Skip to main content
Log in

Softening and melting behaviors of ferrous burden in hydrogen-rich blast furnace cohesive zone

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The changes in the softening and melting behaviors of ferrous burden in the cohesive zone and the characteristics of the slag–iron–coke interface in a blast furnace were investigated by simulating an actual blast furnace under hydrogen-rich conditions. According to the variation in the transient shrinkage of the burden under different atmospheres, the shrinkage start temperature of the sinter was higher than that of the pellets. The negative shrinkage rate of the pellets was greater than that of the sinter. Additionally, the softening start temperature in the blast furnace decreased under hydrogen-rich conditions, giving the blast furnace a broader range of softening zones. The softening start temperatures of the pellets and sinter decreased from 1102 to 949 °C and 1152 to 1080 °C, respectively. The hydrogen-rich traditional blast furnace conditions narrowed the melting zone temperature range and shifted it toward the high-temperature zone, significantly improving the burden layer permeability. However, under the hydrogen-rich oxygen blast furnace conditions, there were a decrease in the melting start temperature, a shift of the melting zone location to the low-temperature zone, and an increase in the burden layer permeability and pressure difference. A comparison of the slag–iron–coke interface characteristics under different atmospheric conditions showed that the carbon content in metallic iron decreased under hydrogen-rich traditional blast furnace conditions compared with traditional blast furnace conditions. Contrastingly, under hydrogen-rich oxygen blast furnace conditions, the carbon content in metallic iron increased compared with oxygen blast furnace conditions. These findings provide guidance for the development of low-carbon ironmaking processes in blast furnaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.Q. Xu, B. Wan, T.Y. Zhu, M.P. Shao, J. Clean. Prod. 139 (2016) 1504–1511.

    Article  Google Scholar 

  2. K.D. Xu, Iron and Steel 45 (2010) No. 3, 1–12.

    Google Scholar 

  3. X.C. Tan, H. Li, J.X. Guo, B.H. Gu, Y. Zeng, J. Clean. Prod. 222 (2019) 823–834.

    Article  Google Scholar 

  4. K.H. Ma, J.Y. Deng, G. Wang, Q. Zhou, J. Xu, Int. J. Hydrogen Energy 46 (2021) 26646–26664.

    Article  Google Scholar 

  5. Y.B. Chen, H.B. Zuo, Ironmak. Steelmak. 48 (2021) 749–768.

    Article  Google Scholar 

  6. J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, Y.S. Zhou, Int. J. Miner. Metall. Mater. 27 (2020) 713–723.

    Article  Google Scholar 

  7. X.Y. Zhang, K.X. Jiao, J.L. Zhang, Z.Y. Guo, J. Clean. Prod. 306 (2021) 127259.

    Article  Google Scholar 

  8. G.Y. Sun, B. Li, W.S. Yang, J. Guo, H.J. Guo, Energies 13 (2020) 1986.

    Article  Google Scholar 

  9. Z.J. Liu, J.L. Zhang, T.J. Yang, ISIJ Int. 55 (2015) 1146–1156.

    Article  Google Scholar 

  10. A. Heidari, N. Niknahad, M. Iljana, T. Fabritius, Materials 14 (2021) 7540.

    Article  Google Scholar 

  11. J. Zhao, H.B. Zuo, C. Ling, W.T. Guo, J.S. Wang, Q.G. Xue, J. Iron Steel Res. Int. 27 (2020) 743–754.

    Article  Google Scholar 

  12. X.L. Liu, T. Honeyands, G. Evans, P. Zulli, D. O’Dea, Ironmak. Steelmak. 46 (2019) 953–967.

    Article  Google Scholar 

  13. Y.N. Qie, Q. Lyu, X.J. Liu, J.P. Li, C.C. Lan, S.H. Zhang, C.J. Yan, Metall. Mater. Trans. B 49 (2018) 2622–2632.

    Article  Google Scholar 

  14. C.C. Lan, S.H. Zhang, X.J. Liu, Q. Lyu, M.F. Jiang, Int. J. Hydrogen Energy 45 (2020) 14255–14265.

    Article  Google Scholar 

  15. Y.Z. Pan, H.B. Zuo, B.X. Wang, J.S. Wang, G. Wang, Y.L. Liu, Q.G. Xue, Ironmak. Steelmak. 47 (2020) 322–327.

    Article  Google Scholar 

  16. J. Li, S.B. Kuang, R.P. Zou, A.B. Yu, Metall. Mater. Trans. B 53 (2022) 4124–4137.

    Article  Google Scholar 

  17. J. Li, S.B. Kuang, L.L. Jiao, L.L. Liu, R.P. Zou, A.B. Yu, Fuel 323 (2022) 124368.

    Article  Google Scholar 

  18. J. Tang, M.S. Chu, F. Li, Z.D. Zhang, Y.T. Tang, Z.G. Liu, J. Yagi, J. Clean. Prod. 278 (2021) 123191.

    Article  Google Scholar 

  19. Y.H. Han, J.S. Wang, Y.Z. Li, X.F. She, L.T. Kong, Q.G. Xue, J. Univ. Sci. Technol. Beijing 33 (2011) 1280–1286.

    Google Scholar 

  20. K.H. Ma, J. Xu, J.Y. Deng, D.D. Wang, Y. Xu, Z.H. Liao, C.F. Sun, S.F. Zhang, L.Y. Wen, Metall. Mater. Trans. B 49 (2018) 2308–2321.

    Article  Google Scholar 

  21. X.W. An, J.S. Wang, R.Z. Lan, Y.H. Han, Q.G. Xue, J. Iron Steel Res. Int. 20 (2013) No. 5, 11–16.

    Article  Google Scholar 

  22. M. Hayashi, K. Suzuki, Y. Maeda, T. Watanabe, ISIJ Int. 56 (2016) 220–225.

    Article  Google Scholar 

  23. S. Hayashi, Y. Iguchi, Ironmak. Steelmak. 32 (2005) 353–358.

    Article  Google Scholar 

  24. H.T. Wang, H.Y. Sohn, Ironmak. Steelmak. 38 (2011) 447–452.

    Article  Google Scholar 

  25. L.Y. Yi, Z.C. Huang, T. Jiang, L.N. Wang, T. Qi, Powder Technol. 269 (2015) 290–295.

    Article  Google Scholar 

  26. F. Li, M.S. Chu, J. Tang, Z.G. Liu, C. Feng, Y.T. Tang, JOM 69 (2017) 1751–1758.

    Article  Google Scholar 

  27. H.C. Chuang, W.S. Hwang, S.H. Liu, Mater. Trans. 50 (2009) 1448–1456.

    Article  Google Scholar 

  28. S. Ueda, T. Kon, T. Miki, S.J. Kim, H. Nogami, ISIJ Int. 55 (2015) 2098–2104.

    Article  Google Scholar 

  29. P. Wang, Y.Q. Zhang, H.M. Long, R.F. Wei, J.X. Li, Q.M. Meng, S.C. Yu, ISIJ Int. 57 (2017) 643–648.

    Article  Google Scholar 

  30. P. Wang, S. Yu, H. Long, R. Wei, Q. Meng, Y. Zhang, Ironmak. Steelmak. 44 (2017) 595–600.

    Article  Google Scholar 

  31. W.T. Guo, Q.G. Xue, Y.L. Liu, Z.C. Guo, X.F. She, J.S. Wang, Q.Q. Zhao, X.W. An, Int. J. Hydrogen Energy 40 (2015) 13306–13313.

    Article  Google Scholar 

  32. C.C. Lan, Q. Lyu, X.J. Liu, M.F. Jiang, Y.N. Qie, S.H. Zhang, Int. J. Hydrogen Energy 43 (2018) 19405–19413.

    Article  Google Scholar 

  33. Z.G. Zhao, X.B. Yu, Y.S. Shen, Y.T. Li, H. Xu, Z.J. Hu, Energy Fuels 34 (2020) 15048–15060.

    Article  Google Scholar 

  34. G.Q. Yang, J.L. Zhang, Y.X. Chen, Q.Y. Wu, Z.Y. Zhao, J. Zhao, Iron and Steel 47 (2012) No. 9, 14–18.

    Article  Google Scholar 

  35. K. Zhou, J.Q. Song, Z.X. You, H.E. Xie, X.W. Lv, ISIJ Int. 60 (2020) 1409–1415.

    Article  Google Scholar 

  36. T. Umadevi, P. Kumar, N.F. Lobo, M. Prabhu, P.C. Mahapatra, M. Ranjan, ISIJ Int. 51 (2011) 14–20.

    Article  Google Scholar 

  37. H.S. Kim, J.G. Kim, Y. Sasaki, ISIJ Int. 50 (2010) 1099–1106.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. U1960205 and 51804024), China Baowu Low Carbon Metallurgy Innovation Foundation (BWLCF202101 and BWLCF202104) and China Minmetals Science and Technology Special Plan Foundation (2020ZXA01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Wang or Jing-song Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Bb., Wang, G., Yang, F. et al. Softening and melting behaviors of ferrous burden in hydrogen-rich blast furnace cohesive zone. J. Iron Steel Res. Int. 30, 2366–2377 (2023). https://doi.org/10.1007/s42243-023-00951-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00951-3

Keywords

Navigation