Skip to main content
Log in

A deep learning-based method for segmentation and quantitative characterization of microstructures in weathering steel from sequential scanning electron microscope images

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Microstructural classification is typically done manually by human experts, which gives rise to uncertainties due to subjectivity and reduces the overall efficiency. A high-throughput characterization is proposed based on deep learning, rapid acquisition technology, and mathematical statistics for the recognition, segmentation, and quantification of microstructure in weathering steel. The segmentation results showed that this method was accurate and efficient, and the segmentation of inclusions and pearlite phase achieved accuracy of 89.95% and 90.86%, respectively. The time required for batch processing by MIPAR software involving thresholding segmentation, morphological processing, and small area deletion was 1.05 s for a single image. By comparison, our system required only 0.102 s, which is ten times faster than the commercial software. The quantification results were extracted from large volumes of sequential image data (150 mm2, 62,216 images, 1024 × 1024 pixels), which ensure comprehensive statistics. Microstructure information, such as three-dimensional density distribution and the frequency of the minimum spatial distance of inclusions on the sample surface of 150 mm2, were quantified by extracting the coordinates and sizes of individual features. A refined characterization method for two-dimensional structures and spatial information that is unattainable when performing manually or with software is provided. That will be useful for understanding properties or behaviors of weathering steel, and reducing the resort to physical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Zare, A. Ekrami, Mater. Sci. Eng. A 530 (2011) 440–445.

    Article  Google Scholar 

  2. R. Li, X. Zuo, Y. Hu, Z. Wang, D. Hu, Mater. Charact. 62 (2011) 801–806.

    Article  Google Scholar 

  3. H. Ding, Z.Y. Tang, W. Li, M. Wang, D. Song, J. Iron Steel Res. Int. 13 (2006) No. 6, 66–70.

    Article  Google Scholar 

  4. J. Zhou, D.S. Ma, H.X. Chi, Z.Z. Chen, X.Y. Li, J. Iron Steel Res. Int. 20 (2013) No. 9, 117–125.

    Article  Google Scholar 

  5. J. Zhang, Q.W. Cai, H.B. Wu, K. Zhang, B. Wu, J. Iron Steel Res. Int. 19 (2012) No. 3, 67–72.

    Article  Google Scholar 

  6. T.J. Collins, Biotechniques 43 (2007) No. S1, 25–30.

    Article  MathSciNet  Google Scholar 

  7. B.Y. Ma, X.J. Ban, Y. Su, C.N. Liu, H. Wang, W.H. Xue, Y.H. Zhi, D. Wu, Micron 116 (2019) 5–14.

    Article  Google Scholar 

  8. J. Komenda, Mater. Charact. 46 (2001) 87–92.

    Article  Google Scholar 

  9. A.L. Garcia-Garcia, I. Dominguez-Lopez, L. Lopez-Jimenez, J.D.O. Barceinas-Sanchez, Mater. Charact. 87 (2014) 116–124.

    Article  Google Scholar 

  10. V.H.C. de Albuquerque, P.C. Cortez, A.R. de Alexandria, J.M.R.S. Tavares, Nondestr. Test. Eval. 23 (2008) 273–283.

    Article  Google Scholar 

  11. L. Duval1, M. Moreaud, C. Couprie, D. Jeulin, H. Talbot, J. Angulo, in: 2014 IEEE International Conference on Image Processing, Paris, France, 2014, pp. 4862–4866.

  12. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Met. 9 (2012) 671–675.

    Article  Google Scholar 

  13. P. Ctibor, R. Lechnerová, V. Bene, Mater. Charact. 56 (2006) 297–304.

    Article  Google Scholar 

  14. S.G. Lee, Y. Mao, A.M. Gokhale, J. Harris, M.F. Horstemeyer, Mater. Charact. 60 (2009) 964–970.

    Article  Google Scholar 

  15. V.H.C. de Albuquerque, P.P. Reboucas Filho, T.S. Cavalcante, J.M.R.S. Tavares, J. Microsc. 240 (2010) 50–59.

  16. R.B. Oliveira, M.E. Filho, Z. Ma, J.P. Papa, A.S. Pereira, J.M.R.S. Tavares, Comput. Met. Programs Biomed. 131 (2016) 127–141.

    Article  Google Scholar 

  17. D. Kim, J.J. Liu, C. Han, Chem. Eng. Sci. 66 (2011) 6264–6271.

    Article  Google Scholar 

  18. S. Zajac, V. Schwinn, K.H. Tacke, Mater. Sci. Forum 500–501 (2005) 387–394.

    Article  Google Scholar 

  19. T. Dutta, D. Das, S. Banerjee, S.K. Saha, S. Datta, Measurement 137 (2019) 595–603.

    Article  Google Scholar 

  20. V.H.C. de Albuquerque, C.C. Silva, T.I. Menezes, J.P. Farias, J.M.R.S. Tavares, Microsc. Res. Technol. 74 (2011) 36–46.

    Article  Google Scholar 

  21. V.H.C. de Albuquerque, J.M.R.S. Tavares, P.C. Cortez, Int. J. Microstruct. Mater. Propert. 5 (2010) 52–64.

    Google Scholar 

  22. B.L. DeCost, E.A. Holm, Comput. Mater. Sci. 110 (2015) 126–133.

    Article  Google Scholar 

  23. D.S. Jodas, A.S. Pereira, J.M.R.S. Tavares, Expert Systems Appl. 46 (2016) 1–14.

    Article  Google Scholar 

  24. L. Staniewicz, P.A. Midgley, Adv. Struct. Chem. Imaging 1 (2015) 9.

    Article  Google Scholar 

  25. I. Arganda-Carreras, V. Kaynig, C. Rueden, K.W. Eliceiri, J. Schindelin, A. Cardona, H. Sebastian Seung, Bioinformatics 33 (2017) 2424–2426.

  26. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Montbonnot, France, 2005.

  27. N. Vyas, R.L. Sammons, O. Addison, H. Dehghani, A.D. Walmsley, Sci. Rep. 6 (2016) 32694.

    Article  Google Scholar 

  28. S.H. Kim, J.H. Lee, B. Ko, J.Y. Nam, in: 2010 International Conference on Machine Learning and Cybernetics, Qingdao, China, 2010, pp. 3190–3194.

  29. J. Long, E. Shelhamer, T. Darrell, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, America, 2015, pp. 640–651.

  30. S.M. Azimi, D. Britz, M. Engstler, M. Fritz, F. Mucklich, Sci. Rep. 8 (2018) 2128.

    Article  Google Scholar 

  31. B.Y. Ma, X.J. Ban, H.Y. Huang, Y.L. Chen, W.B. Liu, Y.H. Zhi, Symmetry 10 (2018) 107.

    Article  Google Scholar 

  32. D.S. Bulgarevich, S. Tsukamoto, T. Kasuya, M. Demura, M. Watanabe, Sci. Rep. 8 (2018) 2708.

    Article  Google Scholar 

  33. A. Yoshitaka, T. Motoki, H. Shogo, Tetsu-to-Hagane 102 (2016) 722–729.

    Article  Google Scholar 

  34. Q. Zhang, Z. Cui, X. Niu, S. Geng, Y. Qiao, International Conference on Neural Information Processing (2017) 364–372.

  35. S.K. Devalla, P.K. Renukanand, B.K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.M. Mari, K.S. Chin, T.A. Tun, N.G. Strouthidis, T. Aung, A.H. Thiery, M.J.A. Girard, Biomed. Opt. Express 9 (2018) 3244–3265.

    Article  Google Scholar 

  36. Z. Zhang, Q. Liu, Y. Wang, IEEE Geosci. Remote Sens. Lett. 15 (2018) 749–753.

    Google Scholar 

  37. B. Norman, V. Pedoia, S. Majumdar, Radiology 288 (2018) 177–185.

    Article  Google Scholar 

  38. H. Dong, G. Yang, F. Liu, Y. Mo, Y. Guo, MIUA 723 (2017) 506–517.

    Google Scholar 

  39. O. Ronneberger, P. Fischer, T. Brox, in: 18th International Conference, Munich, Germany, 2015, pp. 234–241.

    Google Scholar 

  40. D. Stoller, S. Ewert, S. Dixon, Wave-U-Net: a multi-scale neural network for end-to-end audio source separation, in: 19th International Society for Music Information Retrieval Conference, Paris, France, 2018.

  41. A. Sevastopolsky, Pattern Recognition Image Anal. 27 (2017) 618–624.

    Article  Google Scholar 

  42. M. Fernandes, J.C. Pires, N. Cheung, A. Garcia, Mater. Charact. 51 (2003) 301–308.

    Article  Google Scholar 

  43. H.Y. Ha, C.J. Park, H.S. Kwon, Corros. Sci. 49 (2007) 1266–1275.

    Article  Google Scholar 

  44. I.I. Reformatskaya, I.G. Rodionova, Y.A. Beilin, L.A. NiselSon, A.N. Podobaev, Prot. Met. 40 (2004) 447452.

    Article  Google Scholar 

  45. Y. Tomita, Mater. Sci. Technol. 11 (1995) 508–513.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFB0702303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan-dan Sun or Hai-zhou Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Wan, Wh., Sun, Dd. et al. A deep learning-based method for segmentation and quantitative characterization of microstructures in weathering steel from sequential scanning electron microscope images. J. Iron Steel Res. Int. 29, 836–845 (2022). https://doi.org/10.1007/s42243-021-00719-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00719-7

Keywords

Navigation