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Abstract
This study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite
vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, and hybrid structures along
the radial and longitudinal directions; materials and manufacturing techniques, such as tissue engineering and the use of
textiles or their combinations; and the corresponding mechanical behaviours of composite vascular grafts in terms of their
physical–mechanical properties, especially their stress–strain relationships and elastic recovery. The role of computational
studies is discussed with respect to optimizing the geometrics designs and the corresponding mechanical behaviours to
satisfy specialized applications, such as those for the aorta and its subparts. Natural and synthetic endothelial materials
yield improvements in the mechanical and biological compliance of composite graft surfaces with host arteries. Moreover,
the diameter, wall thickness, stiffness, compliance, tensile strength, elasticity, and burst strength of the graft matrix are
determined depending on the application and the patient. For composite vascular grafts, hybrid architectures are recommended
featuring multiple layers, dimensions, and materials to achieve the desired optimal flexibility and function for complying with
user-specific requirements. Rapidly emerging artificial intelligence and big data techniques for diagnostics and the three-
dimensional (3D) manufacturing of vascular grafts will likely yield highly compliant, subject-specific, long-lasting, and
economical vascular grafts in the near-future.
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Introduction

Artificial implants

Humanbody parts are subject towear and tear and degenerate
due to aging and disease. When natural body parts become
dysfunctional, they can be replaced with long-lasting arti-
ficial implants. For example, cochlear implants are used to
provide the sensation of sound for people with severe hear-
ing loss by bypassing the ear and directly stimulating the
cochlear nerve [1]. Intacs® corneal implants are used to
reverse vision loss [2, 3] caused by age-induced changes
in retinal shape. Endosteal [4], subperiosteal [5], and zygo-
matic [6] dental implants are used to treat teeth affected by
plaque, decay, cavities, gingivitis, and periodontitis due to
diabetes, hormonal changes [7, 8], acid reflux [9], infections
[10], smoking, poor hygiene, or the adverse effects of med-
ications [11]. Furthermore, lumbar disc implants [12] are
used to treat degenerative lumbar disc diseases; prosthetic
arthroplasty is performed to replace hip [13] and knee [14]
joints, and acetabular implants [15] are used to repair hip
or acetabular fractures. As is the case with other organs, the
cardiovascular system is vulnerable to specific conditions,
such as peripheral artery disease [16] or cerebrovascular dis-
ease [17], which reduce blood circulation in various areas
of the body and can be treated with stents, heart valves, and
vascular grafts [18]. Ceramic- and metal-based coatings are
commonly applied to implants for various purposes, such
as improving biocompatibility [19], imparting antimicrobial
properties [20], reducing friction [21], and creating resistance
to corrosion [22]. Figure 1 presents an overviewof the various
artificial implants (cochlear implants, corneal implants, den-
tal implants, prosthetic shoulders, cardiovascular implants,
pacemakers, lumbar disc implants, acetabular implants, pros-
thetic arthroplasty, hip and knee joints, and bone plates) and
the treatment of corresponding diseases.

Vascular disorders and usability of composite
vascular grafts

Statistics suggest that approximately two million people
worldwide have end-stage renal disease. Further, chronic
kidney diseases (CKD), diabetes, and other similar chronic
diseases contribute to the increasing incidence of vascular
disorders. For example, the CKD rate alone stood at approx-
imately 12% in 2007, and it was projected to increase to
24% by 2035 [23]. The rapid growth rates of these diseases
are fostering a demand for vascular grafts. Correspondingly,
the global vascular graft market is expected to expand at a
compounded annual growth rate of 6.2% between 2022 and
2027 [24]. Similarly, anothermarket research report also sug-
gests that the global revenue for the vascular graft market
stood at $4.1 billion in 2016, and it is expected to grow to

$6.2 billion by 2023 [25]. It has been estimated that North
America will account for the highest share of the global vas-
cular market owing to its higher prevalence rates of diabetes,
CKDs, and cardiovascular diseases [26]. Researchers are
therefore reporting new technological and material advance-
ments in the context of vascular grafts, such as the potentials
to use polyester and expanded polytetrafluoroethylene [27]
for manufacturing vascular grafts to meet market demands.

Cardiovascular implants, such as stents, heart valves, and
vascular grafts, are essential for treating cardiovascular dis-
eases, including peripheral artery disease, cerebrovascular
disease, and coronary heart diseases. These conditions gen-
erally result from blockages in the arteries, which limit the
circulation of blood to various areas of the body. Stents are
used to widen arteries and to open blockages without replac-
ing the natural arteries, whereas vascular grafts are prosthetic
implants that either bypass or replace natural blood ves-
sels. Blood vessels usually dilate with age and may rupture
under highbloodpressure.Associated clinical factors include
swelling and intimal hyperplasia [28]. The thickness of the
inner layer of a blood vessel and the likelihood of thrombi
(clotting) gradually increase with time, and this process is
influenced to a greater extent by lifestyle than by age or
sex. Clots are formed when blood components combine with
cholesterol and other contaminations and cause irregularities
in blood flow. Vascular grafts vary in size depending on the
body-part and person [29]. For example, smaller grafts have
inner diameters of less than 5 mm [30] but more than 1 mm
[31]. Larger vascular grafts have diameters greater than 5
mm, and in the case of aortic applications, graft diameters
can be as large as 18–34 mm [32].

Figure 2 illustrates the behaviours of blood vessels under
systolic and diastolic blood flowwith andwithout a thrombus
(the blockage is marked in yellow). A blood vessel expands
during a systolic cycle and retracts during a diastolic cycle of
blood flow (Figs. 2a and 2b). However, when the blood flow
becomes turbulent due to thrombus formation [33] inside the
vessel, blood flow through a normal blood vessel (Fig. 2c) is
disrupted (Fig. 2d) because the turbulence exerts excessive
hemodynamic shear stress and increases the surface tension
[34] on the vessel walls. Meanwhile, the cross-sectional area
of the blood vessel is reduced because of thrombus forma-
tion (Fig. 2d). The narrowed vascular cross section further
reduces the blood-flow rate and adds excessive shear stress
[35],which causes a gradual degradation of the blood vessels.
The fragile layer of endothelial material that is in direct con-
tact with the blood is most vulnerable to an increase in shear
stress. The blood vessel continually expands and retracts [36]
in each systolic and diastolic blood cycle, and therefore, the
thrombus reduces the fatigue life of the blood vessel.

The theory of contact mechanics [37, 38] can explain the
empirical findings that show that excessive shear stress [39,
40] reduces the fatigue life of blood vessels. The shear forces
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Fig. 1 Artificial implants
commonly used in the human
body and diseases requiring
vascular grafts

Fig. 2 Behaviours of blood
vessels under a systolic and
b diastolic blood flow, and
c without and d with a thrombus

exerted by blood on vessel walls increase as the thrombus
size increases, that is, the cross-sectional area of the blood
flow decreases. Therefore, blood vessels tend to expand radi-
ally to maintain the blood flow rate. However, blood vessels
have certain limitations in terms of radial and axial compli-
ance, that is, in their ability to expand radially and axially.
Therefore, blood circulation ceases once the thrombus com-
pletely clogs the vessel, and consequently the shear stresses
exerted by blood may cause the vessel to burst or to bifur-
cate the thrombus, depending on the specific circumstances.
A blocked blood vessel must be replaced or bypassed with

a vascular graft to maintain blood supply to all parts of the
body. The characteristics of such vascular grafts should be the
same as or similar to those of the host artery, including their
radial and axial compliance, burst strength, tensile strength,
buckling, fatigue life, and elastic recovery.

Themorphology, structure, and thickness of blood vessels
vary by age, gender, and health-related factors. Therefore,
a comparison of the mechanistic behaviours of small and
large human arteries and of the commercially available and
emerging composite vascular grafts should be carried out
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for reference. A recent study [41] determined that small-
diameter blood vessels have a higher ultimate strength than
do large-diameter vessels. The ultimate tensile stress and cor-
responding straining percentage in the radial direction before
failure were 4.1 MPa and 134%, respectively, for the inter-
nal mammary artery, 1.8 MPa and 242% for the saphenous
vein, respectively, and 1–2MPa and about 63%–76%, respec-
tively, for the human femoral artery. An inverse trend has
been observed in the longitudinal direction, with the internal
mammary artery enduring 4.3 MPa of stress and 59% strain,
and the saphenous vein exhibiting the highest strength under
an ultimate stress of 6.3 MPa with an 83% strain. Small-
diameter blood vessels (<5 mm) such as saphenous veins
usually exhibit 0.4 strain and 0.2 MPa of stress at the pres-
sure of 17.3–19.9 kPa [42]. Danpinid et al. suggested that
the aorta (10–30 mm) has a transition strain of 0.03 for the
corresponding Young’s moduli of 0.07, 0.2 and 0.15 MPa in
elastic lamellae, elastin-collagen, and collagen sub-layers,
respectively [43], which is approximately 10 times lower
than that of saphenous veins. Because the natural aorta has
a layered structure, the Young’s modulus changes depend-
ing on material properties. According to Zhao et al. [44],
commercially available small-diameter stents (e.g. John-
son & Johnson’s Palmaz–Schatz stent, Boston Scientific’s
Express Stent, Medtronic’s S670 stent, and Guidant’s Mul-
tilink Vision stent) with a 0.1 mm thickness, 3 mm outer
diameter, and 16 mm length usually have a stent-induced
maximum Von Mises stress of 0.09–0.17 MPa, a maximum
principal stress of 0.08–0.22 MPa, and a maximum principal
logarithm strain of 0.40–0.47. Similarly, commercially avail-
able, large-diameter stents (e.g. the GPSCarotid stent) with a
0.22 mm thickness, 10 mm outer diameter and 20 mm length
have exhibited a 0.054 MPa maximum Von Mises stress, a
0.052 MPa maximum principal stress, and a 0.30 maximum
principal logarithm strain.

Essential factors for composite vascular-graft design

A review of the literature published in the past several
decades shows thatmaterial selection has generally been con-
sidered as a most common design criterion. The history of
grafts can be tracked back to 1759, the year in which the
first known lateral arteriography was performed [45]. A car-
diovascular renaissance that took place from approximately
1940 and the use of polymer vascular grafts in the 1950s
was the key milestones. Figure 3 highlights the differences
in structure and radial compliance between natural blood
vessels and synthetic vascular grafts. A mismatch between
vessel and graft properties may cause life-threatening com-
plications such as strokes [46], renal failure [47], endoleaks
[48], swelling [49], leakage [50], and infections [51, 52].
Therefore, themanufacture of vascular-graft compositeswith

mechanical properties similar to those of natural blood ves-
sels remains essential.

Presently, vascular grafts are made using natural, syn-
thetic, and biosynthetic materials individually, as well as in
various combinations, to ensure that their mechanical prop-
erties are as similar as possible to those of natural arteries.
Synthetic materials, including poly (ethylene terephthalate)
(PET), polytetrafluoroethylene (PTFE), polyurethanes (PU),
poly(ε-caprolactone) (PCL), polyamide (nylon), and their
blends, are used to manufacture vascular grafts (e.g. the
Dacron graft). These materials offer a range of mechani-
cal and biomedical properties, which can be further tailored
by using different manufacturing methods—such as extru-
sion—and by including or excluding scaffolding in the graft
design. Artificial vascular grafts of various materials and
dimensions are commercially available.However, some chal-
lenges must be addressed. For example, the material proper-
ties of natural arteries and those of artificial artery graftsmade
of Dacron or ePTFEmay be mismatched. Standard commer-
cial grafts lack the subject-specific customization required
to respond to intraindividual and interindividual differences
due to variations in physiological status caused by age,
health, or disease severity such as problems persist among
large-diameter abdominal aortic aneurysm repairs (e.g. those
30–45 mm in diameter). For example, knitted Dacron pros-
theses have high porosity and tissue ingrowth but dilate over
time, which entails a high risk of infection. ePTFE prostheses
are biostable, donot dilate, andhave acceptable cell ingrowth,
but they may induce stitch bleeding, increase infection risk,
limit incorporation, and cause perigraft seroma formation
[53]. Therefore, tailoring matrixes of vascular grafts with
optimized materials, structural design, and graded stiffness
are necessary to comply with the specifications of the tar-
geted users’ vessels.

In addition, tailoring the surface of vascular grafts to
enable rapid and safe integration into the human body
remains an ongoing challenge. Reference [54] indicates that
thrombosis appears on pristine grafts more than on grafts
seeded with endothelial cells. Advanced biomimetic coat-
ings made of synthetic and non-synthetic materials must
enable pre-endothelialization to ensure biological compli-
ance and improve the overall mechanistic response of the
graft surface to the host arteries. Silver [55, 56] has been
applied to graft coatings to enhance their antimicrobial prop-
erties and to prevent infection in the early postsurgical stage.
Similarly, sulphate-based graft coatings may also improve
the long-term properties of vascular grafts by decreasing
thrombogenicity and by preventing neointimal hyperplasia
[57]. For vascular grafts made of ePTFE, one solution is
to increase graft permeability, because the rate of tissue
ingrowth is associated with graft porosity, and transmural
capillary ingrowth can provide the cell source for surface
endothelialization. Another strategy involves modifying the
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Fig. 3 The structures of a natural blood vessel (artery) and artificial implant (vascular graft), and the corresponding mismatch in their radial
compliance

luminal surface of the graft. Carbon coatings have been used
to increase surface electronegativity and prevent thrombus
formation [58]. Diamond-like carbon (DLC) coatings pos-
sess biocompatibility [59], noncytotoxic [60], hardness [61],
and wear resistance [62]. Thus, they have been used for load-
bearing and non-load-bearing invasive artificial implants.
DLC-coated ePTFE-based artificial vascular grafts have also
ensured patency [63]. There is a need for subsequent stud-
ies to systematically investigate how to improve the matrix
and surface properties of vascular grafts to overcome existing
limitations.

The structural design of a vascular graft is complex.
The design requirements [64] depend on the application;
they include compliance, stiffness, elastic recovery, tough-
ness, fatigue strength, buckling, and geometric parameters
such as diameter and wall thickness. The current market is
approaching toward conducive solutions for the development
of customized vessel implants. Nonetheless, the domains
of biomedical engineering and surgery have evolved over
the past 20 years. Vascular grafts are now being implanted
in diverse body parts, including in the arms, legs, and
chest, which imposes various mechanical and structural
requirements. Moreover, graft requirements are partially
patient-specific and depend on sex, age, and health status.
Therefore, the structural design of a graft should be created
in a patient-specific manner to achieve effective long-term
function. For example, the design requirements of the human
aorta are location-specific. The aorta consists of an ascend-
ing section and a descending section [65]. The two sections
are further subdivided into the distal and proximal ascend-
ing aorta and the proximal, mid, and distal descending aorta,
which differ from each other in diameter. Furthermore, the
geometry of the individual sections differs depending on age

and sex. Therefore, grafts are designed with specific geomet-
ric dimensions and material properties that are appropriate
for specific sections of blood vessels. Any structural incom-
patibility may lead to infection, toxicity, inflammations, or
stroke. Hence, in the design of a composite vascular graft,
mechanical, material, structural, and manufacturing aspects
should be considered to achieve a high degree of customiza-
tion depending on patient-specific requirements.

The Young’s moduli of synthetic grafts are often higher
than those of natural arteries [41, 66]. A graft made using
a single material would be unlikely to rival a natural artery
with respect to properties such as stiffness, elastic recov-
ery, compliance, and porosity. Recently, the development of
mechanical and biomimetic surfaces and matrix structures
has revolutionized the design criteria for vascular grafts. In
this study, we review progress in surface and matrix struc-
tural design, manufacturing methods, and their associated
structures; in emerging composite materials for graft man-
ufacturing; and in architectural designs, such as layered,
embedded, and hybrid configurations adopted in the past
few years to optimize the mechanistic behaviours of artificial
grafts such that they are close to those of arteries. Figure 4
illustrates the design factors that exert a fundamental influ-
ence on the biofunctioning of composite vascular grafts.

Surface structural design of composite
vascular grafts

The inner and outer surfaces of a graft directly interact
with the biological environment and therefore, should be
biocompatible, non-toxic, and endothelialized to ensure bio-
compatibility with the host. The graft surface should be able
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Fig. 4 Essential factors involved in the structural design of composite vascular grafts

to selectively attach to certain cells while limiting the extent
of bridging with contaminants and of thrombi formation.
In addition to exhibiting biomimetic functions, graft sur-
faces exhibit mechanical responses. Their inner surfaces are
exposed to hemodynamic shear stress,which can easily cause
the endothelial coating to delaminate from the matrix under
high levels of stress concentrations. Accordingly, two signif-
icant aspects of the surface design of grafts can be identified,
namely, biomimetic functioning andmechanical functioning.

Material design for surface structure

Blood vessels possess a layered structure (Figs. 3 and 5)
comprising muscles, the basement matrix, and the endothe-
lium in the outer-to-inner direction. The graft matrix—which
is not usually biomimetic—is coated or doped with an
endothelialization material to ensure biocompatibility. Thus,
the endothelial characteristics of the graft surface [67],
which are realized using natural or synthetic materials, pro-
duce a biomimetic environment (Table 1). Both natural and
synthetic endothelialization materials have their respective
merits and disadvantages. Natural materials (e.g. collagen
and hyaluronan) are superior in terms of their ability to
induce cell attachment and formmultiple structures, but they

suffer from poor mechanical properties (e.g. Young’s mod-
ulus). The reverse is true for synthetic endothelialization
materials. Therefore, additional chemical, physical, or bio-
logical procedures are required to boost cell attachment
capabilities. There are many derivatives of natural endothe-
lial materials. For example, collagens can be classified into
28 subtypes depending on their structures and functionalities
and on their existence in different areas of the body [68].With
a combination of collagens with silver, endothelial materi-
als can be promoted to boost antimicrobial function [69].
The selection of appropriate endothelial materials strongly
depends on the matrix materials, fabrication methods, appli-
cations, and on the disease under treatment.

Depending on the manufacturing method in question, it
might be possible to coat endothelial materials on the top
of matrix surface or diffuse inside a graft matrix. In the
case of diffused endothelial materials, a biomimetic envi-
ronment is induced at a slower rate, but the risk of damage
or delamination is lower. Inappropriate co-spinning of the
endothelial material and graft may lead to the production
of heterogeneous structure with a greater uncertainty in
terms of mechanical properties. The biological efficiency
of such a graft would be low because the doped mate-
rial would effectively act as a defect, thus degrading the
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Fig. 5 Surface design as an
essential part of the graft
structure—endothelial material
layer can be observed on the
inner surface of the natural artery
wrapped by the basement matrix
and smooth muscle. Reproduced
from [70], Copyright 2011, with
permission from Elsevier Ltd

Table 1 Example list of natural and synthetic endothelial or scaffold materials

Natural materials Synthetic materials

Collagen [71, 72] Fibrin [81, 82] Poly( 1-caprolactone) (PCL) [92–94]

Hyaluronan
(HA)

[73–76] Silk fibroin [83, 84] Polyethylene glycol (PEG) [95, 96]

Alginate [77–79] Peptides [85–87] Poly (2-hydroxyethyl methacrylate-co-methacrylic acid
(pHEMA)

[97]

Matrigel [80] Decellularized
matrix

[88–91]

mechanical performance. Various methods have been tested
to ensure the homogenous distribution of endothelial mate-
rials—for example, the continuous rotation of the graft
during co-spinning. The combination of electrospinningwith
electrospraying has also been studied [98], wherein gelatine-
based endothelial materials are electrosprayed to ensure
that they are uniformly distributed throughout the graft.
Scaffold-based endothelialization structures are fabricated
using various techniques, such as seeding and the decellular-
ization of natural matrixes. Figure 6 illustrates how seeding
is used to boost endothelialization in scaffolds. The surface
coverage increased from a fraction of the surface (Fig. 6a)
to the entire surface area with a uniform coating (Fig. 6d)
developedwithin 7 days after seeding. Similarly, according to
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay results, the viability of Human Umbilical
Vein Endothelial Cells (HUVECs) (Fig. 6e) and A7r5 cells
(Fig. 6f) increases linearly with time. Alternatively, graft sur-
faces can be treated with plasma to control their surface
texture, which governs their hydrophilicity or hydropho-
bicity, thus facilitating selective cell attachment to diffused
endothelial materials and also boosting interfacial adhesion
between the matrix and the endothelial coating.

Mechanical design for surface structure

Endothelialization materials can be used to not only facil-
itate the establishment of a biomimetic environment, but
also to improve the mechanical performance of a graft in
various aspects, including surface morphology [100], stiff-
ness, compliance, porosity, and leakage resistance. Veins
and arteries compliance of 9.86 and 3.59 Pa while the
woven and knitted Dacron vascular grafts have demonstrated
the compliance of 2.50 and 3.06 Pa, respectively [101].
Furthermore, the elastic moduli of smooth muscles, col-
lagens, and elastin are about 0.1, 1000, and 0.6–1 MPa,
respectively. By contrast, the elastic moduli of grafts made
with engineering materials such as Dacron and embed-
ding stainless steel stents are about 800–900 MPa and
190–200 GPa [101], respectively. This mismatch in elas-
tic moduli of natural and engineered vascular materials
leads to stress shielding, which degrades the mechani-
cal responses of grafts. Hence, manufacturing techniques
such as seeding, co-spinning, or coating are often used
to regulate mechanical properties of graft matrixes by the
integrated endothelial materials to achieve artery-like prop-
erties.
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Fig. 6 Role of scaffold seeding in which cell viability increases with time in a directly proportional manner in 7 days (a–d). e and f show MTT-cell
viability with HUVECs and A7r5 cells, respectively. Reproduced from [99], Copyright 2017, CC BY Springer Nature

Fig. 7 a Role of endothelial material in the structural performance of the artery and b mechanistic behaviour of endothelial materials in response
of increasing pressure. Reproduced from [101], Copyright 2015, CC BY Multidisciplinary Digital Publishing Institute, Switzerland
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Fig. 8 Scanning electron micrographs of silk fibroin grafts a without coating, single layer in the b plane view, and c cross-sectional view; as well
as double-coated d in the plane view and e in the cross-sectional view. Reproduced from [106], Copyright 2013, with permission from John Wiley
& Sons

Figure 7 illustrates the roles played by elastin and colla-
gen in the structural performance of an artery. A hierarchical
structure with ordered layers of elastin and collagen fibres is
evident. Figure 7a shows the compliance curve, in which the
artery diameter increases nonlinearly with pressure. The role
of elastin fibres is dominant in the normal pressure range,
that is, P0 to P1, and both elastin and collagen fibres exhibit
spiral structures in the case of a normal artery diameter d,
as illustrated in Fig. 7b-1. Once the pressure increases from
the low range to the medium range (P1 to P2), the elastin
and collagen fibres tend to flatten, thus increasing the arterial
diameter from d to d1 in response to the change in blood pres-
sure, as illustrated in Fig. 7b-2. As noted, the Young’s moduli
of elastin and collagen are 0.6–1 and 1000MPa, respectively.
Therefore, the role of elastin becomes limited, and collagen
primarily governs the further expansion of the arterial diam-
eter from d1 to d2 as the pressure increases continuously
beyond P2, as illustrated in Figs. 7a and 7b. The schematics
depicted in Figs. 7b-1–7b-3 illustrate the elastic response of
endothelial materials. The structures of these materials tran-
sition from a spiral shape to a flattened shape within their
elastic limits in response to changes in pressure. This natu-
ral mechanism has been mimicked in various bioengineering
studies. For example, collagen-coated, woven Dacron was
successfully used to achieve a radial expansion of up to (11
± 4) % in the case of a graft with a diameter of 26 mm [100]
without localized aneurysmal dilatation. Notably, endothe-
lial materials are hampered by structural limitations in terms

of their elasticity, and excessive blood pressure may push
such materials beyond their elastic limits, leading to rupture
or delamination. Therefore, in addition to the material con-
figurations of such materials, their geometric textures can be
engineered for the same purpose; for example, several graft
composites are produced with plane, wavy, or patterned tex-
tures.

Dimensional design for surface structure

Dimensional aspects include porosity, thickness, and cov-
erage area. Porosity control is an essential characteristic of
endothelial materials [102, 103]. Highly porous grafts are
more susceptible to blood leakage, thus requiring more heal-
ing time. In this context, endothelial materials can be used to
reduce porosity, especially in the case of textile-based grafts,
and to regulate biological functioning. Crosslinked bovine
collagen can be used to reduce the porosity of knitted, double-
velour Dacron grafts from 1400 to 0 cc/(min·cm2) [104].
Similarly, a collagen succinylation can be applied to reduce
water leakage and homeostatic time of e-PTFE grafts from
(169.9 ± 38.5) mL/min to (34.5 ± 29.9) mL/min and (34.2
± 11.5) min to (4.5 ± 2.5) min, respectively [105]. Figure 8
depicts representative images of knitted grafts without coat-
ing, with a single coating, and with a double coating of a silk
fibroin material. As illustrated in the figure, porosity, which
causes blood leakage, decreases considerably after the knit-
ted graft is coatedwith an endothelialmaterial. The capacities
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of various endothelializationmaterials to reduce porosity dif-
fer.

Endothelial materials are usually soft and may undergo
structural changes, such as the delamination of their coat-
ing or an increased porosity when subjected to high blood
pressure and turbulence. Textile-based vascular grafts have
a potential to lower the porosity, and the extent of reducing
porosity increases with increasing number of fabric layers.
The coatings are usually prepared using the dip-coating tech-
nique, and occasionally, additional pressure is applied to the
fluid to enhance the penetration of the endothelial material.
Depending on the level of porosity—which is higher in the
case of knitted structures and lower in case of woven struc-
tures—a single coating or multiple coats may be applied
either on the inner surface of the graft or on both the inter-
nal and external surfaces to fulfil the design requirements.
Along with single- or dual-side coatings, an increase in the
number or density of the fabric layers not only reduces poros-
ity but also improves the mechanical properties of the graft.
Figure 9 depicts the morphology and mechanical properties
of PU vascular grafts reinforced with weft-knitted tubular
fabric. The plane surface and the cross section of this fab-
ric exhibit overly high porosities. Hence, as the number of
fabric layers increases, the tensile strength increases to five
times the original value, and the overall porosity reduces at
the same time.

Figure 10 illustrates the effect of surface topography on
graft stiffness. The surface roughness and porosity of the
knitted surface change significantly after it is coated with
endothelial materials. In addition, the stiffness of the surface
is altered by fabrication method, such as knitting or weav-
ing. The uncoated knitted scaffold has a stiffness of (9.1
± 2.38) N/mm, which can be increased to approximately
(16.8± 4.88) N/mm when it is manufactured from the same
material by using a weaving technique. Because the stiffness
of the endothelial materials is lower, by coating them onto
knitted scaffolds, the overall stiffness of the knitted scaf-
fold can be reduced to approximately (5.7 ± 0.48) N/mm
[108]. Hence, a judicious selection of endothelial materials
is essential to satisfy the requirements for the given appli-
cation, and grafts may sometimes require more than one
coating layer or an additional (e.g. ultraviolet [UV]) treat-
ment for enhanced networking in order to improve their
surface topography. For example, in one study, the platelet
accumulation ratio increased by almost 100%after correcting
for activity diffusing into the wall during 1–4 h reperfusion
when single-sealing with a collagen coating was replaced
by double-sealing [109]. In another study, when a collagen-
coated graft was used, (11.9 ± 5.2) days were required to
perform chest drainage, whereas the same task was com-
pleted in (7.9 ± 4.6) days when a gelatin-coated graft was
used [110].

Fig. 9 Morphologies in the a plane view, b cross-sectional view, and
c the tensile strength of polyurethane vascular grafts reinforced byweft-
knitted, tubular fabric. Reproduced from [107], Copyright 2010, with
permission from Wiley

Matrix design of composite vascular grafts

In Surface structural design of composite vascular grafts, we
discussed the surface design of vascular graft composites
with the aim of achieving compliance levels similar to those
of blood vessels [111]. When considering this goal, matrix
structural design is an equally important consideration. Typ-
ically, the radial compliance of an artery is proximately
7.4% mmHg × 10−2, whereas that of a polyester-based
woven graft is approximately 1.9% mmHg × 10−2 [101].
A wide range of materials have been investigated in the pur-
suit of biomimetic compliance, but all of them have certain
limitations. The literature pertaining to structural design, dis-
tinguished by whether it focuses on radial or longitudinal
(axial) designs, is reviewed in detail in this section.

Radial matrix design

Natural arteries can radially expand to a certain extent to
accommodate hemodynamic turbulence beyond the normal
limits of cardiac cycles. Arteries absorb energy during expan-
sion and return to their original diameter after the passage of
turbulence by releasing the stored energy. Hence, to achieve
graft performance similar to that of natural arteries, it is
important to ensure that vascular grafts possess significant
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Fig. 10 Scanning electronmicrographs of the knitted scaffolds coatedwith a PCL—poly( 1-caprolactone), b collagen, and c nanofibers; and dwoven
scaffold without coating. The stiffness of the bare knitted scaffold changes from (9.1 ± 2.38) N/mm to about (4.3 ± 0.91) N/mm for PCL-coated,
about (5.7± 0.48) N/mm for collagen-coated, about (5.8± 0.70) N/mm for nanofibers-coated, and about (16.8± 4.88) N/mm for woven scaffolds
without coating. Reproduced from [108], Copyright 2007, with permission from IOP Publishing Ltd

expandability and elastic recovery. Recently, research focus
has shifted to structural design to improve graft compliance.
Figure 11 illustrates techniques used to enhance the radial
compliance of graft composites.A triple-layer vascular grafts
[112] composed of a silk filament, polyacrylamide (PAM),
and thermoplastic polyurethane (TPU)were developed. It has
the capability to radially expand TPU/PAMhybrid to provide
sufficient strain for the graft to stretch radially outwards for
resisting increases in blood pressure. Once the blood pres-
sure decreases, the fibres recoil to their original position. This
gives the graft material good elastic recovery and fatigue
strength and, by extension, a long service life.

Longitudinal (axial) matrix design

Longitudinal compliance is the key to safely and sustain-
ably joining a vascular graft composite with natural arteries,
and it also minimizes damping across the joint. The struc-
tural and material properties at the suture connections must
be well matched to prevent intimal hyperplasia. A mismatch

Fig. 11 Silk, polyacrylamide (PAM), and thermoplastic polyurethane
(TPU)-based structural design that allows the graft composite to expand
under high-pressure blood flow. Reproduced from [112], Copyright
2019, with permission from Elsevier Ltd

in compliance leads to the weakening of graft walls due to
impedance or vibration and to a loss of endothelial cells.
Therefore, hybrid designs that offer both radial and lon-
gitudinal compliance in a single graft are currently being
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Fig. 12 A graft composite with a hybrid design to meet radial com-
pliance and interconnection requirements. Reproduced from [36],
Copyright 2017, CC BY AIMS Press

Fig. 13 Role of computational studies in optimising the structural
design of stent-graft hybrids. Reproduced from [133], Copyright 2007,
with permission from Elsevier Ltd

developed. Figure 12 displays a graft with a hybrid struc-
ture, in which the central body is fabricated using crimped
polyester to provide extended elasticity, whereas the ends are
uncrimped and embedded with Z-shaped rings that act as a
stent trunk and provide safe interconnectionswith the arteries
and strong compatibility with sutures. Additional informa-
tion on hybrid designs and compliance can be found in Refs.
[113–117].

Advancedmatrix design

The process of improving graft design relies on an inten-
sive cycle of design, prototyping, redesign, and optimization.
Computational methods have greatly aided the design of
next-generation grafts that satisfy specific requirements in
customized applications.

Figure 13 depicts the process of the computer-aided
design of stent-graft hybrids customized to fulfil mechanical
requirements, such as high stiffness, compliance, or pressure
distributions. The figure shows a comparative study of four
types of stents, each having different mechanical structures.

Magnified views of the stents are depicted in their corre-
sponding single boxes. The different mechanical structures
are then analysed using standard models, such as Poiseuille’s
law—which defines a relationship between blood flow vis-
cosity and the internal artery/graft radius. Although the stents
undergo similar levels of shear stress, their shear stress dis-
tributions differ under the same testing conditions owing to
differences in their mechanical structure. Similarly, compu-
tational studies have revealed not only the radial compliance
but also the hemodynamic response throughout grafts in
either the radial or non-radial direction. Figure 14 illustrates
the blood-velocity contours and the corresponding shear
stresses in the systolic and diastolic cycles at different posi-
tions along the axial direction of the graft. The velocity of
blood flow in a systolic pulse is higher than that in a diastolic
pulse [118].

Computer-aided design packages and finite element (FE)
modelling help designers quantitatively and qualitatively
visualize application-specific factors, such as stress–strain
distributions, stress concentrations, and shear stresses. These
factors are crucial for designing and redesigning vascular
grafts until an optimized solution is achieved. Detailed infor-
mation on computational studies related to graft design,
hemodynamic responses, and shear stress distributions can
be found in Refs. [119–132].

Structural design of vascular grafts
for optimisingmechanical performance

To improve and optimise mechanical properties, the struc-
tures of vascular grafts have been designed and fabricated
with various modalities (scaffold-based, non-scaffold-based,
knitted, and woven materials with layered, embedded, and
hybrid structures), which are summarized in Table 2 along
with their corresponding sub-classifications, followed by the
details of each structure and representative examples.

Textile-based structures

Medical, textile-based grafts possess excellent mechani-
cal and biological features and are the subject of active
research. Textile-based grafts can be prepared using weav-
ing or knitting techniques, both of which lead to various
types of structures that exhibit different mechanical prop-
erties. Figure 15a depicts the structures of woven grafts.
The directions of the warp and weft filaments can be pat-
terned to prepare various types of woven structures, such as
plain weave, twill weave, or satin weave. In recent years, bi-
layer and triple-layer woven structures have been patented
[134–138] or scientifically investigated [139, 140] because
of their hypothesized advantages in mechanical function-
ing. Structures woven with a filament over-under pattern of
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Fig. 14 a Velocity contours at different instances of the hemodynamic cycle and their corresponding b shear stress variations analysed at different
portions of the graft along the longitudinal direction in order to understand the graft response to mechanical pressures posed by the blood circulation.
Reproduced from [118], Copyright 2015, CC BY Hindawi Ltd

warp and weft possess minimal porosity, low creep, and a
good surface finish. The interlayer or intralayer structural
arrangement of the warp and weft filaments and the weav-
ing parameters [140, 141] significantly affect the fracture
mechanics of the resulting grafts. Hence, the warp and weft
patterns are key to tuning the mechanical and physical prop-
erties of grafts. The properties of knitted grafts also vary
with the architecture of the interlocking yarn loops, result-
ing in diverse structures including jersey, locknit, reverse
locknit [142], weft knit, or warp knit structures, as illus-
trated in Fig. 15b. Grafts with knitted structures typically
exhibit higher radial expansibility. However, additional coat-
ings are required to control their porosity. Figure 16 depicts
the stress–strain curves of knitted and woven Teflon and
Dacron strips andgrafts in both the radial and axial directions.
For both flat-strip and tubular grafts, the knitted structures
have higher levels of radial compliance. Moreover, the axial
compliance of knitted strips is higher than that of woven
strips, but this difference decreases within three weeks of
implantation. In addition to mechanical properties, physi-
cal properties are greatly influenced by the manufacturing
technique. For example, woven structures are microporous,
stiff, difficult to suture, but require minimal preclotting. By
contrast, knitted structures are macroporous, relatively com-
fortable and are easy to suture, but they require significant
preclotting.

Tissue engineering-based structures

Graft structures based on tissue engineering can be cate-
gorized into non-scaffold-based and scaffold-based grafts.
Figure 17 depicts the workflow for preparing tissue-
engineering-based (scaffold- and non-scaffold-based) grafts
by diffusing endothelial cells into the graft using decellu-
larized natural-matrix technique. First, tissues are obtained
from patients, and the cells are processed by following the

Table 2 Classification of graft structures based onmanufacturingmeth-
ods, architectures, and their sub-categories

Classification on the basis of manufacturing methods

Method Sub-classification References

Textile-based structures Weaving-based
technique

[134–141]

Knitting-based
technique

[142, 143]

Tissue–engineering–based
structures

Non–scaffold–based
structures

[144–149]

Scaffold-based
structures

[150–155]

Classification on the basis of architectures

Architecture Sub-classification References

Embedded
structures

Mesh or fabric embedded
grafts

[156, 157]

Layered
structures

Structures made of
monolayer, bilayers,
triple layers, and
multiple layers

[112, 158–164]

Hybrid structures Structural and materials
combinations

[165–172]

isolation and expansion protocols illustrated in Figs. 17a and
17b. Then, the cells are further diffused into scaffold-based
or non-scaffold-based grafts, as depicted in Fig. 17c. The
simplest method involves electrospinning a porous graft that
is subsequently combined with the cells. In another strategy,
porous grafts can be prepared by freeze drying [144–146],
followed by cell diffusion. In addition, non-scaffold-based
grafts can be prepared using the decellularized natural matrix
technique. In this approach, the cells are mixed with a gel,
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Fig. 15 Grafts with different structures are made with a weaving and b knitting technologies. Reproduced from [101], Copyright 2015, CC BY
Multidisciplinary Digital Publishing Institute, Switzerland

Fig. 16 Stress–strain curves of
a strips and b grafts made of
Teflon and Dacron with knitted
and woven structures. The solid
and dotted lines represent axial
and radial directions,
respectively. Reproduced from
[143], Copyright 1979, with
permission from Elsevier Ltd

which is further mould-cast to form a vessel-like shape. Sim-
ilarly, there exist decellularized grafts, in which vascular or
non-vascular tissues are decellularized with nucleases, ther-
molysin, or phospholipase enzymes and detergents, such as
octylglucoside, or sodium-based chemicals, such as sodium
dodecyl sulphate or sodium deoxycholate by using combina-
tions of mechanical and physical methods followed by cell
diffusion. Once the cells are diffused, dynamic maturation
(Fig. 17d) is performed before implantation (Fig. 17e). The
scaffold- and non-scaffold-based methods are detailed in the
following subsections.

Non-scaffold-based structures

Non-scaffold-based vascular grafts are generally fabricated
by means of mould casting, micro-tissue aggregation, and
bioprinting methods. The manufacturing techniques and
structures of non-scaffold-based grafts are depicted in
Fig. 18. Cell-sheet-based grafts—comprising an adhesive
and confluent layer of cells—are formed andwrapped around
a mandrel, followed by dynamic maturation, to form a graft
shape, as shown in Fig. 18a. Tubular cell grafts are produced
by pouring cell-suspension-containing droplets into amould,
where they adopt a tubular shape owing to the in situ amalga-
mation of cells, as illustrated in Fig. 18b. Bioprinted spheroid
cell grafts (Fig. 18c) are especially versatile and have been
continually developed in recent research. In this technique,
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Fig. 17 Preparation of scaffold and non-scaffold grafts with decellularized natural matrices. The patients’ tissues are processed for a cells isolation
and b cells expansion and c are diffused in grafts prepared and passed through d dynamic maturation before e implantation. Reproduced from
[147], Copyright 2018, CC BY Frontiers Media SA

spheroids of a cell suspension are deposited on a support
material and merged to form a graft, after which the support
material is removed. Details on non-scaffold-based vascular
grafts can be found in [148, 149].

Scaffold-based structures

Scaffold-based graft structures are typically produced by
means of electrospinning [150–153]. The electrospinning
process produces polymer filaments of specified diame-
ters that are stacked layer-wise to create a thick scaffold.
These grafts are usually electrospun using synthetic poly-
mers such as polylactic acid, PCL, polyglycolic acid (PGA),
ploy-L-lactide (PLLA), poly(ester urethane)urea (PEUU),
poly(4-hydroxybutyrate) (P4HB), poly(glycerol sebacate)
(PGS), PU, or natural biomaterials such as fibrin, silk fibroin,
collagen, elastin, chitosan, and gelatin [154]. The popularity
of electrospinning can be attributed to its greater techni-
cal flexibility, which allows for the manufacture of grafts
from either a single material or by co-spinning two or
more materials in specified proportions. Moreover, the flex-
ibility of co-spinning wide range of materials also allows
for the co-spinning of endothelial-materials graft manu-
facture, thus eliminating the requirement of pre-surgery
graft endothelialization. Figure 19 depicts the electrospin-
ning method for graft manufacturing as well as the plantar

and cross-sectional structures, compositions, andmechanical
properties of electrospun grafts [155]. Figure 19a illustrates
the co-spinning of grafts composed of PCL, polydioxanone
(PDS), and a PCL/PDS hybrid. Figure 19b shows cross-
sectional and planar structural views of the PCL, PDS, and
PCL/PDS grafts. The filaments of the three types of poly-
mers differ notably in terms of their diameters. Additionally,
the PCL and PDS filaments in a hybrid graft are high-
lighted in a colour-graded fluorescence image. The structural
effects on the physical and mechanical properties of the
filaments are illustrated in Figs. 19c–19h. The larger fila-
ment diameter of PCL increases the graft porosity when it
is prepared in the form of a scaffold. PDS is less porous,
whereas the hybrid material has an intermediate porosity.
Likewise, PCL is hydrophobic and PDS is hydrophilic,
whereas the PCL/PDS hybrid has intermediate hydrophobic-
ity. The other properties of PCL/PDS hybrid grafts—such as
the Young’s modulus, tensile strength, and elongation—lie
between those of their pure counterparts. Details pertain-
ing to scaffold-based vascular grafts can be found in Refs.
[150–155].

Embedded structures

Most grafts are made from soft polymers and may there-
fore not satisfy the stiffness and rigidity requirements of
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Fig. 18 Non-scaffold-based vascular grafts are made with a cell-sheet, b micro-tissue aggregation, and c bioprinting. Reproduced from [147],
Copyright 2018, CC BY Frontiers Media SA

specific graft applications. In such cases, additional parts
that have superior mechanical properties, such as stents, are
embedded into the grafts. Figure 20a depicts an idealized,
three-dimensional (3D)wiremesh prepared by knitting. Such
structures are either encapsulated in the graft to provide struc-
tural support, as illustrated in Fig. 20b, or embedded in the
graft wall to increase the overall strength, as depicted in
Fig. 20c. Figure 21a presents a schematic of a composite
graft composed of PU and embeddedwith tubular fabric. The
corresponding radial strengths are illustrated in Fig. 21b. PU
has a low radial strength of about 8 N, whereas the tubular
fabric is approximately fivefold stronger at about 45 N. The
tubular-fabric-embedded PU has a radial strength of about
38 N. Thus, the radial strength of the PU graft is increased
by 375% owing to the embedded tubular fabric.

Layered structures

The first vascular grafts were monolayer grafts and were
usually prepared by means of extraction. However, bi- and
triple-layer configurations with improved mechanical per-
formance have quickly replaced monolayer grafts. Bi- or

triple-layer grafts can be made from textile- or tissue-
engineering-based structures or their hybrids. Furthermore,
multilayer grafts are designed using the same principles to
enhance structural durability.

Bi-layer structures

Bi-layer structures [158] are designed to achieve subject-
and application-specific mechanical properties of vascular
grafts. The two layers may vary in terms of material, geom-
etry, structure, compositions, orientations, or manufacturing
method to achieve a desired level of compliance, tensile
strength, and elastic recovery. Figure 22 depicts a bi-layer
graft prepared by means of electrospinning. The inner layer
is composed of aligned PCL/collagen fibres, whereas the
outer layer is composed of PCL/silica fibres. Generally,
PCL has a tensile strength of 10–16 MPa, whereas micro-
structured silica fibres may have a tensile strength of about
5,000MPa [159]. Thus, the addition of silica fibres increases
the overall tensile strength of the graft. Figure 23 presents the
corresponding mechanical properties of the aforementioned
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Fig. 19 Scaffold-based graftsmadewith the a electrospinning of PCL, PDS, and their combination. The scaffold structures are observed in b scanning
electron micrographs and c–h present their physical and mechanical properties. Reproduced from [155], Copyright 2017, CC BY Springer Nature

Fig. 20 Graft with embedded
structures: a mesh structure/stent,
b mesh structure encapsulating
polymer layers, and c mesh
structure embedded in polymer
layers. Labels A and C represent
surfaces that obtained axial and
circumferential boundary
conditions, respectively.
Reproduced from [156],
Copyright 2010, with permission
from Springer Nature

bi-layer graft. Theultimate tensile strength andYoung’smod-
ulus increase two to three times in both the axial and radial
directions after the addition of silica. However, because sil-
ica is brittle, its addition reduces the elongation capacity of
the graft by up to 50%, as can be inferred from the cor-
responding axial and radial stress–strain curves depicted in
Fig. 23a. Silica fibres can cause a threefold improvement in
suture retention strength along the axial direction, as shown
in Fig. 23b.

Triple-layer structures

Combining multiple materials is not always beneficial in
every aspect. The advantages of doing so are generally
accompanied by drawbacks. As detailed in the preceding
section, although silica can improve the radial and axial ten-
sile strength of grafts, it reduces their elongation capacity.
Polymers intrinsically exhibit plasticity with aging. There-
fore, triple-layer grafts are manufactured using the same
raw material either with alternative manufacturing tech-
niques (such as electrospinning, electrospraying, or their
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Fig. 21 a Illustration of a graft with a reinforced structure and their
corresponding b radial strength. Reproduced from [157], Copyright
2009, CC BY Institute of Biopolymers and Chemical Fibres

Fig. 22 A bilayer graft made by the electrospinning of an inner layer
with PCL/collagen fibres and an outer layer of PCL/silica fibres. Repro-
duced from [160], Copyright 2019, CC BY Elsevier Ltd

combinations—which alter the produce behaviour) or in dif-
ferent physical forms [112, 161, 162], such as textile-based
polyesters or additively manufactured forms of polyester.
These trends are emerging in recent research with the goal
of improving graft performance and reducing graft plastic-
ity. Thus, appropriate material selection and an optimization
of the trade-off between various material properties strongly
depend on the design criteria of specific applications. Such
requirements have been spurring advances in minimizing
the structural deficiencies of vascular grafts. Natural arteries
expand and retract while absorbing and releasing energy. In
practice, engineering materials are not perfectly elastic but
are subject to time-dependent plasticity due to the fatigue
imposed by the functioning of the graft under hemodynamic
pulsations. Figure 24 presents the micrographs of a triple-
layer vascular graft developed in [112] designed tomaximize
elastic recovery. This graft is composed of one layer of silk,
TPU, and PAM. The silk layer was braided into a tube that
was immersed in a poly(dimethylsiloxane) (PDMS) mould
to form a PAM tube, whichwas further electrospunwith TPU
to form a triple-layer structure. Figure 24a presents a cross-
sectional view of the entire graft, and the magnified views of
the three layers are presented in Fig. 24b. Figure 24d shows a

cross-sectional view of the TPU layer and the silk/PAM inter-
face. Figures 24e and 24f depict the inner and outer surface
morphologies of the triple-layer graft.

Figure 25a presents themeasured radial compliance of the
triple-layer graft mentioned above. The figure depicts both
the radial strength and the elasticity of the graft. In terms
of radial compliance (tensile strain in radial direction), the
PAM hydrogel has a value of 0.0028 MPa, electrospun TPU
has a value of about 0.28 MPa, and braided silk has the high-
est radial compliance of about 1.0 MPa. The combination
of braided silk with PAM hydrogel in a bi-layer structure
has a radial strength of about 0.01 MPa, which increases to
about 0.05 MPa when silk/PAM is combined with TPU to
form a triple-layer structure, as illustrated in Fig. 25. The
stress–strain curves describe the elastic–plastic behaviour of
the mono-, bi-, and triple-layer materials. The PAM hydro-
gel (Fig. 25b) has identical loading and unloading curves,
which reflect its near-perfect elastic behaviour. However, the
difference in loading and unloading curves of braided silk
(Fig. 25c) and TPU (Fig. 25d) can be observed, when tested
to identical strain limits and have shown lower elastic recov-
erieswhen compared to PAMhydrogel (Fig. 25b). Therefore,
the stress–strain curves qualitatively reflect the medium level
of plasticity of TPU and the higher level of plasticity of the
silk layer. Quantitative analyses of the level of elasticity or
plasticity based on stress–strain curves can be found in Refs.
[163, 164]. In addition to plasticity, the abnormality in the
stress–strain curves of braided silk (Fig. 25c), which has the
highest radial stress (about 1MPa) among the materials, sug-
gests that the silk threads are broken. Figure 25e indicates that
the elastic recovery of silk improved when it was combined
with PAM, and the silk became almost perfectly elastic in
the triple-layer structure, as illustrated in Fig. 25f.

Composite/hybrid structures

Definitions of what constitutes a hybrid structure remain
unstandardized. Various aspects of fabrication can be com-
bined to form a ‘hybrid’ or ‘composite’ of different types of
materials, different types of structures—including reinforce-
ments, and different manufacturing methods—with the aim
of attaining an artery-like performance of artificial vascu-
lar grafts. Figure 26 illustrates a graft prepared by means of
automated dip-spinning and solution blow-spinning to form
a hybrid structure that varies along the inner-to-outer direc-
tion in terms of fibre alignment and the number of layers. The
middle layer comprises four sublayers of PCL/methacryloyl
gelatin–alginate (PCL/GEAL) with a fibre orientation of ±
21°, whereas the outer layer is composed of five sublayers
with a fibre orientation of ± 67°. The structure is photo-
cured under UV light to enhance crosslinking in the fibrous
network. Such a hybrid structure is expected to respond to
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Fig. 23 a The ultimate tensile strength, Young’s modulus and elongation of a PCL/collagen and PCL/silica bilayer graft in the axial and radial
direction, and b suture retention in the axial direction. Reproduced from [160], Copyright 2019, CC BY Elsevier Ltd

increased blood pressure and flow rates by activating the
function of each layer sequentially.

Figure 27 depicts the results of the mechanical testing of
the graft described above [165]. The results indicate impres-
sive flexibility with respect to the customization of hybrid
grafts. Figure 27a indicates that the graft was manufactured
with various numbers of sublayers in the central and outer
layers. The tensile strengths of the five-layered matrix and
four-layered biomimetic surface are close to those of the
human benchmark. This allows one to derive guidelines for
further refining the structural design of hybrid grafts. Fig-
ures 27b and 27c depict the axial and radial compliance
of the outer layer only, which is composed of five sublay-
ers. The axial compliance is extremely close of that of a
human artery, whereas the radial compliance although not
perfectly biomimetic, is still close to that of an artery. Simi-
larly, Figs. 27d and 27e show the axial and radial compliance
of the central layer, which is composed of four sublayers.

This study represents significant progress in minimizing the
gap between the mechanical properties of natural arteries
and those of artificial vascular grafts. More details on hybrid
grafts can be found in the Refs. [166–172].

The behaviour of composite grafts is affected by structural
design. As shown in Fig. 27, a higher number of sublayers
generally creates a stiffer graft. Fibre angles play a crit-
ical role in the mechanistic behaviour of vascular grafts.
Larger fibre angles of ± 67° produce stiffer grafts with a
strain of 5%–10% corresponding to 0.2 MPa of stress while
smaller fibre angles of ± 21° produce ductile grafts with
a strain of 30%–40%, corresponding to 0.04–0.12 MPa of
stress. Optimized composite vascular grafts (i.e. five sublay-
ers and ± 67° angles) exhibit artery-like behaviour with a
strain of 0.13, corresponding to 0.14 MPa of stress. Further,
composite grafts with optimized design parameters exhibit a
suture retention strength of (1.40 ± 0.13) N, similar to that
of the human internal thoracic artery (mammary arteries),

123



776 Bio-Design and Manufacturing (2022) 5:757–785

Fig. 24 a–d Cross-sectional views and e the inner surface and f the outer surface of a triple-layer silk (inner layer)/polyacrylamide (middle
layer)/TPU (outer layer) graft. Reproduced from [112], Copyright 2018, with permission from Elsevier Ltd

Fig. 25 aRadial compliancemeasurement setup and elastic–plastic analysis of b polyacrylamide (PAM) hydrogel, c braided silk,dTPU, e silk/PAM,
and f silk/PAM/TPU in mono, bi-layer, and triple-layer structures. Reproduced from [112], Copyright 2018, with permission from Elsevier Ltd
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i.e. (1.35 ± 0.49) N [173]. Thus, the optimised, composite
vascular grafts surpass other types of grafts in mechanistic
performance. The knitted grafts in [174] exhibited a high
strain exceeding 0.3 under a stress of 0.2 MPa. The high
elasticity caused non-compliance problems related to burst
strength and artery-to-graft impedance at the suture loca-
tion. Figure 28 presents an example of a composite vascular
graft made from reinforced textiles [175]. The graft structure
consists of rayon, spandex, nylon, and polyester, achieving
human-aorta-like stress–strain behaviour in both the axial
(wale) and radial (course) directions. The reinforcement of
textiles and optimised material structures can help control
the elasticity and stiffness of artificial vascular grafts.

Reference [176] suggests that small vascular grafts (<
5 mm in diameter) are generally used as bypass sections
in intrathoracic, radial, and gastroepiploic arteries, espe-
cially for the coronary artery disease and lower-extremity
arterial disease (below knee). Mid-sized grafts (5–10 mm
in diameter) are usually used for replacement and bypass
applications in the lower-extremity arterial disease (above
knee), carotid artery, and arteriovenous fistula problems.
Large vascular grafts (18–30 mm in diameter) are used as
replacements in treating aortic aneurysm and aortic dis-
section. Degradable synthetic grafts and tissue-engineered
vascular grafts made of materials such as PCL, polygly-
colide (PGA), PLLA and poly(glycerol-co-sebacate) can
promote self-repair, self-generation, and the growth of body
tissues. PGA exhibits a high degradation rate (6–8 weeks)
[54]. Nondegradable grafts have led to clinical problems
such as localized argyria [177]. Therefore, various amounts
of nondegradable polymers have been applied to vascu-
lar grafts to control their degradation time. One study
indicates that composite graftsmade of nonwovenPGA, rein-
forced with poly(glycolide/caprolactone) and coated with
poly(lactide/caprolactone) had a six-month degradation time
in an in vivo environment with grown layers of muscle cells
and endothelial cells [178]. Composite vascular grafts are
suitable for large-diameter blood vessels and interposition
applications. When used for small-diameter blood vessels
(e.g. veins), composite grafts may have safety risks related
to long-term patency. Potential problems include delamina-
tion between low-dimensional features due to impact fatigue.
This is because the blood pressure is 10 times [41] lower
in veins than in arteries. Even simple bi-layer and tri-layer
grafts can malfunction upon interlayer delamination, leading
to severe abnormalities in hemodynamics.

One clinical trial indicates that a composite vascular
graft made of polyester and silicon combined with diffused
CD34+ cells and a layered structure increased the coverage
of endothelial-like cells from 26 to 92% in a dog’s descend-
ing thoracic aorta [179]. This advanced composite graft not
only improved biological performance, but also promoted

Fig. 26 A graft made of a hybrid structure of alternate layers of
methacryloyl gelatin–alginate and poly(ε-caprolactone) fibres. The
number of sub-layers and fibres orientation changes from the inner to
the outward direction by angle, e.g.± 21° and± 67°. Reproduced from
[165], Copyright 2019, CC BY Springer Nature

microvessel formation, a desirable feature in bone mar-
row applications. Although studies have investigated aspects
related to material formulation [180], manufacturing [181],
architecture design [182], surface functionalization [183],
and accelerated hemocompatibility responses [184] of vascu-
lar grafts, rigorous preclinical and clinical trials of advanced
composite vascular grafts made with complex combinations
of materials, structural designs, surface engineering, and
low-dimensional features remain highly needed, as to pro-
vide guidelines for their utility and practical applications
[179–184].

Design criteria for mechanical functioning
of vascular grafts

Surface design and matrix design play essential roles in the
development of grafts with mechanical and biological prop-
erties that are similar to those of the host blood vessels. Grafts
are specialized products that are produced with patient-
customized specifications that vary by age, sex, physique, and
location of application—such as the arm, chest, or leg. How-
ever, commercially available grafts are producedwith general
specifications, irrespective of patient-specific requirements.
Conceivably, for the same person, textile-based grafts may
function better in the chest because they providemore elastic-
ity, whereas electrospun grafts may function better in the leg
because they provide more stiffness. Similarly, the required
mechanical properties of vascular grafts differ between chil-
dren and adults and between men and women.
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Fig. 27 a Optimisation of the number of methacryloyl gelatin-alginate and poly(ε-caprolactone) sub-layers in the middle and outer layer of a hybrid
graft, b axial and c radial compliance of the out-layer and d axial and e radial compliance of the middle layer of the graft. Reproduced from [165],
Copyright 2019, CC BY Springer Nature

Fig. 28 Stress–strain behaviour of a textile-reinforced artificial vascular graft in comparison with a human aorta in the a radial (course) and b axial
(wale) directions. Reproduced from [175], Copyright 2019, with permissions from American Chemical Society
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Table 3 Key mechanical parameters of composite vascular grafts

No. Parameter No. Parameter

1 Radial compliance 6 Elastic recovery

2 Longitudinal (axial)
compliance

7 Tensile strength

3 Burst strength 8 Fatigue strength

4 Shear strength 9 Stiffness

5 Biomimetic surface-matrix
adhesion strength

10 Buckling/rigidity

Further, no sole manufacturing method or structural
design is suitable for all types of grafts due to the diver-
sity between applications and between patients. For example,
small-diameter grafts are gaining favour for use in tissue
engineering methods, whereas large-diameter aortic grafts
composed of textile-based materials are being researched
because scaffold-based grafts may not provide the same lev-
els of elasticity and compliance as do textile-based structures.
Therefore, no general rule of thumb can be formulated for
graft manufacturing. Depending on the body part in which
the graft is to be applied, a combinational approach should
be adopted with appropriate material selection, structural
design, andmanufacturing technology to deliver an appropri-
ate level of compliance based on the mechanical parameters
listed in Table 3. The unique hierarchical structural design
of composite vascular grafts differentiates them from typi-
cal small- or large-diameter vascular grafts. The structural
mechanics suggest that the fracture energy dissipates at
interfaces [185] and mitigates crack propagation. Composite
vascular grafts with numerous interfaces, including those of
multiple layers, those of fibres, and those of embedded stents,
exhibit high fracture toughness [185]. In the future, numerous
clinical trials are necessary to provide referable guidelines
on usability and demonstrate their mechanical and biomedi-
cal performance when small- and large-diameter composite
vascular grafts are used. Weaving technology has been used
to create novel triple-layer [102], multi-weave [138], and
3D [186] structural designs. Recent developments, such as
those of tube-type fabrics [187], fabrics with a negative Pois-
son’s ratio [188], and fabrics with structure-phase transition
capabilities [189], have demonstrated promising levels of
mechanical performance relative to their specified purpose.
Further testing of these innovative materials with unique
combinations of mechanical properties is recommended for
graft manufacturing and application.

Artificial intelligence (AI) and big data are transforming
present-day manufacturing norms. The role of AI in pre-
dicting graft patency was formulated in 2006 [190], and in
recent years, AI has been extensively used for this purpose.
AI has been demonstrated to predict ventricular function

[191]—that is heart function to maintain blood supply to
arteries, and detect aneurysms [192], which leads to the
weakening and rupture of blood vessels. Similarly, machine-
learning models based on big data are now being used to
perform the screening of stenoses in grafts [193, 194] to
predict abnormal contractions in blood passages. Similarly,
stenoses assessments of arteriovenous grafts by neural net-
works have been recently reported—assessments with 86%
accuracy [195]. Moreover, fuzzy-logic-based AI methods
are being developed to create advanced vascular grafts by
using 3D-printing methods [196]. Advancements in struc-
tural designs, the exploration of new materials, upgraded
manufacturing methods, and AI applications are expected to
lead to the efficient and economical production of advanced,
patient-specific vascular grafts.

Conclusions

The development of new structural designs, hybrid materi-
als engineering, and advanced manufacturing techniques in
the pursuit of obtaining grafts with natural-artery-like prop-
erties is an active research area in the graft industry. This
study reviews the state of the art with respect to usability,
properties, and design concepts of vascular grafts. Surface
design and matrix structural design of vascular grafts were
also analysed, in which surface design plays an essential
role in the biomimetic and mechanical functioning of grafts.
The appropriate selection of natural or synthetic endothe-
lial materials, with respect to their mechanical properties,
and a safe and stable interface design is necessary to realize
properly functioning vascular grafts. Similarly, computa-
tional studies aid our understanding and visualization of the
efficacy of structural designs based on stress–strain and pres-
sure distributions and can be used to derive guidelines for
the development of structural designs with efficiencies that
approach those of natural arteries. Vascular graft structures
can be manufactured by means of tissue-engineering-based,
textile-based, or architecture-basedmethods, and the types of
structures include layered, embedded, and hybrid structures.
The corresponding subcategories, such as scaffold-based,
non-scaffold-based, woven, knitted, layered, embedded, and
hybrid designs, are also discussed with representative exam-
ples. Different combinations of materials, structures, and
manufacturing methods will regulate mechanical properties
of composite vascular grafts in terms of elongation, burst
strength, and tailored stiffness to offer controlled compliance
and elastic recovery for achieving patient-specific require-
ments. Novel structural designs must be formulated and
evaluated through integrated mechanical and biocompatibil-
ity analyses and clinical trials to guide practical applications
of vascular grafts for end-users in surgery.
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