scholar 

  52. N. Muralidhar, K. Vadivuchezhian, V. Arumugam, I.S. Reddy, Flexural modulus of epoxy composite reinforced with arecanut husk fibre (AHF): a mechanics approach. Mater. Today: Proceedings 27, 2265–2268 (2020)

    CAS  Google Scholar 

  53. H. Essabir, M.O. Bensalah, D. Rodrigue, R. Bouhfid, A.K. Qaiss, Biocomposites based on Argan nut shell and a polymer matrix: effect of filler content and coupling agent. Carbohyd. Polym. 143, 70–83 (2016)

    Article  CAS  Google Scholar 

  54. G. Gamon, P. Evon, L. Rigal, Twin-screw extrusion impact on natural fibre morphology and material properties in poly(lactic acid) based biocomposites. Ind. Crops Prod. 46, 173–185 (2013)

    Article  CAS  Google Scholar 

  55. N. Ayrilmis, A. Kaymakci, Fast growing biomass as reinforcing filler in thermoplastic composites: Paulownia elongata wood. Ind. Crops Prod. 43, 457–464 (2013)

    Article  CAS  Google Scholar 

  56. H.M. Naguib, U.F. Kandil, A.I. Hashem, Y.M. Boghdadi, Effect of fiber loading on the mechanical and physical properties of “green” bagasse–polyester composite. J. Radiation Research Appl. Sci. 8, 544–548 (2015)

    Google Scholar 

  57. A. Balaji, B. Karthikeyan, J. Swaminathan, C.S. Raj, Effect of filler content of chemically treated short bagasse fiber-reinforced cardanol polymer composites. J. Natural Fibers 16, 613–627 (2019)

    Article  CAS  Google Scholar 

  58. J.C. Posada, L.Y. Jaramillo, E.M. Cadena, L.A. García, Bio-based composites from agricultural wastes: Polylactic acid and bamboo Guadua angustifolia. J. Compos. Mater. 50, 3229–3237 (2016)

    Article  CAS  Google Scholar 

  59. Y.-F. Shih, Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Mater. Sci. Eng. A 445–446, 289–295 (2007)

    Article  CAS  Google Scholar 

  60. S. Satapathy, R.V.S. Kothapalli, Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. J. Polym. Environ. 26, 200–213 (2018)

    Article  CAS  Google Scholar 

  61. N. Ayrilmis, S. Jarusombuti, V. Fueangvivat, P. Bauchongkol, R.H. White, Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fiber Polym. 12, 919–926 (2011)

    Article  CAS  Google Scholar 

  62. R.E. Njoku, I.O. Li, D.O. Agbiogwu, C.V. Agu, Effect of alkali treatment and fiber content variation on the tensile properties of coir fiber reinforced cashew nut shell liquid (CNSL) composite. Nigerian J. Technol. 31, 107–110 (2012)

    Google Scholar 

  63. V.K. Bhagat, S. Biswas, J. Dehury, Physical, mechanical and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. Polym. Compos. 35, 925–930 (2014)

    Article  CAS  Google Scholar 

  64. A. Hejna, K. Formela, M.R. Saeb, Processing, mechanical and thermal behavior assessments of polycaprolactone/agricultural wastes biocomposites. Ind. Crops Prod. 76, 725–733 (2015)

    Article  CAS  Google Scholar 

  65. J. Andrzejewski, M. Barczewski, M. Szostak, Injection molding of highly filled polypropylene-based biocomposites. Buckwheat husk and wood flour filler: a comparison of agricultural and wood industry waste utilization. Polymers 11, 1881 (2019)

  66. F. Sarasini, J. Tirillò, A. Zuorro, G. Maffei, R. Lavecchia, D. Puglia, F. Dominici, F. Luzi, T. Valente, L. Torre, Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Ind. Crops Prod. 118, 311–320 (2018)

    Article  CAS  Google Scholar 

  67. N.S. Balaji, S. Jayabal, S.K. Sundaram, Study on mechanical properties of corn-cellulose fibers reinforced polyester composites. Macromol. Symp. 361, 42–46 (2016)

    Article  CAS  Google Scholar 

  68. J. Zhang, N. Hori, A. Takemura, Reinforcement of agricultural wastes liquefied polyols based polyurethane foams by agricultural wastes particles. J. Appl. Polym. Sci. 138, e50583 (2021)

  69. R.M. Bajracharya, D.S. Bajwa, S.G. Bajwa, Mechanical properties of polylactic acid composites reinforced with cotton gin waste and flax fibers. Procedia Eng. 200, 370–376 (2017)

    Article  CAS  Google Scholar 

  70. M. Barczewski, K. Sałasińska, J. Szulc, Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: a study into mechanical behavior related to structural and rheological properties. Polym. Test. 75, 1–11 (2019)

    Article  CAS  Google Scholar 

  71. S.-Y. Fu, X.-Q. Feng, B. Lauke, Y.-W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B: Eng. 39, 933–961 (2008)

    Article  CAS  Google Scholar 

  72. M. Barczewski, O. Mysiukiewicz, A. Kloziński, Complex modification effect of linseed cake as an agricultural waste filler used in high density polyethylene composites. Iranian Polym. J. 27, 677–688 (2018)

    Article  CAS  Google Scholar 

  73. H.P.S. Abdul Khalil, H.M. Fizree, A.H. Bhat, M. Jawaid, C.K. Abdullah, Development and characterization of epoxy nanocomposites based on nano-structured oil palm ash. Compos. Part B: Eng. 53, 324–333 (2013)

  74. N. Saba, P.M. Tahir, K. Abdan, N.A. Ibrahim, Fabrication of epoxy nanocomposites from oil palm nano filler: mechanical and morphological properties. BioResources 11, 7721–7736 (2016)

    Article  CAS  Google Scholar 

  75. A.F. Ahmad, Z. Abbas, S.J. Obaiys, M.F. Zainuddin, Effect of untreated fiber loading on the thermal, mechanical, dielectric, and microwave absorption properties of polycaprolactone reinforced with oil palm empty fruit bunch biocomposites. Polym. Compos. 39, E1778–E1787 (2018)

    Article  CAS  Google Scholar 

  76. N.A. Bakar, C.Y. Chee, L.C. Abdullah, C.T. Ratnam, N.A. Ibrahim, Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites. Mater. Des. 65, 204–211 (2015)

    Article  CAS  Google Scholar 

  77. S. Dhandapani, S.K. Nayak, S. Mohanty, Surface modification of oil palm fruit bunch and fibre reinforcement effect on bio based polyester matrix composites. J. Elastomers Plast. 48, 456–479 (2016)

    Article  CAS  Google Scholar 

  78. T. Nampitch, C. Wiphanurat, T. Kaisone, P. Hanthanon, Mechanical and morphological properties of poly(lactic acid)/bagasse fiber composite foams. Appl. Mech. Mater. 851, 31–36 (2016)

    Article  Google Scholar 

  79. N. Bakar, C.Y. Chee, L.C. Abdullah, C.T. Ratnam, N. Azowa, Effect of methyl methacrylate grafted kenaf on mechanical properties of polyvinyl chloride/ethylene vinyl acetate composites. Compos. Part A: Appl. Sci. Manuf. 63, 45–50 (2014)

    Article  CAS  Google Scholar 

  80. K.Y. Ching, C.Y. Chee, M. Afzan, L.Z. Kang, C.K. Eng, Mechanical and thermal properties of chemical treated oil palm empty fruit bunches fiber reinforced polyvinyl alcohol composite. J. Biobased Mater. Bioenergy 9, 231–235 (2015)

    Article  CAS  Google Scholar 

  81. A.F. Koutsomitopoulou, J.C. Bénézet, A. Bergeret, G.C. Papanicolaou, Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder Technol. 255, 10–16 (2014)

    Article  CAS  Google Scholar 

  82. H.M. Tasdemir, A. Sahin, A.F. Karabulut, M. Guru, Production of useful composite particle board from waste orange peel. Cellulose Chem. Technol. 53, 517–526 (2019)

    Article  CAS  Google Scholar 

  83. R.A. Ibrahim, Tribological performance of polyester composites reinforced by agricultural wastes. Tribol. Int. 90, 463–466 (2015)

    Article  CAS  Google Scholar 

  84. F. Berzin, T. Amornsakchai, A. Lemaitre, E. Di Giuseppe, B. Vergnes, Processing and properties of pineapple leaf fibers-polypropylene composites prepared by twin-screw extrusion. Polym. Compos. 39, 4115–4122 (2018)

    Article  CAS  Google Scholar 

  85. F. Berzin, T. Amornsakchai, A. Lemaitre, R. Castellani, B. Vergnes, Influence of fiber content on rheological and mechanical properties of pineapple leaf fibers-polypropylene composites prepared by twin-screw extrusion. Polym. Compos. 40, 4519–4529 (2019)

    Article  CAS  Google Scholar 

  86. V. Sugumaran, G.S. Kapur, A.K. Narula, Sustainable potato peel powder–LLDPE biocomposite preparation and effect of maleic anhydride-grafted polyolefins on their properties. Polym. Bull. 75, 5513–5533 (2018)

    Article  CAS  Google Scholar 

  87. T.T.L. Doan, H.M. Brodowsky, E. Mäder, in Composites from renewable and sustainable materials, ed. M. Poletto (Intech, Croatia, 2016) p. 1–24

  88. F. Yao, Q. Wu, Y. Lei, Y. Xu, Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading. Ind. Crops Prod. 28, 63–72 (2008)

    Article  CAS  Google Scholar 

  89. N. Bisht, P.C. Gope, Effect of alkali treatment on mechanical properties of rice husk flour reinforced epoxy bio-composite. Mater. Today: Proceedings 5, 24330–24338 (2018)

    CAS  Google Scholar 

  90. A. Amin, H. Kandil, A.M. Rabia, D.E. El Nashar, M.N. Ismail, Enhancing the mechanical and dielectric properties of EPDM filled with nanosized rice husk powder. Polym.-Plast. Technol. Eng. 57, 1733–1742 (2018)

    Article  CAS  Google Scholar 

  91. R.S. Chen, S. Ahmad, S. Gan, Rice husk bio-filler reinforced polymer blends of recycled HDPE/PET: Three-dimensional stability under water immersion and mechanical performance. Polym. Compos. 39, 2695–2704 (2018)

    Article  CAS  Google Scholar 

  92. A. Ashori, A. Nourbakhsh, Mechanical behavior of agro-residue-reinforced polypropylene composites. J. Appl. Polym. Sci. 111, 2616–2620 (2009)

    Article  CAS  Google Scholar 

  93. Y.A. El-Shekeil, S.M. Sapuan, K. Abdan, E.S. Zainudin, Influence of fiber content on the mechanical and thermal properties of kenaf fiber reinforced thermoplastic polyurethane composites. Mater. Des. 40, 299–303 (2012)

    Article  CAS  Google Scholar 

  94. N. Dutta, T.K. Maji, Synergic effect of montmorillonite and microcrystalline cellulose on the physicochemical properties of rice husk/PVC composite. SN Appl. Sci. 2, 439 (2020)

    Article  CAS  Google Scholar 

  95. S.A.N. Mohamed, E.S. Zainudin, S.M. Sapuan, M.D. Azaman, A.M.T. Arifin, Energy behavior assessment of rice husk fibres reinforced polymer composite. J. Mater. Res. Technol. 9, 383–393 (2020)

    Article  CAS  Google Scholar 

  96. J.M. Urreaga, C. González-Sáanchez, A. Martínez-Aguirre, C. Fonseca-Valero, J. Acosta, M.U. de la Orden, Sustainable eco-composites obtained from agricultural and urban waste plastic blends and residual cellulose fibers. J. Clean. Prod. 108, 377–384 (2015)

    Article  CAS  Google Scholar 

  97. M.N. Prabhakar, A.U.R. Shah, K.C. Rao, J. Song, Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers Polym. 16, 1119–1124 (2015)

    Article  CAS  Google Scholar 

  98. N. Ayrilmis, A. Kaymakci, F. Ozdemir, Sunflower seed cake as reinforcing filler in thermoplastic composites. J. Appl. Polym. Sci. 129, 1170–1178 (2013)

    Article  CAS  Google Scholar 

  99. N. Ayrilmis, A. Kaymakci, F. Ozdemir, Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. J. Ind. Eng. Chem. 19, 908–914 (2013)

    Article  CAS  Google Scholar 

  100. H. Ismail, J.M. Nizam, H.P.S. Abdul Khalil, The effect of a compatibilizer on the mechanical properties and mass swell of white rice husk ash filled natural rubber/linear low density polyethylene blends. Polym. Test. 20, 125–133 (2001)

  101. D. Garcia-Garcia, A. Carbonell-Verdu, A. Jorda-Vilaplana, R. Balart, D. Garcia-Sanoguera, Development and characterization of green composites from bio-based polyethylene and peanut shell. J. Appl. Polym. Sci. 133, 43940 (2016)

    Article  CAS  Google Scholar 

  102. V.S. Chevali, B.A. Nerenz, C.A. Ulven, E. Kandare, Mechanical properties of hybrid lignocellulosic fiber-filled acrylonitrile butadiene styrene (ABS) biocomposites. Polym.-Plast. Technol. Eng. 54, 375–382 (2015)

    Article  CAS  Google Scholar 

  103. S. Panthapulakkal, M. Sain, Injection molded wheat straw and corn stem filled polypropylene composites. J. Polym. Environ. 14, 265–272 (2006)

    Article  CAS  Google Scholar 

  104. M.A. Fuqua, V.S. Chevali, C.A. Ulven, Lignocellulosic byproducts as filler in polypropylene: comprehensive study on the effects of compatibilization and loading. J. Appl. Polym. Sci. 127, 862–868 (2013)

    Article  CAS  Google Scholar 

  105. M.R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, S. Pradeep, Characterization and properties of natural fiber polymer composites: a comprehensive review. J. Clean. Prod. 172, 566–581 (2018)

    Article  CAS  Google Scholar 

  106. O. Nabinejad, D. Sujan, M.E. Rahman, I.J. Davies, Effect of filler load on the curing behavior and mechanical and thermal performance of wood flour filled thermoset composites. J. Clean. Prod. 164, 1145–1156 (2017)

    Article  CAS  Google Scholar 

  107. E. Kuram, UV and thermal weathering of green composites: comparing the effect of different agricultural waste as fillers. J. Compos. Mater. 54, 3683–3697 (2020)

    Article  Google Scholar 

  108. B. Chen, Z. Luo, H. Chen, C. Chen, D. Cai, P. Qin, H. Cao, T. Tan, Wood plastic composites from the waste lignocellulosic biomass fibers of bio-fuels processes: a comparative study on mechanical properties and weathering effects. Waste Biomass Valor. 11, 1701–1710 (2020)

    Article  CAS  Google Scholar 

  109. C. Badji, J. Beigbeder, H. Garay, A. Bergeret, J.-C. Bénézet, V. Desauziers, Natural weathering of hemp fibers reinforced polypropylene biocomposites: relationships between visual and surface aspects, mechanical properties and microstructure based on statistical approach. Compos. Sci. Technol. 167, 440–447 (2018)

    Article  CAS  Google Scholar 

  110. S.V. Joshi, L.T. Drzal, A.K. Mohanty, S. Arora, Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A: Appl. Sci. Manuf. 35, 371–376 (2004)

    Article  CAS  Google Scholar 

  111. B.F. Yousif, N.S.M. El-Tayeb, Tribological evaluations of polyester composites considering three orientations of CSM glass fibres using BOR machine. Appl. Compos. Mater. 14, 105–116 (2007)

    Article  CAS  Google Scholar 

  112. F.M. AL-Oqla, S.M. Sapuan, Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 66, 347–354 (2014)

  113. F. Ahmad, H.S. Choi, M.K. Park, A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol. Mater. Eng. 300, 10–24 (2015)

    Article  CAS  Google Scholar 

  114. J. Holbery, D. Houston, Natural-fiber-reinforced polymer composites in automotive applications. JOM 58, 80–86 (2006)

    Article  CAS  Google Scholar 

  115. C. Alves, P.M.C. Ferrão, A.J. Silva, L.G. Reis, M. Freitas, L.B. Rodrigues, D.E. Alves, Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 18, 313–327 (2010)

    Article  CAS  Google Scholar 

  116. Z. Jamrichová, E. Aková, Mechanical testing of natural rubber composites for automotive industry. Univ. Rev. 7, 20–25 (2013)

    Google Scholar 

  117. K.N. Bharath, S. Basavarajappa, Applications of biocomposite materials based on natural fibers from renewable resources: a review. Sci. Eng. Compos. Mater. 23, 123–133 (2016)

    Article  Google Scholar 

  118. A. Ashori, A. Nourbakhsh, A. Karegarfard, Properties of medium density fiberboard based on bagasse fibers. J. Compos. Mater. 43, 1927–1934 (2009)

    Article  CAS  Google Scholar 

  119. A.U.M. Shah, M.T.H. Sultan, M. Jawaid, F. Cardona, A.R.A. Talib, A review on the tensile properties of bamboo fiber reinforced polymer composites. BioResources 11, 10654–10676 (2016)

    Article  CAS  Google Scholar 

  120. S.M. Sapuan, M.A. Maleque, Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Mater. Des. 26, 65–71 (2005)

    Article  CAS  Google Scholar 

  121. M. Boopalan, M. Niranjana, M.J. Umapathy, Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos. Part B: Eng. 51, 54–57 (2013)

    Article  CAS  Google Scholar 

  122. N.A. Mostafa, A.A. Farag, H.M. Abo-dief, A.M. Tayeb, Production of biodegradable plastic from agricultural wastes. Arabian J. Chem. 11, 546–553 (2018)

    Article  CAS  Google Scholar 

  123. R. Zah, R. Hischier, A.L. Leao, I. Braun, Curauá fibers in the automobile industry - a sustainability assessment. J. Clean. Prod. 15, 1032–1040 (2007)

    Article  Google Scholar 

  124. M. Ramesh, Kenaf, (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog. Mater. Sci. 78–79, 1–92 (2016)

  125. S. Ozturk, Effect of fiber loading on the mechanical properties of kenaf and fiberfrax fiber-reinforced phenol-formaldehyde composites. J. Compos. Mater. 44, 2265–2288 (2010)

    Article  CAS  Google Scholar 

  126. H.P.S. Abdul Khalil, M.R. Nurul Fazita, A.H. Bhat, M. Jawaid, N.A. Nik Fuad, Development and material properties of new hybrid plywood from oil palm biomass. Mater. Des. 31, 417–424 (2010)

  127. A.P. Irawan, T.P. Soemardi, K. Widjajalaksmi, A.H.S. Reksoprodjo, Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. Int. J. Mech. Mater. Eng. 6, 46–50 (2011)

    Google Scholar 

  128. H.-S. Kim, B.-H. Lee, S.-W. Choi, S. Kim, H.-J. Kim, The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flourfilled polypropylene composites. Compos. Part A: Appl. Sci. Manuf. 38, 1473–1482 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank my doctor interventional neurologist Assoc. Prof. Hasan Huseyin Karadeli for giving me a second chance in life after my brain operation in August 2019. Words could never express my gratitude for all he did. Thanks for keeping me alive! I also dedicate this article to my family and Assoc. Prof. Hasan Huseyin Karadeli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emel Kuram.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Conflict of interest/Competing interests.

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuram, E. Advances in development of green composites based on natural fibers: a review . emergent mater. 5, 811–831 (2022). https://doi.org/10.1007/s42247-021-00279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00279-2

Keywords

Navigation