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Abstract
In the wake of the era of big data, the techniques of deep learning have become an essential research direction in the

machine learning field and are beginning to be applied in the steel industry. The sintering process is an extremely complex

industrial scene. As the main process of the blast furnace ironmaking industry, it has great economic value and envi-

ronmental protection significance for iron and steel enterprises. It is also one of the fields where deep learning is still in the

exploration stage. In order to explore the application prospects of deep learning techniques in iron ore sintering, a

comprehensive summary and conclusion of deep learning models for intelligent sintering were presented after reviewing

the sintering process and deep learning models in a large number of research literatures. Firstly, the mechanisms and

characteristics of parameters in sintering processes were introduced and analysed in detail, and then, the development of

iron ore sintering simulation techniques was introduced. Secondly, deep learning techniques were introduced, including

commonly used models of deep learning and their applications. Thirdly, the current status of applications of various types

of deep learning models in sintering processes was elaborated in detail from the aspects of prediction, controlling, and

optimisation of key parameters. Generally speaking, deep learning models that could be more effectively implemented in

more situations of the sintering and even steel industry chain will promote the intelligent development of the metallurgical

industry.
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1 Introduction

The iron and steel industry is an essential embodiment of a

country’s productive capacity and plays a fundamental role

in national economic development and national defence

construction [1]. In recent years, China has the world’s

largest crude steel yield, exceeding 1 billion tonnes by the

year 2020 and reaching 1.065 billion tonnes for the first

time [2]. At the same time, behind the huge productive

capacity, China, as a responsible and committed develop-

ing country, still has the historical mission of ‘‘carbon

peaking’’ and ‘‘carbon neutrality’’. Considering the global

warming, the traditional ironmaking process needs to be

transitioned to a more intelligent and environmentally

friendly one. In particular, the sintering process is one of

the highly energy-intensive stages of the ironmaking pro-

cess, which relies mainly on coal and coke for the entire

combustion process and generates large amounts of emis-

sions of carbon [3, 4]. The sintering process is charac-

terised by highly complex processes and nonlinear control

processes, which are hard to describe with an accurate

mathematical model. This situation makes the path to

wisdomly face a challenge [5]. In dealing with these

characteristics of the sintering process, deep learning, an

important branch of machine learning that has emerged in

recent years, has been introduced into steelmaking and is

widely used as a nonlinear modelling algorithm that uses

artificial neural networks as the basic architecture for
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feature extraction and knowledge learning from data [6–8].

It has become one of the most important tools for

smartening up the steel industry. This paper provides an

introduction to the principles of deep learning and a com-

prehensive account of previous work on the application of

deep learning to the process of sintering and its advantages

and disadvantages.

Since the concept of artificial intelligence was first

introduced at the Dartmouth Conference in 1956, it has

developed through highs and lows and is now in its third

wave of development [9]. In the background of big data

and strong computing computer developments, machine

learning algorithms have made breakthrough advances in a

variety of sectors such as computer visualisation, speech

recognition and natural language processing, and their

applications based on artificial intelligence (AI) technology

have matured for industrial fields. Research on AI tech-

nology and its industrial applications are beginning to enter

a new stage of development [10].

On the basis of machine learning and gradually devel-

oped deep learning, the two concepts are often confused.

Machine learning is an important area of artificial intelli-

gence, and its core is the ability of machines to acquire data

to learn ‘‘for themselves’’. Instead of manually writing

software programs to complete target tasks, machine

learning allows the system to learn on its own to recognise

situations and make predictive judgments; thus, machine

learning systems can quickly process tasks by using

knowledge and training from large-scale datasets [11],

whereas deep learning is a subset of machine learning. It

leverages machine learning techniques in conjunction with

neural networks that emulate human decision-making to

address practical problems [12]. Compared with machine

learning, the cost of deep learning increases due to the need

for large datasets to support its training. Therefore,

according to the situation of different fields, we should

choose the appropriate method. Taking image recognition

as an example, the biggest advantage of machine learning

is that its training and testing time is shorter than that of

deep learning models, making it more suitable for low-

computational applications, but the recognition accuracy is

not high enough [13]. However, deep learning can extract

feature information of different resolutions and obtain

more complete image information. It has more powerful

learning capabilities than machine learning and is more

suitable to the needs of accurate image recognition [14].

Generally speaking, the main modelling approaches

applied for the measurement and prediction of key

parameters of sintering processes in the metallurgical

industry are data-driven modelling [15]. Later, as data

collecting technologies advanced, an increasing number of

researchers began to concentrate on and conduct experi-

ments using machine learning modelling approaches.

Among them, support vector machine (SVM) [16], deci-

sion tree (DT) [17], and XGBoost [18] are the more

commonly used modelling methods. In particular, for its

excellent generalisation capability, SVM is well known in

the machine learning community and is widely used in

research areas such as industrial process monitoring, fault

diagnosis, and prediction of key performance indicators

[19]. In actual applications, however, the requirements for

product quality and environmental protection in modern

industry are increasing, and industrial processes are

becoming more complex and larger in scale. Machine

learning modelling methods rely excessively on manual

feature extraction and expert knowledge; therefore, pro-

cessing data with highly nonlinear, high-dimensional,

strongly coupled, and dynamic process can be difficult to

use these classic machine learning techniques.

It is encouraged to note that with the rise of deep

learning and big data, sintering process monitoring has a

new opportunity for development. Deep learning is also

certainly going to inject new momentum into smart steel

manufacturing. Deep learning algorithms can be divided

into several areas such as classification, target detection,

image segmentation, and sequence analysis, distinguished

by the type of task and key techniques [20]. Because of its

ability to automatically learn intricate features in data by

layering representations from the lowest to the highest

layers, deep learning has led to many advances in computer

vision (CV), natural language processing (NLP), and

speech recognition [21–24]. Vision-based deep learning

algorithms combined with partial sequence analysis tech-

niques can already be applied in important processes in the

steel industry. This includes image classification tech-

niques for sintering fire watching [25], target detection

techniques for slab surface quality inspection [26], image

segmentation techniques for conveyor belt runout detection

[27] and slag picking identification of iron ladles [28], as

well as blast furnace radar fabric identification [29] and

steel plate size measurement by fusing convolutional neu-

ral networks (CNNs) [30] and long short-term memory

(LSTM) [31] techniques.

Along with the rapid development of advanced sensor

technology and distributed control systems in recent years,

it is easy to obtain massive amounts of data from the sin-

tering process. This state of being enables the expansion of

deep learning neural network training sets. As a conse-

quence, deep learning has received a great deal of attention

and has been applied to the soft measurement of key

parameters in industrial processes [32, 33]. For the sinter-

ing process, limited by its level of complexity and the high

difficulties of data pre-processing, traditional inspection

methods are unable to capture accurate and advanced

features from complex data. It is only rational and neces-

sary to investigate deep learning-based modelling
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approaches in the sintering process, drawing inspiration

from successful application instances of other industrial

processes. The ideal way to utilise and integrate cutting-

edge deep networks into the sintering process is now a hot

topic for academics to address.

2 Analysis of sintering process

Since the last century, with over more than 100 years of

development in iron and steel industry, iron ore sintering

has been used in more advanced applications, which

include briquetting, granulation, sintering, and pelletising.

With the development of iron ore beneficiation technology,

low grade ores can be made available at higher grades by

grinding and separation processes. However, in order to

ensure the permeability of the blast furnace charge, this

pulverised material must be briquetted before it can be

injected into the furnace. In addition to this lumping

requirement, the excellent blast furnace characteristics of

sintered ore were also appreciated by the ironmaking pro-

cess. Therefore, the sintering process eventually became

the preferred choice for the briquetting of pulverised

materials [34].

2.1 Sintering process and its chemical reactions

The significance of sintering is that the lumping of pul-

verised ore from the mining process can be used to obtain

high grade, high strength, good reducibility and good

metallurgical properties of man-made clinker, which is

conducive to meeting the permeability of the blast furnace,

ensuring smooth operation and improving economic indi-

cators. The sintering and lumping processes can also

remove harmful impurities like sulphur, improve the

quality of the charged material and undertake partial blast

furnace smelting tasks. In addition, lumping can also be

used to recycle iron-containing waste such as steel slag and

dust sludge from the production process of steel mills,

which reduces costs and protects the environment. Cur-

rently, there are two methods of lumping: pelletising and

sintering, of which sintering is the main method [35, 36].

The flow of the iron ore powder sintering process is

summarised below [37]. According to specifications, a

range of raw materials comprising pulverised iron are

combined with a certain amount of fuel and melting agent,

then thoroughly combined, granulated, and delivered to the

sintering equipment for ignition and sintering. The high

temperature created by burning the fuel causes a number of

physical and chemical events. Fusible material of some of

the mixture softens and melts, creating a small quantity of

liquid phase that wets the remaining unmelted ore particles.

Under the influence of air extraction, the high-temperature

area constantly moves in the direction of negative pressure,

and after experiencing high temperatures, with a drop in

temperature, the liquid phase material will bind mineral

powder particles into blocks. This procedure is known as

sintering [38]. Figure 1 depicts the flowchart for the sin-

tering process.

The common belt sintering machine air extraction sin-

tering process is top-down, and the main chemical reac-

tions that occur in the sinter are as follows.

Fig. 1 Process flowchart of iron ore sintering
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1/2O2 gð Þ þ C½ � ¼ CO gð Þ ð1Þ
C½ � þ O2 gð Þ ¼ CO2 gð Þ ð2Þ
3 FeS2½ � þ 8O2 gð Þ ¼ Fe3O4½ � þ 6SO2 gð Þ ð3Þ
2 Fe3O4½ � þ 3SiO2 gð Þ ¼ 3(2FeO � SiO2)þ O2 gð Þ ð4Þ
Fe3O4½ � þ CO gð Þ ¼ 3 FeO½ � þ CO2 gð Þ ð5Þ

The sintering process is an intricate system with a pro-

tracted process flow. The steps in the manufacturing line

are primarily composed of the ingredients and mixing

process, the sintering operation process, and the treatment

of the sintered ore [39, 40].

2.2 Important parameters and characteristics
of sintering process

As shown in Fig. 2, all variables affecting sinter quality

and production efficiency can be broken down into raw

material parameters, operational parameters, equipment

parameters, state parameters, and index parameters in order

to make the study more manageable. These parameters are

closely linked and affect each other. For instance, the

water-material ratio and sintering speed, which are key

parameters influencing the sintering effect in the sintering

process, determine the reaction rate. Additionally, the air

permeability affects the sintering speed, and it is

determined by the physical and chemical properties of the

mixture as well as its water content. These factors collec-

tively contribute to variations in burn-through point (BTP).

FeO content, as an important index parameter, is also

closely related to bed height, ignition temperature, water

content, raw material parameters, etc. [41]. As shown in

Table 1, there are many parameters and indicators in the

sintering process, and they affect each other. Therefore,

this point should be fully considered in the process char-

acteristic analysis for industrial modelling and

optimisation.

The performance and yield of the sintered ore are

affected by a variety of factors throughout the automated,

continuous, multi-station, multi-input, and multi-output

sintering process. The primary features of the sintering

process are complexity, highly nonlinearity, time-varying,

and hysteresis.

2.3 Development of iron ore sintering
simulation technology

The development of sintering theories and techniques has

been accompanied by the development of sintering models

and simulation techniques. Simulation is able to predict

some of the behaviours in the sintering process, especially

complex phenomena that are not easily grasped by exper-

iments, like the mixing of sintered raw materials,

Fig. 2 Parameters in sintering process
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granulation behaviour, the state of the high-temperature

zone of sintering, movement, etc. The key to modelling and

simulating is to select and construct a reasonable model

and to form a stable system with a mapping structure in

order to accurately represent the changing laws of the

process system. The production of blast furnace ironmak-

ing depends on large part on the sintering of iron ore; thus,

it is crucial to model, simulate, and optimise the sintering

process in order to increase automation and implement

intelligent manufacturing [42].

From the perspective of information perception and

intelligence, for the simulation of the whole process and

system parameters of sintering, the mechanism model is

generally chosen for modelling, in which the simulation for

the equipment and process in the sintering process is more

suitable to use the field model [43, 44]. The data-driven

model can be used to mine the data information in the

sintering process. These two modelling approaches are the

mainstream methods for sintering process modelling at

present.

2.3.1 Mechanism model

This approach is based on the study of the sintering process

mechanism and the phenomena associated with the system

parameters in order to model the characteristic parameter

architecture. The high degree of coupling between the

parameters of the system model requires the division of the

model into functions and subsystems based on two levels

of parameter resolution and model synthesis. Analysis is to

decompose the overall functional modules and process

forms of the system hierarchically and selectively decouple

the relevant parameters, so that certain process analysis can

be done in raw materials preparation, high-temperature

sintering and waste heat utilization. Comprehensively

considering the overall development of the system, the

main functional modules and process forms are fully

integrated, and the relevant scattered parameters are cor-

related and coupled to form a relatively complete model

system, as shown in Fig. 3.

The analytical model achieves the purpose of model

simplification by highlighting the main reactions and

omitting secondary factors. The main models formed

include combustion mechanism, heat distribution of

material layer, composition and distribution of sintering

flue gas, etc. Model synthesis is to systematically build

various analytical models and consider the entire sintering

process to meet the needs of sintering process control

optimization. Among these, mechanism-based modelling

involves the analysis of physical and chemical principles to

Table 1 Main parameters affecting sintering process

Type of

variable

Parameter Effect on sintering process Correlation parameter

Raw material

parameter

Fuel (Coke) FeO content can be increased by increasing fuel

consumption appropriately

Amount of fuel will affect sintering temperature and

sintering speed

Limestone Limestone plays roles in regulating basicity and

improving air permeability of sintering process

Mixture ratio and particle size will affect use effect

of limestone

Operational

parameter

Trolley speed Too fast: incomplete sintering, low yield

Too slow: prolonging sintering time

It is affected by sintering temperature, material layer

thickness, raw material parameters and other

factors

Ignition

temperature

Too low: undermelting of sinter surface

Too high: reduced permeability

It is affected by bed depth and air leakage rate

Equipment

parameter

Sintering

area

Too small sintering areas can lead to increased energy

consumption and flue gas emissions

It is influenced by particle size of raw materials and

directly affects sintering temperature and sintering

time

Fan

frequency

Increased frequency boosts oxygen content for better

combustion but increases flue gas flow

It affects ignition temperature and sintering

temperature

State

parameter

Bellow

pressure

Too low: incomplete fuel combustion

Too high: reduced combustion temperature

It mainly affects ignition temperature

BTP Changes in location of BTP can affect amount of

returning ore and yield of finished product

It is influenced by parameters such as sintering rate,

bed depth and permeability

Index

parameter

FeO Too high: poor reducibility

Too low: lower strength of sintered ore

It is affected by mix composition, layer thickness and

permeability, basicity, etc.

Basicity Low basicity leads to a reduction in tumble strength and

reducibility

It is influenced by factors such as mix composition,

fuel ratio and sintering temperature

Tumble

strength

Higher strength results in less pulverised sinter and

better gas permeability

It is influenced by raw material parameters, basicity,

bed depth, sintering speed, etc.
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create an accurate mathematical model. This approach

requires a deep and clearly understanding of the entire

industrial process mechanism. Usamentiaga et al. [45]

presented a sensor for monitoring sintering burn-through

points based on infrared thermography. The procedure they

proposed was on the basis of the collection of infrared and

thermal images at the end of sintering process, which was a

mechanism-based modelling approach. However, sintering

is a rather complex process with continuously changing

physical and chemical reactions, and it is difficult to con-

struct an exact mathematical model.

Field state modelling, as a branch of mechanism mod-

elling, received some attention as well. The sintering

thermal process is a coupling of multiple field information

such as heat, mass, momentum and chemical reactions. In a

systematic and comprehensive analysis of the sintering

process, the unit processes must be modelled and then

coupled with multiple related unit processes to carry out a

holographic simulation of the integrated field states

[46, 47]. Methods for implementing such numerical sim-

ulations rely heavily on existing software frameworks for

modular extensions, as well as autonomous programming

using common computer platforms and software, and are

therefore currently used as a means of implementing

mechanism models.

2.3.2 Data-driven model

Since the sintering process is a dynamic system with many

influencing factors, complex mechanisms, strong coupling

and large lags, in practice, a multilevel process information

computer management system in an enterprise can collect

and store a large amount of information related to product

quality, yield, and cost parameters. Data mining of the

production process or sintering test data information allows

the establishment of a data-driven fusion model, as shown

in Fig. 4. These models do not require deep mechanistic

knowledge of the sintering process, only specific parame-

ters are selected as inputs and outputs of the model, and

various mathematical and artificial intelligence algorithms

are used to establish the mapping function between the

input and output parameters. The main applications of the

data-driven fusion model are sintering parameter prediction

and sintering process optimisation, where the keys are

modelling data and updating of model parameters, as well

as the fusion and self-learning training process. The

parameters include directly measurable parameters, indi-

rectly measurable parameters and their correlations; the

optimisation covers raw materials preparation, sintering

operations and process systems. In particular, data-driven

models can be used to predict specific parameters that

Fig. 3 Mechanism modelling system
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cannot be measured directly or where there is a lag in the

measurement process, like sintering endpoint, sintering

product composition indicators, sintering flue gas compo-

sition, etc.

Classic data-driven modelling approaches mainly con-

sist of multivariate statistical analysis approach and

machine learning modelling approach. Common statistical

analysis methodologies include principal component anal-

ysis (PCA) [48], independent component analysis (ICA)

[49], and partial least squares (PLS) [50]. Using the con-

cept of dimensionality reduction, PCA is a method for

condensing datasets. It is a linear transformation created to

reduce a large number of individual indicators to a handful

of composite indications. ICA uses a decomposition matrix

to multiply the data in order to recover the original source.

The primary distinction between ICA and PCA is the

requirement for a predetermined number of independent

sources for decomposition in ICA. This implies that the

user must have an understanding of the information ahead

and certain specific data features that cannot be picked at

random. PLS, in contrast, permits the simultaneous use of

principal component analysis, multiple linear regression,

and correlation analysis between two sets of data. The

modelling method of machine learning has been introduced

in the introduction and will not be repeated here. At pre-

sent, the main research direction of sintering modelling is

to combine deep learning model to improve accuracy while

retaining the advantages of fast and low computational load

of machine learning modelling.

In simple terms, data-driven decisions and actions are

based on massive amounts of data. It is a model based on

data analysis and machine learning techniques. As one of

the important new branches of machine learning, deep

learning is currently an important method to achieve data-

driving and has shown great potential in many fields as

well as soft sensing scenarios [51]. Deep learning is a hot

topic in artificial intelligence, with its excellent recognition

and classification ability to use a large amount of data to

train models, so as to build data-driven models with better

performance in prediction, classification and decision-

making. At the same time, deep learning has a clear

advantage in improving the efficiency of sample labelling,

which helps us achieve the transition from model-driven

modelling to data-driven modelling [52]. From this, we can

foresee that deep learning will unlock the intelligent future

of data-driven modelling.

Both sintering process modelling techniques have been

applied in practical production, and Table 2 summarises

the research progress of these two modelling methods.

In the current analysis of iron ore sintering processes,

modelling from a deep learning perspective has become a

powerful tool and a research hotspot, regardless of the

modelling method.

3 Commonly used deep learning models
and their applications in sintering

The existence of numerous applications linked to emerging

technologies like big data, the internet of things, and cloud

computing has caused an accelerated increase in the

magnitude of data. A major research challenge nowadays is

Fig. 4 Data-driven modelling system
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how to efficiently and swiftly extract usable information

from redundant and complicated data. Deep learning

techniques have advanced in numerous fields recently,

including speech recognition, image processing, and natu-

ral language processing [66]. Table 3 classified deep

learning models according to their typical application

scenarios. The specific model structures and application

status were introduced in detail in the following sections

[67–83].

To obtain a unified representation of data, deep learning

is the mapping of different data into the same implicit

space, which enables the automatic learning of features on

heterogeneous data from multiple sources [84]. Autoen-

coders, restricted Boltzmann machines (RBMs), convolu-

tional neural networks, recurrent neural networks, deep

belief networks, deep neural networks, generative adver-

sarial networks, and multi-model fusion neural networks

are among the most widely used deep learning models [85].

Table 4 compares the advantages and disadvantages of

different types of deep learning models [73, 86–88].

According to extensive research by researchers, various

models of deep learning have made breakthroughs in many

fields, and applying deep learning to the steel metallurgy

industry is an inevitable trend.

3.1 Autoencoder model structure and its
applications in sintering

In 1986, Geoffrey Hinton, the father of deep learning, first

proposed autoencoders to build deep learning architectures

for unsupervised learning. The main purpose of the appli-

cation was data compression and abstraction of valid data

[89, 90]. The autoencoder network consists of a decoder

and an encoder, as shown in Fig. 5. During training, usu-

ally, both encoder and decoder are needed. When applying

data dimensionality reduction, only the encoder is needed.

Similar to other deep learning structures, the working area

of autoencoder (AE) is also in the neuron layer and trained

by back propagation [91]. The basic idea is that in order to

extract prospective characteristics, the input data are sim-

ply reconfigured to create the output data. An input layer, a

hidden layer, and an output layer make up the fundamental

structure.

The application of autoencoders in the steel industry

focuses on the directions of building data-driven soft sen-

sors and recognizing heterogeneous image datasets from

multiple sources. A soft measurement model based on

weighted integrated semi-supervised stacked autoencoder

for online detection and prediction of moisture in sintered

mixes was proposed by Jiang et al. [92]. A sintering data

Table 2 Research progress in application of numerical simulation techniques

Model Reference Research progress presentation

Mechanism

model

Waters et al. [53] A mathematical model of granulation process was developed, and particle size distribution was predicted

by combining particle size distribution of raw materials, amount of moisture added and physical

properties of raw materials

Venkataramana

et al. [54]

A combined mathematical model for simulating granule size distribution and cold material sinter bed

permeability was developed

Nyembwe et al.

[55]

Granulation effect of sintered mixtures with addition of concentrates and small pellets was investigated,

and applicability of model was verified

Zhao et al. [56] A fuel particle sub-model was developed based on analysis of sintering characteristics to investigate

influence of fuel properties on sintering conditions

Hou et al. [57] A coke dust combustion model was developed to analyse effects of large particle fuels on sintering

conditions under different distribution methods

Pahlevaninezhad

et al. [58]

A model of iron ore sintering based on coke combustion reaction was developed

Data-driven

model

Donskoi et al.

[59, 60]

An empirical model for optimising performance of sintered ores containing texture information was

developed and sintering performance was analysed for different texture parameters

Li et al. [61] A recurrent neural network (RNN)-based dynamic temporal feature unfolding and extraction framework

was developed to improve prediction of FeO content in sintering process

Jiang et al. [62] Combination of heat transfer mechanisms and LSTM-based data-driven models was used to implement

online prediction of FeO content

Gao et al. [63] A mathematical model for predicting tumble strength of sinter was developed using artificial neural

network techniques

Du et al. [64] A fuzzy time series modelling method based on fuzzy c-mean clustering was proposed to accurately

predict BTP

Ye et al. [65] A data-driven prediction of tumble strength based on local thermal non-equilibrium (LTNE) model is

proposed to solve problem of uncertainty in thermochemical reaction equations of sintered beds
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Table 3 Classification of application domains of deep learning models

Application domain Reference Deep learning model

Image identification Bhatt et al. [67] CNNs

Hosseini, et al. [68] CNNs

Liu et al. [69] CNNs

Naskath et al. [70] DBN

Bayraci and Susuz [71] DNN

Natural language recognition Mac et al. [72] AE

Shankar and Parsana [73] AE

Xiao and Zhou [74] RNN

Video recognition Limsupavanich et al. [75] RNN

Dharejo et al. [76] RNN

Tao et al. [77] DBN

Putin et al. [78] DNN

Fault diagnosis Yang et al. [79] AE

Zhu et al. [80] RNN

Su et al. [81] DBN

Gai et al. [82] DBN

Lee et al. [83] DNN

DBN—Deep belief network; DNN—deep neural network

Table 4 Advantages and disadvantages of different types of deep learning models

Deep

learning

model

Structural characteristics Advantage Disadvantage

AE [73] Its basic structure includes input layer,

hidden layer, and output layer

Main feature of AE network is simple

structure, which can be used for data

feature extraction and dimensionality

reduction and has a certain

generalization ability

It can only obtain implicit expression by

training model in an unsupervised way,

resulting in insufficient expression

ability

CNNs

[86]

An input layer, a convolutional layer, a

pooling layer, a fully connected layer,

and an output layer make up structure of

a convolutional neural network

Compared with other deep learning

algorithms, it has better classification

accuracy and can process data with

translation invariance

Calculation process of such models is

complex, data quality is high, and

sensitivity to label attributes may affect

performance

RNN

[87]

Its basic structure consists of an input

layer, a hidden layer and an output layer,

but neurons are linked to each other in

hidden layer

It can remember input information of last

time and process input of any length, so

that it is suitable for processing sequence

data

Operational speed is relatively slow, and

gradient frequently tends to vanish

DBN

[70]

It is obtained by superimposing multiple

restricted Boltzmann machine (RBM)

and back propagation (BP) networks

It can be used for both supervised and

unsupervised learning and allows entire

neural network to generate training data

according to maximum probability

Because of back propagation process in

multiple hidden layers, learning time of

network is prolonged, energy

consumption is high, and learning

efficiency is low

DNN

[88]

In addition to input layer and output layer,

DNN also contains several hidden layers

Due to its powerful nonlinear fitting

ability, such networks can achieve

adaptive learning and network

optimization

Training process requires a lot of data and

computing resources, and network

cannot handle changes in time series
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fusion method based on multimodal autoencoders can

accurately identify surface defects in sintered ores [93].

And Yu and Yan [94] used stack denoising autoencoder to

realize fault diagnosis in sintering process. Maged et al.

[95] proposed a variation-based autoencoder-long short-

term memory deep learning T2 graph, which was applied to

intelligent fault diagnosis of sintering process. Chen et al.

[96] employed autoencoders for intelligent modelling of

industrial processes, validated their approach with sintering

process cases, and developed digital twins to enable

accurate production quality prediction. Wang et al. [97]

used the raw process data to train the autoencoder neural

network to accurately capture defective products and

achieve automatic prediction of product quality in sintering

process.

3.2 Convolutional neural networks model
structure and its applications in sintering

CNNs are multilayer perceptrons that were once mainly

used for the recognition of two-dimensional graphics and

are able to create a corresponding mapping between the

original input and the desired output. In recent years, they

have begun to be used to solve multidimensional data in

image recognition problems [98]. An input layer, a con-

volutional layer, a pooling layer, a fully connected layer,

and an output layer make up the structure of a

convolutional neural network. An illustration of the

working of a convolutional neural network is shown in

Fig. 6.

Convolutional and pooling layers are alternately con-

nected as the first few layers in the standard CNNs algo-

rithmic model, followed by a connection to a fully

connected layer. After the works of the convolutional and

pooling layers are completed, the fully connected layer

maps these features to a space of linear classifications, and

finally, the output layer outputs the classified results under

the classification function processing [99].

Convolutional neural networks are one kind of widely

used models in the modelling of various detection and

prediction of iron ore sintering processes.

CNN models have completely surpassed traditional

algorithms in image classification techniques; especially,

significant progress has been made in the application for

judging the endpoint of iron ore sintering. In order to

achieve the determination of the sintering endpoint, after

obtaining the image data of the sintering section, the CNN

algorithm is used to extract the flame feature information,

which can achieve highly reliable and real-time image

classification, accurately determine the sintering endpoint

and reduce the reliance on manual fire watching. Li et al.

[20] acquired images from video of sintering sections and

annotated the data with the experience of sintering workers

watching the fire. They investigated the expansion of the

sintered dataset using generative adversarial networks

Fig. 5 Structure of autoencoder network. x1, x2, …, x8—Input variables; x̂1; x̂2; :::; x̂8—output variables
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(GAN) [100] and proposed a classification model com-

bining attention mechanisms [101] with ResNet, to rescale

the feature data, to train the model using the expanded

sintered dataset and to test it using production data. The

results show that the classification accuracy of the algo-

rithm can reach over 99% and the processing speed was 15

frames/s. Meira et al. [102] used CNNs to develop deep

learning models with edge computing capabilities to

identify quasi-particles in the sintering process of mixed

pellets and to determine the particle size distribution from

image data of the sintering process, and their model

achieved an accuracy of 98.6% in the training validation of

the images. Meira et al. [103] proposed implementation of

Mask-R-CNN algorithm for segmentation of quasi-particle

sizes classes in pellet sintering processes using datasets

created from real images of industrial environments. Hu

and Mao [104] combined LSTM and improved GAN to

design a rotary kiln temperature prediction model that can

effectively display important information on the time

dimension. The optimisation of sinter composition is a very

important aspect in the steel industry, and traditional

composition optimisation methods can hardly cope with

the efficient demands of large-scale production and com-

plex working conditions. Sinter composition optimisation

using a regressive convolutional neural network model can

improve feature extraction, predict the optimum ratio of

sintering raw materials, and give reasonable input param-

eters for sintering raw materials during the sintering pro-

cess [105]. In practice, the sinter basicity should be

controlled around 2.0, when both the calcium ferrite con-

tent and the drum index reach their maximum. Based on

the ore-phase datasets, Zhi et al. [106] conducted experi-

ments on a CNN-based basicity prediction model for ore-

phase photographs and achieved more accurate prediction

results. The predominant transport method in sintering

production is belt transport. In order to eliminate the

impact of belt damage and material blockage on produc-

tion, Xiao et al. [107] proposed a CNN-based study on the

detection, classification and location of sintered foreign

objects, and this detection model achieved high accuracy

under experimental conditions. The FeO content in sintered

ore is a key indicator in blast furnace ironmaking, which

still requires manual sampling and detection in actual

production. Zhang et al. [108] proposed an online detection

model for FeO content based on CNN and sinter tail

infrared images, which can control the detection error

within ± 0.5%.

3.3 Recurrent neural network model structure
and its applications in sintering

RNNs are powerful in their ability to store data in a time

series. The more popular ones are the deep residual RNN

and LSTM RNN architectures [109]. Input, implicit, and

output layers contribute to the architecture of a recurrent

neural network. As shown in Fig. 7, the RNN network

neurons are connected to each other in the hidden layer.

The original information is preserved, and the current data

are only related to the previous data. The network structure

is relatively simple; thus, it can handle sequence data

better.

Due to the complexity of industrial processes, it is very

difficult to carry out online inspection of key quality

indicators. Offline inspection methods rely excessively on

manual experiences, the inspection time is long, and the

information obtained is difficult to correct the production

process in a timely manner.

Fig. 6 Working principle of convolutional neural networks. Pbird—Output categorized as a bird; Pdog—output categorized as a dog; Pcat—output

categorized as a cat; Pwolf—output categorized as a wolf
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Recurrent neural networks have greater advantages in

addressing latent variable prediction and dynamic feature

extraction. Li et al. [61] conducted an investigation on

dynamic time features unfolding and extraction for sinter

quality prediction and used RNN to predict key quality

parameters, which effectively improved the accuracy of

FeO content prediction. RNNs are frequently employed in

the learning of sequence data. Chunjie Yang and his col-

leagues presented a semi-supervised dynamic feature

extraction framework based on sequence preliminary

training and tuning to further improve the accuracy of FeO

content prediction in actual sintering processes [110]. They

used various RNN variants, such as LSTM and gated

recurrent unit (GRU) units. To cope with the complex

nature of the sintering process data, based on previous

researches, their team combined RNN with gated recurrent

units and partial least squares (GRU–PLS), and the GRU–

PLS model has the lowest error in the prediction of FeO of

the final sintered ore compared to other models [111].

Based on the mechanistic analysis, researchers mitigated

the effect of noise by adding a denoising gate to the GRU

and then proposed a denoising spatial–temporal encoder–

decoder multistep prediction model for prediction of the

BTP in advance [112, 113]. Yan et al. [114] proposed a

multistep prediction model for BTP using RNN combined

with 3D convolution to simultaneously learn spatial–tem-

poral features from low to high levels, which was also

effective and accurate. Li et al. [115] used long short-term

memory and genetic algorithm-recurrent neural network

(GA-RNN) to detect the chemical composition of sintered

raw materials and established a GA-RNN based sinter

quality prediction model to guide the sinter production

process. Zhang et al. [116] designed a hybrid deep neural

network model that contained a gated recurrent unit net-

work and a deep convolutional neural network to predict

sintering temperature by extracting multivariate coupled

dynamic features, while incorporating a parallel GRU that

uses historical data as input can improve the accuracy of

capturing sintering temperature time-series dynamic

features. Chen et al. [117] proposed a dynamic spatio-

temporal graph attention network based on RNN to con-

struct a multivariate time series prediction model for long-

term prediction of sintering temperature.

3.4 Deep belief network and deep neural
network model structures and applications
in sintering

In 2006, Geoffrey Hinton developed a deep belief network

model for the problem of nonlinear separability [118].

DBN simplifies the inference process based on logical

belief networks and has a very similar hierarchical struc-

ture to BP networks. In a nutshell, Fig. 8 illustrates how

many RBMs, and BPs are superimposed to create the DBN

[119], where X denotes the input data, and O and Y denote

the model output data and its labels, respectively. Unsu-

pervised preliminary training and supervised back-propa-

gation procedures make up the training process.

Deep learning network is a kind of neural network

model which is able to spontaneously extract valid infor-

mation from large amounts of data. This deep learning

method is capable of having different structures and

parameters for different application requirements, but the

length of its training process may change as the training set

changes in size [120]. The training process of DNN mainly

includes setting up the DNN structure according to the

requirements, interlayer transmission in the hidden layer to

obtain the error, and back propagation to update the

parameters according to the error minimisation principle,

as shown in Fig. 9 [85].

DBNs are highly extensible learning algorithms that

cannot only identify features and classify data, but also

generate data. Yuan et al. [121] used DBN to predict the

secondary chemical composition of sinter and established a

prediction model. The pre-training under the unsupervised

algorithm combined with the BP neural network opti-

mization model achieved good simulation results. The

outstanding feature representation capabilities of DBNs

Fig. 7 Structure of RNNs
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enable them to be used extensively in soft sensor mod-

elling. Yuan et al. [122] proposed a new supervised DBN

(SDBN) by adding quality information to the training

phase to provide a new idea for soft sensor detection and

prediction in the sintering process. This SDBN was com-

bined with a restricted Boltzmann machine to extract soft

sensor quality related features and applied to sintered ore

FeO content prediction, which obtained superior prediction

performance compared to DBN and stacked self-encoders

[123]. How to improve the carbon efficiency of the sin-

tering process has been a hot topic of research in recent

years. Zhou et al. [124] proposed a DBN-based hybrid

prediction model for CO/CO2 and used a semi-supervised

algorithm to test the actual operational data and achieved

good simulation results.

DNNs are more careful and efficient in solving practical

complex nonlinear problems than shallow modelling

approaches. This feature has led to its application in the

field of industrial control. The problem of lags in sinter

composition testing directly affects the quality and yield of

the sintered product. Liu et al. [125] proposed a

comprehensive sinter composition prediction system based

on DNN and LSTM, which can monitor and control the

changes of sinter components in real time with lower

average square error and average absolute error than that of

existing methods. Wang et al. [126] proposed a sintering

state recognition model based on prior knowledge and deep

neural networks, which eliminated the negative effects

arising from sample imbalance and achieved an accuracy

rate of 92% for overall sintering state assessment. The

application of the Industrial Internet of Things in the steel

industry is currently in its initial stage, and how to effec-

tively optimise system resources is a critical technical

issue. Fan et al. [127] utilised the deep neural network

partition mechanism and the allocation of communication

and computing resources to achieve collaborative optimi-

sation and minimise system delay. Wu et al. [128] used

unsupervised deep neural network and semi-supervised

deep neural network as the prediction model when studying

the optimisation of transfer learning for sintering densifi-

cation prediction. Compared with the traditional sintering

density prediction model, the accuracy gradually improved.

The problem of scarcity of sintered data can be solved

more quickly.

It can be seen that researchers have made a lot of

attempts on deep learning models in iron ore sintering

process. The application effects of different models in

sintering are compared in Table 5.

The energy consumption and environmental emissions

from the fundamental industrial process of steel making

make up a significant percentage of a nation’s industry.

However, compared to other industries, there are still some

gaps in the level of automation and information technology

in the iron and steel industry. Along with the rapid

development of deep learning technology, process mod-

elling and simulation incorporating sintering theory and

large-scale production data information are one of the

important tools for future technological innovation in iron

ore sintering and the entire iron and steel metallurgical

industry, and deep learning algorithms have a wide range

Fig. 9 Structure of DNN

Fig. 8 Structure of DBN. H1, H2, …, Hh—Hidden layer 1, hidden

layer 2, …, hidden layer h
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of application prospects in the analysis and prediction of

various process aspects of iron ore sintering [20].

4 Conclusions

By summarising and generalising a large amount of liter-

ature, we can find that the applicable scenarios of different

deep learning models in the steel industry are quite distinct.

For the different needs of modelling the sintering process,

various types of deep learning models have their own

outstanding advantages. With the gradual completion of

industrial data and the development of deep learning

algorithms, deep learning has broad application prospects

in iron ore sintering and even the entire steel industry and

will become a new round of technological innovation in the

future development of the industry. However, many of the

studies of deep learning models in the sintering process are

in the stage of experiments and simulation of actual pro-

duction data, and fewer cases have actually been put into

the production system for use. The utilisation of deep

learning modelling methods to improve the accuracy and

stability of the detection and prediction of key indicators in

the sintering process, and to achieve optimal control, still

requires more in-depth theoretical research:

1. AE network is commonly used in natural language

recognition, but in the industrial field, due to its simple

structure, AE is only applicable to the intelligent fault

diagnosis aspect, and the application in the sintering

process is currently in a gap. Intelligent fault diagnosis

modelling of sintering process based on AE has great

research prospects.

2. CNNs have the advantage of being able to handle large

amounts of static image data. In particular, sinter tail

infrared images, sinter section flame images, mixed

pellet images, as well as mineral phase photographs are

recognised, classified, and calibrated, and on the basis

of expanding the training dataset, online detection, and

prediction modelling are then carried out.

3. The advantages of RNNs lie precisely in dynamic

temporal feature unfolding and extraction as well as

learning of sequence data. Therefore, it is suitable for

processing video images data during the sintering

process. Moreover, RNNs have derived some variants,

such as GRU and LSTM, which are more accurate in

the extraction of such time-dynamic sequence features

as sintering burn-through point and sintering temper-

ature and can be used for long-term monitoring and

prediction of such parameters.

4. CNN models are generally considered if various types

of image data need to be classified and analysed during

the sintering process. Examples include extracting

flame features in red-hot images of the sinter tail to

improve prediction of BTP accuracy, analysing photos

of mineral phases to optimise the composition of

sintered ores, detecting foreign objects on the sintering

conveyor belt, etc. RNNs are more suitable for

processing time series data and capturing time series

dynamic features with high accuracy. Since this

network enables online detection, it is more advanta-

geous for sinter ore quality prediction during the

sintering process, which allows long-term prediction of

Table 5 Application comparison of deep learning model in sintering process

Application field Type of

model

Application effect

Fault diagnosis in sintering process AE This model can reduce influence of false outliers, reduce fault false positive rate, reduce

calculation cost, and improve fault detection rate

Sintering image recognition CNNs Utilization of this model for extracting flame characteristic information can decrease

reliance on manual fire observation, and with a classification accuracy of 99% for sintering

section images, BTP can be accurately determined while particle size distribution in mixed

pellet sintering process can be judged with an accuracy exceeding 98%

Prediction of sintering temperature

and burn-through point

RNN It enables multistep prediction of BTP and enhances accuracy of predictions. Furthermore, it

facilitates long-term forecast in addition to improving sintering temperature prediction

accuracy

Prediction of sinter composition CNNs It can optimise composition of sinter and predict optimal ratio of sintered raw materials by

using mineral phase photos

DNN In this regard, the model solves problem of lagging component detection and reduces impact

of data scarcity and sample imbalance

Quality prediction of sintered

products

RNN It can improve prediction accuracy of FeO content in sintering process and reduce

measurement error

DBN In terms of FeO content prediction, prediction effect is better than that of AE model, and it is

better in improving carbon efficiency in CO/CO2 mixed prediction model
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parameters like sintering temperature. The most

prominent feature of DBNs is their excellent scalabil-

ity, and their excellent feature rendering capability is

more suitable for soft sensor modelling, but the

disadvantages are also obvious, which are low network

efficiency and long learning time. Therefore, these

models are generally combined with CNN or RNN to

improve the accuracy and speed of predictive mod-

elling. The DNN model is capable of deep modelling

for nonlinear problems and can reduce system latency.

It is more suitable for fast allocation of communication

and computational resources in combination with

Internet of Things technology during sintering process.
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