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Abstract
In modern terminology, “organoids” refer to cells that grow in a specific three-dimensional (3D) environment in vitro, sharing
similar structures with their source organs or tissues. Observing themorphology or growth characteristics of organoids through
a microscope is a commonly used method of organoid analysis. However, it is difficult, time-consuming, and inaccurate to
screen and analyze organoids only manually, a problem which cannot be easily solved with traditional technology. Artificial
intelligence (AI) technology has proven to be effective in many biological and medical research fields, especially in the
analysis of single-cell or hematoxylin/eosin stained tissue slices. When used to analyze organoids, AI should also provide
more efficient, quantitative, accurate, and fast solutions. In this review, we will first briefly outline the application areas of
organoids and then discuss the shortcomings of traditional organoid measurement and analysis methods. Secondly, we will
summarize the development from machine learning to deep learning and the advantages of the latter, and then describe how
to utilize a convolutional neural network to solve the challenges in organoid observation and analysis. Finally, we will discuss
the limitations of current AI used in organoid research, as well as opportunities and future research directions.

Xuan Du, Zaozao Chen, and Qiwei Li have contributed equally to this
work.

B Zaozao Chen
101012282@seu.edu.cn

B Yanhui Li
liyanhuili@nju.edu.cn

B Zhongze Gu
Gu@seu.edu.cn

1 State Key Laboratory of Bioelectronics, School of Biological
Science and Medical Engineering, Southeast University,
Nanjing 210096, China

2 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210008, China

3 Key Laboratory of Environmental Medicine Engineering,
Ministry of Education, School of Public Health, Southeast
University, Nanjing 210009, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42242-022-00226-y&domain=pdf
http://orcid.org/0000-0001-8922-370X


320 Bio-Design and Manufacturing (2023) 6:319–339

Graphic abstract

Keywords Artificial intelligence · Organoids · Morphology · Growth characteristics · Deep learning · Convolutional neural
network

Introduction

Organoids are stem-cell-derived or self-organized three-
dimensional (3D) cell/tissue constructs [1]. They can repli-
cate the cell type, composition, structure, and function
of different tissues. Compared with the traditional two-
dimensional (2D) cell culture, organoids have the advantage
of closer similarity to physiological cell composition and
behavior, with a relatively stable genome and suitability for
biological uses and high-throughput screening [1, 2]. Com-
pared with animal models, organoids are originated from
humans and expected to more accurately recapitulate the
development of human organs and diseases; they also allow
real-time imaging and are in line with experimental ethics
requirements [3, 4]. After years of rapid development, scien-
tists are now widely using embryonic stem cells and induced
pluripotent stem cells by cultivating them to differentiate and
self-assemble into various 3D structures similar to human
tissues, creating most types of non-tumor-derived organoids,
such as skin [5], brain [6], liver [7], intestine [8], prostate
[9], lung [10], and pancreas [11]. Tumor spheroids can also
be obtained by puncturing or surgically removing part of a
patient’s tumor tissue and culturing it in Matrigel for weeks
to months. Generally speaking, complex clusters of organ-
specific cells composed of stem or progenitor cells are called

organoids. Organoids can grow into microscopic models of
their parent organs that can be used for 3D studies [12].
Spheroids, on the other hand, are simple clusters of broad
cells such as those from tumor tissue, embryoid bodies,
hepatocytes, neural tissue, or mammary glands. Spheroid
structure is of low complexity and does not require scaf-
folding to form 3D cultures. Therefore, spheroids are easy
and popular models for drug screening [13].

Artificial intelligence (AI) is facilitating high-throughput
analysis of image data in various biomedical imaging dis-
ciplines. Specifically, the growth of deep-learning (DL)
research has led to the widespread application of computer
visualization techniques in biomedical image-data analysis
and mining [14, 15]. Continued advances in data collec-
tion and aggregation, processing power, DL algorithms,
and convolutional neural networks (CNNs) have resulted
in improved accuracy of cell detection and segmentation.
Through automated algorithms, quantifiable 2D and spa-
tial cellular features can be mined from microscope images,
allowing researchers to gain greater insight into cells and
tissues under different conditions [16]. To evaluate the char-
acteristics and physiological functions of organoids under
normal culture or specific conditions, imaging and analy-
sis of organoids are crucial. However, it is time-consuming
and challenging to quantify organoids’ morphological and
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Fig. 1 Current representative research on artificial intelligence (AI)
applied to organoids: a automatic ventricular segmentation using U-net
(adapted and modified from Ref. [101], Copyright 2020, with permis-
sion from the authors); b predicting retinal differentiation in retinal
organoids (adapted and modified from Ref. [100], Copyright 2020,
with permission from the authors); c detection and tracking of organoids
(adapted andmodified fromRef. [31], Copyright 2021, with permission

from Elsevier Ltd.); d classification of human lung epithelial spheroids
(adapted and modified from Ref. [70], Copyright 2020, with permis-
sion from The Royal Society of Chemistry); e automatic segmentation
of tumor organoids (adapted and modified from Ref. [48], Copyright
2021, with permission from Elsevier Ltd.); f identification and quantifi-
cation of human intestinal organoids (adapted and modified from Ref.
[29], Copyright 2019, with permission from the authors)

growth characteristics by only relying on observation by
the human eye, especially in high-throughput drug screen-
ing. Traditional machine learning (ML) performs poorly in
processing high-dimensional data such as images, voices,
and videos [17]. DL makes up for this shortcoming, avoids
the requirement of feature engineering, quickly achieves
end-to-end training, and has advantages in extracting deep
structural features of objects [18]. The advancement of DL
technology has also broadened its application to biologi-
cal and medical studies. However, we found that there are
still very few reported cases of combining DL with organoid
research. Meanwhile, there are more and more researchers
looking for methods of quantifying and analyzing organoids
by AI (Figs. 1a–1f). Because of the rapid rise of AI usage
in organoid studies and a concomitant lack of review arti-
cles on the topic, we wrote this review to fill the gap. We
believe that this paper provides useful information for bio-
logical researchers interested in understanding AI and will
significantly promote the development and progress of DL-
based algorithm application in organoid research.

Organoids, a new approach to disease
modeling

Application areas of organoids

The pandemic disaster, COVID-19 (or SARS-CoV-2), swept
the world at the beginning of 2020. Research to under-
stand the infection mechanism of the virus was immi-
nent, and organoids have made outstanding contributions
as an infection model for COVID-19. Organoids have pro-
vided indispensable tools for studying the cell tropism and
pathogenic mechanism of the virus, and for subsequent
drug development [19, 20]. This is just a representative
example of organoid usage. In recent years, besides serv-
ing as a model for infectious diseases, organoids have been
widely used in many other key fields, including human
development study, disease modeling, precision medicine,
toxicology research, and regenerative medicine, and they
have very bright application prospects. Organoids can be
used as models for studying human development [21]. With
recent breakthroughs in genome engineering and various
omics technologies, organoid technology makes it possible
to do human biology research that previously seemed infea-
sible. Retinal organoids derived from human stem cells allow
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detailed studies of differentiated human retinal cells [22]. In
brain research, cerebral organoids provide an excellent way
for scientists to study brain development and neurological
diseases [3]. Organoids can also be used as tools for study-
ing gene function and cell development [23]. The study of
mouse genetics can be combinedwith the versatility of the 3D
culture system to study gene functions and cell functions and
development [2, 23]. Organoids also can serve as the research
basis for diseasemodeling and precisionmedicine [21]. They
are used to analyze pathology, which is one of their signifi-
cant advantages in disease modeling. For example, intestinal
organoids are widely used in researching ulcerative colitis,
intestinal injury regeneration, colon cancer, and many other
intestinal diseases [24]. Last but not least, organoids can be
used for drug screening and development [2]. Many drugs
have been forcibly withdrawn from the market primarily
because they produced negative side effects in the human
body which could not be predicted by traditional cell or ani-
mal models. Compared with animal and cell models, the use
of organoids has the advantage of overcoming differences
in species and can simulate the layered cell structure and
microenvironment in a patient’s body [4].

Disadvantages of current organoid-analysis
approaches

Researchers studying the life sciences are involved in a wide
range of research areas such as cell biology, biochemistry,
genomics, proteomics, transcriptomics, and systems biology.
While all of these disciplines may provide essential informa-
tion about health and disease mechanisms, microscopy is
one of the central techniques for imaging vital cellular pro-
cesses. Thus, cell detection and evaluation are fundamental
tasks in biomedical research and clinical applications [25].
Accurate assessment of cellular changes depends on accu-
rate and effective cell detection, as well as evaluation of
morphology and its changes. However, manual evaluation is
usually performed in a visually guided, labor-intensive, and
time-intensive way that can result in high variability between
observers [26]. Andrion et al. [27] evaluated the consis-
tency of histopathological diagnoses of a group of 88 pleural
malignant mesothelioma cases by evaluating the consistency
between the observations of five pathologists. Ultimately,
only 70% of the diagnoses were consistently reproduced by
panel review. With the rapid development and advancement
in imaging technologies for biological samples, the require-
ments of image analysis have also significantly increased and
plenty of data needed to be more quantified. Sun et al. [28]
summarized the application, feasibility, and research direc-
tions of DL for data analysis in large-scale cellular optical
images. They also explored the promise of DL for high-
throughput screening of cell images, that is, high-throughput
optical imaging techniques. Due to the hugely increased

amount of data acquired, biologists must eventually depend
on computers to analyze and verify the correctness of results.

To analyze the morphology or growth characteristics of
organoids, researchers usually utilize a fluorescence micro-
scope to observe and analyze results. At present, the primary
analysis methods for these 3D organoid images include
cell-number counting, measuring the intensity of markers
in a specific area, and morphological measurement (size,
shape, etc.). But these traditional approaches to organoid
analysis have drawbacks, e.g., detecting and evaluating the
organoids in the image when the organoids are highly over-
lapped, over-illuminated, or partially obscured by noise
[29]. At present, most studies only analyze organoid size,
shape, and cell viability [30]. However, in these processes,
organoid size, shape, and other factors were usually not
being continuously tracked, and there is no reliable auto-
matic segmentation technology that can be used for locating
and quantifying organoids in a 3D culture environment [31].
Considering that organoids are usually cultured in a 3D
environment, it is hard to locate organoids with a single
Z-axis image [32]. Scientists usually have to change the
Z-axis during imaging by adjusting the position and focal
plane manually, recording the corresponding image data,
using an optical microscope, and performing analysis based
on subjective measurements—essentially hand-drawing the
organoid’s boundary. This process is complicated and error-
prone. On the one hand, the protocols may vary from person
to person; on the other hand, human-induced errors may be
included in the analysis. To avoid these ambiguities, the use
of computer-aided analysis is essential. Computers can not
only make decisions more quickly, but also reduce conflicts
between experts, thus saving analysis time and improving
diagnostic results [33].

The development of artificial intelligence
(AI) and its advantages

Machine learning and deep learning

Machine learning (ML) is now the key to AI and the
fundamental way to make computers intelligent, allowing
machines to recognize patterns and make decisions with
minimal human intervention [34]. In fact, ML is a combi-
nation of computer science and statistics [35]. In organoid
analysis, ML teaches computers to identify organoid phe-
notypes, allowing programs to process large amounts of
biomedical data without relying on manual modification of
parameters [36]. One research group developed MOrgAna,
which implements ML for image segmentation, quantifica-
tion, and visualization of morphological and fluorescence
information of organoids from large numbers of images in a
short period of time; it also has a user-friendly interactive
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interface that does not require the user to have any pro-
gramming experience [37]. Kong et al. [38] adopted a novel
ML-based approach to identify documented drug biomarkers
through pharmacogenomic data from 3D organoid models.
It overcomes the disadvantage of using traditional machine
learning to unreliably identify robust biomarkers from pre-
clinicalmodels.More practical applications ofML abound in
clinical diagnosis, precision therapy, drug screening, health
monitoring, andmany other settings [39].ML is usually com-
posed of a feature extractor and a classifier. First, an expert
with multi-domain knowledge is needed to design a feature
extractor that can analyze which data are the more important
features and convert them into a combination of feature vec-
tors. Then the machine learns these feature vectors and finds
the corresponding patterns. Finally, the classifier can auto-
matically detect or classify the input patterns based on the
input feature vectors. However, traditional ML techniques
are limited in their ability to process raw data [17].

Deep learning (DL) is a subfield of ML which uses a
multilayer nonlinear processing unit cascade (i.e., neural net-
works) for feature extraction and transformation and realizes
multilevel feature representation and abstract concept learn-
ing [17]. DL does not require experts to design complex
feature engineering manually, but directly transfers the data
to inputs of the neural network, which can easily achieve
end-to-end training, and shows better advantages with big
data. As a result, it is more flexible than traditional machine
learning models such as decision trees (DT), logistic regres-
sion (LR), and support vector machines (SVMs) [40, 41].
With the rapid development of AI, DL and computer vision
have begun to be closely integrated, and a series of excellent
algorithms have been produced. These algorithms have an
astonishing ability to obtain detailed information and deci-
pher image content. Currently, these algorithms based on DL
are being applied to study biological images, helping biolo-
gists obtain the analysis and interpretation of imaging data
[25]. Li et al. [42] analyzed organs-on-chips (OoCs) based
on DL, and summarized combination of OoCs and DL for
data analysis, automation, and image digitization. In addi-
tion, a computerized system combined with DL algorithms
is essential for processing large-scale image datasets and
providing rigorous image-feature measurement for disease
modeling, comparative research, and personalized medicine
[43]. DL includesmany different types of neural networks. In
biomedical data analysis, the more commonly used networks
are the deep neural network (DNN), convolutional neural net-
work (CNN), recurrent neural network (RNN) and generative
adversarial network (GAN) [44–46]. The CNN is currently
the most widely used, most complete, and overall best net-
work. In the analysis of diabetic retinopathy and diagnosis
of cardiovascular disease, accurate retinal artery/vein (A/V)
classification is essential. Traditional methods fail to fuse
vascular topological information.Mishra et al. [47] proposed

a newCNN-basedmodel, VTG-NET (vascular topology net-
work), which can integrate vascular topology information
into retinal A/V classification and outperforms state-of-the-
artmethods. CNN is currently a vital research direction based
on DL in computer vision, which performs well in image
classification, segmentation, and object detection. Generally
speaking, CNN consists of one input layer, multiple convo-
lutional (conv) layers, multiple pooling layers, one or more
fully connected layers, and one output layer. Figure 2 shows
the process of obtaining the output image from the input
organoid image.

Main tasks of deep learning

Object detection (combining classification and localization)
and image segmentation are the two most important applica-
tions of DL in organoid analysis. Object detection can help
quantify the number, location, and distribution of organoids,
and image segmentation can help in analysis of the area
and boundaries of organoids and other factors [48, 49].
Even some complex organoid-image analysis tasks, such
as 3D organoid reconstruction, still require the support of
fast and accurate object-detection technology and image-
segmentation technology [28, 50].

Traditional object-detection algorithms mostly use slid-
ing window or image-segmentation methods first to generate
a large number of bounding boxes, and then perform fea-
ture extraction (histogram of oriented gradient [51], local
binary pattern [52], Haar-like [53]) on the bounding boxes,
and transferal of the features to classifier (SVM [54], ran-
dom forest [55], or AdaBoost [56]). Finally, the classifier
outputs the discrimination result [57]. However, the detec-
tion accuracy of the traditional method is relatively low, and
the speed is very low. The early image recognition and clas-
sification technology [58] mostly used people as the object
of design features. For different scenes or different things
like organoids, the corresponding experts need to design the
artificial features, which are highly dependent on the prior
knowledge of the designer. It is necessary to manually code
according to specific data types and domain characteristics,
which makes it difficult to process massive amounts of data.
In addition, artificial feature design only supports a limited
number of parameters, and too few extracted features directly
affect the system’s performance, which can easily lead to
significant differences in experimental results. In today’s
big-data era, relying on manual feature extraction is not
appropriate, so traditional object-detection algorithms have
difficulty in meeting the requirements. Varoquaux et al. [59]
analyzed the problems existing in the application of ML in
medical imaging and proposed some directions for improve-
ment. Castiglioni et al. [60] analyzed the application of AI
in medical images, and discussed the impact and changes
of medical image analysis from ML to DL. At present, the
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Fig. 2 A convolutional neural network. After multiple convolution layers and pooling layers, the organoid image is sent to the fully connected layer,
and finally the recognized image will be output

research on detection algorithms based on DL is very mature
[57].

In recent years, DL image semantic segmentation tech-
nology for medical imaging has attracted much attention and
research. Image segmentation is a technology that divides an
image into several specific and unique regions and marks
objects of interest [61]. Early image semantic segmenta-
tion methods mainly used some shallow features extracted
manually, such as edge-based [62] and threshold-based [63]
features. Nevertheless, the expected segmentation effect can-
not be achieved for complex scene pictures, especially in
medical imaging. With the continuous exploration of many
researchers, the semantic segmentation method based on
CNNs has made excellent progress. When measuring the
algorithm’s performance in object detection and semantic
segmentation, some evaluation indicators are indispensable
(see Table 1). Here, we need to introduce the confusion
matrix of machine learning. The main purpose of the confu-
sion matrix is to solve two or more classification problems,
and it is used for judging the accuracy and correctness of
a model [64]. According to the indicators in Table 1, the
performance of a model can be easily quantified in terms
of object detection and image segmentation. These meth-
ods allow researchers to evaluate and compare the strengths
and weaknesses of different models in analyzing the same
dataset.

Classical convolutional neural networks

Since 2015, the accuracy and speed of using CNNs in tar-
get detection, image segmentation, object tracking, and other
tasks has approached or even exceeded that of human beings
[66]. During this period, a large number of CNN algorithms
applied in cellular analysis have been produced and achieved
perfect results [67–69]. Some of these algorithms can also be
applied to organoid analysis after optimization and improve-
ment [48, 70].

YOLO network

The YOLO [71] algorithm treats the object-detection prob-
lem as a regression problem. Therefore, the YOLO network
structure is a CNN structure with a regression function. The
algorithm can predict the position and category of multiple
bounding boxes in real time at once. The YOLO network
comprises an input layer, a stack of convolutional layers
and pooling layers, two fully connected layers, and an out-
put layer (Fig. 3a). The input layer is a sample image that
has undergone simple preprocessing (such as cropping, scale
unification, grayscale, or normalization). The convolutional
layer has two functions: (1) extracting the features of the
input image; (2) increasing or decreasing the number of out-
put channels. The function of the pooling layer is to expand
the receptive field, compress features, reduce the dimensions
of the feature graph, and simplify the complexity of the net-
work [72]. The fully connected layer usually appears between
the last pooling layer and the output layer, and its function is
to transform the input 2D eigenmatrix into a one-dimensional
(1D) eigenvector, so as to facilitate classification of the out-
put layer. The output layer is the last layer of the CNN, and
its function is to classify the input according to the 1D feature
vector. The number of output characteristic graphs matches
the number of object classifications. However, the YOLO
model still has many problems. Compared with other object-
detection algorithms, YOLO’s object-detection accuracy is
low. It is easy to cause object-positioning errors, and YOLO
does not have a good detection effect for overlapping and
small objects. Its generalization ability is relatively weak.
Therefore, researchers continued to improve the YOLO net-
work and developed more advanced algorithms such as
YOLOv2 [73], YOLOv3 [74], YOLOv4 [75], and YOLOv5
[76]. At present, the YOLO series of algorithms are already
some of the most widely used object-detection algorithms
in biomedical engineering. For example, induced pluripo-
tent stem cells (iPSCs) show great promise in many studies,
but the ability to automatically identify iPSCs without cell
staining remains difficult. Wang et al. [77] established an
accurate, noninvasive iPSC colony-detection method based
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Table 1 Evaluation indicators of a model’s predictive performance

Scenario Name Definition Interpretation

Detection and
segmentation

Recall R = TP
TP+FP The fraction of positive examples in the whole sample that

are predicted to be correct

Precision P = TP
TP+FN The fraction of true positive samples in the predicted

positive samples

Accuracy ACC = TP+TN
TP+FP+TN+FN The fraction of samples that are predicted to be correct out

of all samples

F-score F1 = 2TP
2TP+FP+FN The harmonic mean of precision and recall

Intersection over union IoU = P∩G
P∪G The fraction of the intersection of the predicted bounding

boxes (P) and the ground-truth bounding boxes (G) to the
union

Detection Mean average precision
MAP = 1

n

k=n∑

k=1
APk

The mean of the average scores of a group of queries [65],
where n is the number of classes and APk is the average
precision of class k

Segmentation Dice coefficient Dice = 2TP
FP+2TP+FN The function that evaluates the similarity of two contour

regions

TP stands for true positive, FP stands for false positive, FN stands for false negative, and TN stands for true negative

on a YOLO network, and the result showed an F1-value of
0.867 and an average accuracy of 0.898. YOLO series algo-
rithms are fast and accurate, and have been widely used in
many fields. Applying these algorithms in the identification
and localization of organoids can also produce good results.

Faster-RCNN network

The Faster-RCNN algorithm [78] has become one of the
mainstream object-detection algorithms due to its higher
detection accuracy. Compared with the YOLO series of algo-
rithms, Faster-RCNN has a higher mean average precision
but a slightly lower speed [79]. The algorithm can usually
be divided into four parts: a feature-extraction network, a
region-proposal network (RPN), a regions-of-interest (RoI)
pooling layer, and a classification layer (Fig. 3b). First, the
feature extraction network performs feature extraction on the
preprocessed input image. The feature-extraction network
can be designed to stand on its own, using convolutional lay-
ers, pooling layers, and activation functions, or it can use an
existing network structure, such as VGG-16, ResNet [80],
or Inception [81]. Then the RPN generates many bounding
boxes from the input feature map and classifies the boxes
according to whether they contain the object or not. Mean-
while, the featuremap is passed into the RoI pooling layer for
pooling operation, and a fixed-size feature map of the bound-
ing boxes is generated. Finally, classification and regression
operations are performed on the generated feature map of
the boxes to obtain the object type and location. This model
is also widely used in biomedical engineering. Li et al. [82]
proposed an automatic cryo-electron tomography (cryo-ET)
image-analysis algorithm based on Faster-RCNN to locate

and identify cell differences and structure. Moreover, the
proposed model has high precision and robustness that can
be easily applied to detect other cell structures. Li et al.
[83] proposed a new framework of Faster-RCNN combined
with feature pyramid networks (FPN) [84] to detect abnor-
mal cervical cells in cytological images of cancer screening
tests. The mean average precision of this model was 6%–9%
higher than that of previous methods. Due to the advan-
tages of the Faster-RCNN network, Orgaquant, a model for
quantifying organoids, also adopted its architecture [29].
Many instance-segmentation models, such as Mask-RCNN,
are derived from Faster-RCNN. In combination with the
instance-segmentation models, the area and location of each
organoid in the image can be automatically calculated.

U-net

In 2015, Ronneberger et al. [85] pioneered the U-net net-
work structure, which was a breakthrough development of
DL in medical image segmentation. U-net is an improve-
ment of the structure of the fully convolutional network
(FCN), and is named U-net because of its “U-shaped” net-
work structure [86]. The model is an asymmetric network
of multiple encoders and decoders composed of convolu-
tion, down-sampling, up-sampling, and splicing operations
(Fig. 3c). Its compression path can extract important image
features and reduce image resolution, and consists of four
blocks. Each block contains two 3×3 convolutional layers,
two rectified linear unit (ReLU) layers, and one maximum
pooling layer. The expansion path of U-net also includes four
blocks, and each block has two3×3 convolutional layers, two
ReLU layers, and one up-sampling layer. The up-sampling
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Fig. 3 Typical network structures in object detection and image segmen-
tation: aYOLOnetwork structure (adapted andmodified fromRef. [71],
Copyright 2016, with permission from IEEE); b Faster-RCNN network
structure (adapted and modified from Ref. [78], Copyright 2017, with

permission from IEEE); c U-net network structure (adapted and mod-
ified from Ref. [85], Copyright 2015, with permission from Springer
International Publishing Switzerland)
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function decodes the abstract features of the image obtained
by the down-sampling process to the original image size.
After each up-sampling operation, the size of the feature
map is expanded to twice the original size, and the num-
ber of channels of the feature map is halved. In addition,
each layer has to be merged with the feature map of the
symmetrical compression path on the left part of the U-net.
U-net’s final output image size is 388×388 pixels. Unlike
FCN’s summation [87], U-net uses a concatenation operation
to crop the feature map of the same layer of the contraction
path to the same size as the expansion path and then per-
form a splicing operation to help restore the information loss
caused by down-sampling. Since the publication of U-net, its
encoder-decoder-hop network structure has inspired a large
number of medical-image segmentation networks based on
its structure. As DL technology has developed, researchers
have introduced improvement methods such as an attention
mechanism [88], a dense module [89], a transformer module
[90], feature enhancement [91], and a residual block [92],
into the structure of U-net to meet the requirements of differ-
ent types of biomedical image segmentation. For example,
research teams have improved the encoder-decoder structure
[90, 93, 94], the application of U-net to 3D images [95],
the generalization ability of the network [96, 97], and more.
U-net combines contextual information, its training speed
is high, and it does not require a large amount of data to
achieve accurate segmentation. These characteristics make
it widely used in medical image segmentation [98]. Prange-
meier et al. [99] demonstrated a U-net method that performs
multiclass segmentation of individual yeast cells in micro-
structured environments. Another group of researchers used
an improved U-net to segment clear organoid boundaries for
further study [48]. U-net has excellent image-segmentation
ability. In future, it will be necessary to make full use of
this model to explore more quantifiable evaluation param-
eters and indicators of different organoids in two or three
dimensions.

Deep learning in organoid images
and potential integrations

There have been some instances of combining AI with
organoids. Researchers have achieved identification and
counts of human intestinal organoids [29], automatic dis-
crimination of retinal organoid differentiation [100], auto-
matic evaluation of tumor spheroid behavior [48], multiscale
3D phenotype analysis of brain organoids [101], organoid
tracking [31], and other tasks (see Table 2). Compared with
relying on manpower to analyze and quantify organoids,
many of these solutions have greatly improved accuracy or
speed [2, 48, 100]. In Fig. 4a, we present the number of
publications with the term “cells” as well as AI terms (such

as “deep learning,” “machine learning,” or “convolutional
neural network”) and publications with “organoids” and AI-
related terms in their title or abstract, since 2015 and up until
2021, based on a Web of Science search. The numbers indi-
cate that the application of AI in biology or medicine is the
current and future development trend. Figure 4b shows the
number of publications with the terms “organoid” and AI-
related terms in their title or abstract, since 2015 and up until
2021, based on searches in PubMed and Web of Science.
Although the number of papers starts out small, it increases
rapidly year over year.

In this section, we will discuss the application of DL
in organoid image analysis, including image classifica-
tion, image segmentation, object tracking, and microscope
enhancement [25]. We will describe in detail how these DL
methodologies were applied for organoid analysis in each
specific case and their pros and cons.

Object classification

Object classification is a major research area in medical
image analysis. DL-based methods have made great contri-
butions to providing automated, efficient, fast, and accurate
solutions in this field [103]. In biology applications, object
classification and detection involve quantification of the very
subtle changes in the morphological characteristics of cells,
tissues, or organoids, which is a challenging task [70]. For
example, retinal organoids are mostly differentiated from
mouse or human pluripotent stem cells, because they are
similar to organs in the body [104, 105]. But the differen-
tiation process is highly random or uncontrollable. Retinal
differentiation varies greatly among organoids in the same
batch, let alone different cell lines used at different times
[106]. In addition, the method of selecting retinal tissue for
further growth and maturation is primarily based on sub-
jective morphological observation and features visible in
bright-field imaging. However, manually selecting and dis-
tinguishing features under a microscope with bright-field
imaging is tedious and inefficient. Because the classification
criteria are relatively subjective, the results are highly vari-
able when judged by different observers. Therefore, Kegeles
et al. [100] developed an automated noninvasive method that
uses aDL-basedCNN to identify and predict retinal organoid
differentiation (Fig. 5a). Experimental results showed that the
prediction performance of DL algorithms was significantly
better than that of human experts: the accuracy comparison
was 0.84 vs. 0.67±0.06. This research also had limitations.
Although the authors described the problem as a classifica-
tion task rather than a regression task, it would be inaccurate
to classify the differentiation of retinal organoids into only
three categories, one of which was a category they called
“satisfactory,” which did not have obviously separable reti-
nal areas but only a sparse or scattered fluorescence pattern.
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Table 2 Summary of existing applications for deep learning in organoid images

Application Reference Input Network
architecture

Output Function

Object
classification

[100] Fluorescently labeled
retinal organoids

CNN Classification of retinal
organoids

Recognition and
prediction of retinal
differentiation in
organoids

[102] Bright-field images of
normal organoids

CNN Score evaluation based
on organoid viability

Continuous monitoring of
organoid viability after
drug treatment

[29] Bright-field images of
human intestinal
organoids

CNN Localization of human
intestinal organoids

Automatic quantification
and localization of
organoids in bright-field
images

[70] Bright-field images of
human lung epithelial
spheroids

CNN Classification and
localization of
polarized and
non-polarized lung
epithelial spheroids

Analysis of morphological
changes in 3D spheroid
models

Image
segmentation

[48] Bright-field images of
tumor spheroids

CNN Boundaries of tumor
spheroids

Analyzing tumor invasion
using EPI and MSEI

[101] Fluorescent image of
disparate ventricle
lumens in each
organoid

CNN Segmentation mask of
ventricle lumens

Detection and
segmentation of
SOX2-lined ventricle
lumens

Object tracking [31] Bright-field images of
human alveolar
organoids

DNN Organoids identification
and tracking over time

Tracking and monitoring
organoids throughout
their entire lifetime

CNN: convolutional neural network; DNN: deep neural network; EPI: excess perimeter index; MSEI: multiscale entropy index

In addition, retinal differentiation would be difficult to pre-
dict by relying only on two experts’ subjective labels (a
large portion of the organoids were not decided in com-
mon by these two experts). Thus, we believe that the result
dataset and labeling still leave a lot of room for improve-
ment (Fig. 5b). Bian et al. [102] proposed DL-based OrgaNet
(Fig. 5c), an organoid viability assessment model based on
imaging, which is a direct and reproducible method for
organoid viability assessment. It avoids the disadvantage that
traditional adenosine triphosphate bioluminescence cannot
quantify organoid activity over time. The task of object detec-
tion is to find all the objects of interest from the image and
identify their category and location [57]. Since organoids are
usually in a 3D culture environment, the images are affected
bymany imaging artifacts, whichmake it difficult to evaluate
the morphology and growth characteristics of these cultures;
and manual measurement and counting of these organoids
is also a very inefficient process. To solve these problems,
Kassis et al. [29] developed an algorithm based on CNN,
OrgaQuant, which can measure the localization and quan-
tification of human intestinal organoids (Fig. 6a). OrgaQuant
is also an end-to-end training neural network that can ana-
lyze thousands of images completely automatically without
parameter adjustment. The experimental results showed that

the diameter of organoidsmeasured byOrganQuant was con-
sistent with that measured by human (Fig. 6b). Still, the
recognition speed is faster than that of humans (Fig. 6c). The
model recognizes all intestinal organoids in an image in only
30 s with the NVIDIA Quadro P5000 GPU. Abdul et al. [70]
developed an algorithm called Deep-LUMEN, which can
detect and identify morphological changes in lung epithelial
spheroids in bright-field images. The algorithm can track the
changes in the lumen structure of the tissue spheroids and dis-
tinguish between polarized and non-polarized lung epithelial
spheroids. Deep-LUMEN had an 83% mean average preci-
sion (Fig. 6d), and the recognition speedwasmuch faster than
that of humans (Fig. 6e). Furthermore, they observed that the
confidence score corresponded to the degree of lumen devel-
opment (Fig. 6f).However, the average accuracy of themodel
is obtained when the intersection over union (IOU) is equal
to 0.5. Because the IOU setting is too small, this does not
mean that the recognition effect of the model is very good.
It is also necessary to make IOU take on some larger values
between 0.5 and 1, and then measure several sets of aver-
age accuracy data. In addition, the number of images in the
training datasets was nearly 4000, while the test set only had
197 images, so the proportion of the test dataset in the whole
dataset was too small.
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Fig. 4 The development trend
over time of artificial intelligence
(AI) applied to cells and
organoids (2015–2021). a In
recent years, the number of
articles on application of AI to
cells and organoids has grown
rapidly. The former is in the
process of rapid development,
while the latter is still in its
infancy and has promising
prospects. b The rapid increase
in the number of articles on the
application of AI to organoids in
recent years confirms that the
task of automatically and
intelligently analyzing and
quantifying organoids is
gradually becoming more highly
valued

Image segmentation

Image segmentation is the technique and process of dividing
an image into a number of specific areas with unique prop-
erties and proposing objects of interest [25, 107]. Because
they serve as biomimetic tumor models, tumor spheroids or
organoids are critical in advancing anti-cancer drug research
and development. It is essential to effectively quantify and
analyze the behavior and growth of tumor cells and pro-
vide a more accurate physiological model for evaluating
the effect of drug quality [48]. However, due to the lack of
effective automated methods for analyzing 3D tumor cell
proliferation and invasion, tumor spheroid organoids have
not been widely used in preclinical research. Although there
are some 3D tumor invasion analysis methods, these meth-
ods only measure the tumor size and invasion distance in a
specific direction [108–110]. Also, thesemeasurementmeth-
ods can be inaccurate in special applications. On the one
hand, the shape of the tumor is not necessarily spherical; on

the other hand, due to the heterogeneity of the extracellu-
lar matrix, the invasion distance of tumor balls in different
directions is often different. In addition, relying on manual
tumor imaging and manual drawing of tumor-sphere bound-
aries [109–112] is very time-consuming and error-prone. Our
team [48] designed a model for automatic tumor-spheroid
segmentation and an AI-based recognition system to solve
the above problems (Fig. 7a). This system can be used to ana-
lyze the behavior of tumor spheroids. It integrates automatic
recognition, automatic focusing, and an improvedCNNalgo-
rithm (PSP-U-net) to intelligently detect the boundary of the
tumor spheroid (Fig. 7b). As the number of training rounds
increases, the segmentation of organoids becomes more pre-
cise. Compared with the other four methods, this algorithm
has the highest accuracy, and an F-value above 0.95 after
125,000 training rounds. In addition, the team developed
two comprehensive parameters for analyzing tumor invasion:
the excess perimeter index (EPI) and the multiscale entropy
index (MSEI). Through experiments, we were able to prove
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Fig. 5 Experimental process and expert prediction of retinal differen-
tiation. a Experimental outline of retinal differentiation. The neural
network was fed bright-field images on day 5 and fluorescence images
on day 9. Fluorescence images of representative organoids from each
class, classified by experts as “retina,” “non-retina,” or “satisfactory.”
b Prediction results for different classes which can be assigned after

combining the votes from two experts. c The overall pipeline of the
OrgaNet model. First, the feature extractor based on the convolutional
neural network (CNN) is used to extract the organoid representation,
and then the multi-head classifier is used to simulate expert evaluation.
Finally, the scoring function is used to process the feature-space data
and output the organoid viability score

that these two parameters can better describe the aggressive-
ness of 3D tumors than the parameters used in traditional
analysis methods.

Image-segmentation techniques based on DL are also
applied in the analysis of organoid components. Brain
organoids are cell cultures that are differentiated from
pluripotent stem cells under 3D culture conditions, into
brain-like cell composition and similar anatomical struc-
tures, and can reflect brain-like development processes and
physiological, pathological, and pharmacological character-
istics [113, 114]. At present, brain organoid analysis mainly
relies on single-cell transcriptome analysis and 2D histology.
The loss of 3D spatial information means that system-level
single-cell analysis remains unexplored in brain organoids.
Therefore, Albanese et al. [101] proposed a computational

pipeline called “SCOUT,”which is applied in automaticmul-
tiscale comparative analysis of intact brain organoids. Image
analysis based on algorithms and CNNs can extract hun-
dreds of features of molecular representation, space, cell
structure, and organoid properties from fluorescence micro-
scope images. SCOUT provides a necessary framework for
comparative analysis of emerging 3D in vitro models using
fluorescence microscopy (Fig. 7c). They used U-net to detect
SOX2-lined ventricles. This model achieved a 97.2% Dice
coefficient for ventricular segmentation, aswell as basicmor-
phological analysis of 3D ventricles (volume, axial ratio,
etc.). However, the study lacks an evaluation of the data that
U-net can quantify, as well as comparative experiments.
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Fig. 6 Recognition results for organoids. a–c Automated quan-
tification of human intestinal organoids using OrgaQuant
(adapted and modified from Ref. [29], Copyright 2019, with per-
mission from the authors). d–f Automated quantification of lung
epithelial spheroids using Deep-LUMEN (adapted and modified from
Ref. [70], Copyright 2020, with permission from The Royal Society of

Chemistry). a OrgaQuant recognition process. b There is no difference
between human and OrgaQuant measurements. c OrgaQuant versus
human recognition speed. dMean average precision of Deep-LUMEN
(model 6) compared with model 5. e Deep-LUMEN (model 6) versus
human recognition speed. f The confidence score of Deep-LUMEN
reflects the degree of lumen formation

Object tracking

Object tracking is a popular application of DL. It involves
obtaining a set of initial objects and developing a unique
identifier for each initial detection, and then tracing the

detected objects in subsequent frames in the video [115, 116].
Organoids are regularly observed in microscopic images to
obtain their morphological or growth characteristics. The
growth and drug responses of organoids are both longitudi-
nal and dynamic processes. Scientists will have to use optical
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Fig. 7 Segmentation results for
organoids. a, b Equipment and
execution processing of
tumor-spheroid organoid
segmentation (adapted and
modified from Ref. [48],
Copyright 2021, with permission
from Elsevier Ltd.).
c Demonstration of automated
segmentation using SCOUT
(adapted and modified from Ref.
[101], Copyright 2020, with
permission from the authors).
a A comprehensive system for
automated tumor imaging and
analysis (1: condenser with light
source; 2: sample plate; 3:
motorized X and Y stages; 4:
motorized Z-axis module; 5:
objective wheel; 6: filter wheel;
7: CCD; 8: software interface of
the system). b The process of
segmenting tumor sphere images.
c Using U-net to automatically
segment the ventricles and 3D
rendering of the ventricles

microscopes to perform consistent observation. However,
long-term manual tracking is difficult and time-consuming
work. Moreover, a single field of view (FOV) cannot cover
the entire culture medium to maintain the overall situation
[117]. This problem requires manual adjustment of the posi-
tion and focal plane to monitor each area and continuous
observation of specific organoids to obtain the movement
and dynamics of each organoid growth characteristic. Also,
it is not easy to find the correct field of view to track the
pre-selected organoids because the organoids are moving. In
addition, the density of the organoids in the culture medium
varies greatly, the image may be out of focus, the shape and
size of the organoids vary widely, artifacts and noises may
appear in the image due to illumination conditions and the
position and shape of the same organoids change over time.
These factors make continuous observation of organoids a
challenging task. Bian et al. [31] proposed a new deep neu-
ral network (DNN) which can effectively detect organoids
and dynamically track them throughout the culture process
(Fig. 8a). They divided the solution into two steps: first, pro-
cess the high-throughput sequence images frame by frame to
detect all organoids; second, calculate the similarity between
organoids in adjacent frames andmatch adjacent structures in

pairs of organoids.With the help of their proposed dataset, the
model offers fast and high-precision organoid detection and
tracking (Figs. 8b and 8c), effectively reducing the burden
on researchers. However, there are still some problems. The
article did not explain clearly how to calculate the distance
matrix used in predicting the organoids in adjacent frames.
In Fig. 8b, some air bubbles were mistakenly identified as
organoids.

Augmentedmicroscopy

Augmented microscopy refers to a technology that can dig
out more potential information from biological images. It is
very suitable for combining with DL [118–120]. Since many
millisecond-level transient cellular processes occur in 3D tis-
sues and span long time scales, a constant challenge in chip
measurement is the attempt to extract more spatiotemporal
information from an object with sufficiently high through-
put. The traditional method does not offer a good solution
[121–123]. Therefore, Zhu et al. [124] proposed a new
fusion ofmicrofluidics and light-fieldmicroscopes to achieve
high-speed four-dimensional (4D, space–time) imaging of
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Fig. 8 Alveolar organoid
detection and tracking (adapted
and modified from Ref. [31],
Copyright 2021, with permission
from Elsevier Ltd.). a The
network structure, divided into a
detection part and a tracking part,
with a single shot multi-box
detector (SSD) model used in the
former. b Identification and
quantification of applying an
SSD to alveolar organoids.
c Localization results of organoid
tracking over time

moving nematodes on a chip. The combination of light-
field microscopy (LFM) that supports DL and chip-based
sample manipulation can continuously record the 3D instan-
taneous position of nematodes and screen a large number of
worms on a high-throughput chip (Fig. 9a). Volume imag-
ing of dynamic signals in large, moving, and light-scattering
samples is a research hotspot and quite difficult to achieve.
Chen et al. [125] combined the digital light sheet illumination
strategy with a microfluidic chip and an image-restoration
algorithm based on DL to achieve freely moving fruit flies
with single-cell resolution and up to a 20-Hz video rate on
a common inverted-microscope 3D functional image of lar-
vae (Fig. 9b). In summary, augmented microscopy shows the
greatest potential for various types of lab-on-a-chip biolog-
ical research, including high-throughput organoid screening
and growth analysis. In future, deploying DL algorithms in
microscopes or high-content imaging and analysis devices
will be a promising direction for automated organoid data
analysis.

Discussion and conclusions

The limitations in current artificial intelligence (AI)
analysis of organoids

1. DL algorithms require big data support [126]. It is evi-
dent from the review of the existing literature that most of
the current DL methods that represent the leading level
use supervised learning, particularly learning based on
the CNN framework. To achieve good accuracy, neural
networks usually require many annotated samples to per-
form training tasks. Collecting annotated high-quality
datasets containing tens of thousands or hundreds of
thousands of images for supervised learning is usually
a very difficult task, and manual annotation on these
images is also very tedious and expensive. As a result,
the construction of standardized databases for different
organoids is urgently needed [127, 128].

2. DL is prone to overfitting [61]. When the trained model
is too complex, the model’s generalization ability is
not strong. This problem is also caused by an insuffi-
cient dataset. The standardized databases proposed above
would partially solve this problem.

3. DL requires great computing hardware [129]. Normally,
the dimensions of the pictures used for model training
are several hundred pixels square, but organoid images
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Fig. 9 Combination of microscope and deep learning (DL). a 3D tra-
jectories and speeds of six moving wild-type worms (1–6) and six
uncoordinated-type mutant worms (7–12) over 450 ms (adapted and
modified from Ref. [124], Copyright 2021, with permission from

Elsevier B.V.). b Image restoration procedure based on DL (adapted
and modified from Ref. [125], Copyright 2021, with permission from
The Royal Society of Chemistry)

obtained under the microscope have high resolution
(several thousand pixels square). The current hardware
available is not enough to support large-scale use of
high-dimensional images for training DL algorithms.
Therefore, many researchers reduce the dimensionality
of pictures by dividing the original image into several
image blocks; but this usually causes loss of objects in
the image [29, 48].

4. DL applied in organoid research still lacks interpretabil-
ity [130]. Humans do not understand these characteristics

learned by DL, although DL can provide more accu-
rate results [43]. If researchers can make full use of DL
to explore and mine more organoid growth and differ-
entiation data and provide a clear explanation, it may
eventually lead to new biological discoveries.

5. DL for organoid analysis is still relatively simple [29,
48, 70, 100]. At present, most studies that have com-
bined artificial intelligence and organoids simply involve
recognition and segmentation of organoids, or classifica-
tion into two or at most three categories. For analysis
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of organoids, there are still many meaningful indicators
that could be discovered and quantified with the help of
artificial intelligence.

Conclusions

At present, in vitro observation of organoids mainly focuses
on organoid morphological changes. Optical, electrochemi-
cal, and other methods that can detect multiple indicators of
organoids in vivo are still lacking. Therefore, studies with
multi-disciplinary research are important future directions
[131, 132]. One promising approach is to use DL methods
such as object detection and image segmentation to evalu-
ate multiple indicators of organoids. In addition, there are
problems in researching organoids at this stage; for exam-
ple, repeatability and consistency are still major bottlenecks
in organoid culture. These problems are largely caused by a
lack of process control and industry standards. The excessive
influence of human factors in the organoid culture process
and the low degree of automation have led to inevitable
human error. Therefore, development of more automated,
intelligent, and integrated systems is the future develop-
ment trend [133, 134]. Using DL-based object detection to
obtain useful information, the system or equipment canmake
intelligent judgments and carry out operations according
to the recognition results, which is an important applica-
tion of technology to avoid human interference. We also
anticipate more combinations of DL algorithms and high-
content analysis. A “self-learning microscope” system is
expected, which would combine automation, high speed,
high throughput, and high repeatability, and could help biol-
ogists collect a large amount of living cell data and extract
reliable and accurate scientific results [25, 124]. Another
shortcoming of organoid systems is the lack of commu-
nication between tissues. For example, the communication
modeling between the cell and the stromal cell group and the
vascular system development in the organoid system remain
to be elucidated. Most organoid-related research is aimed at
simulating a part of the human body rather than the whole.
Currently, most studies on organoids are limited to repro-
duction of organ-specific or tissue-specific neurophysiology
[135, 136]. We are glad to see that some research institutions
have already tried to overcome these difficulties. For exam-
ple, Southeast University’s “Digital Clone Human” program
uses advancedbiomedical-data-acquisition equipment to col-
lect high-quality biomedical data that are cross-scale, covers
the full life cycle, and includes molecules, cells, and tissues,
as well as both organs and human systems. Further infor-
mation is available at http://117.73.8.164:8083/. We believe
that by using artificial intelligence, virtual reality, and other

information technology, researchers will be able to build per-
sonalized, self-deductive digital humans to simulate human
life processes. This could even lead to the replacement of clin-
ical trials in life science research and the biomedical industry.
The prospects and future of organoids are foreseeable, but
first, organoid researchwill have to overcomemany obstacles
so that it can finally successfully step into the future. Luck-
ily, more and more biological and medical researchers are
now devoted to organoid exploration and study. We believe
that readers will observe a significant increase in the scope
of DL-based organoid analysis in the near future.
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