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The development of smart bioelectronics and biomedical
devices has significantly advanced the field of biomedi-
cal engineering, enabling a myriad of applications from
basic biomedical research to clinical medicine and implants.
Standing at the intersection of materials science, mechan-
ical, electrical, and bioengineering, this fascinating field
has attracted considerable attention from researchers all
over the world, providing new healthcare solutions which
were impossible before. From brain–machine interface to
biomedical nano/micro-robots, different materials and man-
ufacturing methodologies have been developed to advance
the functionalities of the bioelectronic systems to meet the
ever-increasing demand of biological and bioinspired appli-
cations (Fig. 1).

Materials for bioelectronics and biomedical
devices

From materials point of view, bioelectronics and biomed-
ical devices are mostly composed of conductive, dielec-
tric, and semiconductor materials, as well as soft sub-
strates/encapsulations. These systems which can interface
with human bodies via electrical stimulation and record-
ing of biological signals are of great interest in emerging
neural science and engineering [1], diagnostics [2], therapy
[3], and wearable and implantable devices [4]. The fab-
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rication of bioelectronics combines the careful design of
deformable circuits, integration of rigid and planar semi-
conductor devices, and the engineering of soft and stretch-
able encapsulations to realize a better mechanical match-
ing with soft biological tissues and even growing organ-
isms, enabling their constant communication with human
body.

The biocompatible metals such as gold were engi-
neered into serpentine shapes to enabling its stretchability
as conducting circuit materials, by further integration of
these engineered stretchable circuits with semiconductor
into a thin and flexible polydimethylsiloxane (PDMS)-
based encapsulations via “soft lithographic” technologies
[5]; several types of bioelectronics were fabricated includ-
ing epidermal tactile/chemo-sensors [6], implantable cardiac
pacemaker [7], optoelectronics [8], etc., which demon-
strated their applications in biomedical research and poten-
tial clinical treatments. The employment of degradable
metal and metal oxides as conducting and dielectric mate-
rials, respectively, and bioresorbable silk or poly(lactic-
co-glycolic acid) (PLGA), transient bioelectronics can be
manufactured [9–12]. However, there still could be chal-
lenges with formation of scar tissue between bioelec-
tronics and biological tissues during long-term implan-
tation, resulting in the increase in interfacial impedance
[13].

Hydrogels have emerged as a promising candidate for
fabrication of next-generation bioelectronics, due to their
similarity to biological tissues, water infiltrability and ver-
satility in electrical, mechanical, and biofunctional engi-
neering. Either synthetic polymers like polyvinyl alcohol
(PVA), polyacrylic acid (PAA), polyacrylamide (PAAm),
poly(2-hydroxyethyl methacrylate) (PHEMA), etc., or nat-
ural macromolecules such as polysaccharides, gelatin and
proteins, etc., can be utilized to synthesized biocompati-
ble hydrogels. By further dissolving electrolyte molecules
such as LiCl, NaCl, KCl or even zwitterionic molecules
into hydrogel matrix, ionic conductive can be achieved [14,
15]. Theses ionic conductive hydrogels based electronics
were also named as ionotronics, which have found their
applications in epidermal sensors, artificial axons and soft
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Fig. 1 Materials, manufacturing
and system validation in
bioelectronic devices and
systems

actuators [16]. However, their low conductivity and ionic
conductive nature hindered their applications in in vivo
tests.

Another important category of materials in the fab-
rication of bioelectronics is the amphiphilic conduct-
ing polymers, such as poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT/PSS), polypyrrole (PPy),
poly(3-hexylthiophene-2,5-diyl) (P3HT) and polyaniline
(PANI). Their high electric conductivity compared with ioni-
cally conductive hydrogelsmakes thempromising candidates
in fabrication of implantable bioelectronics, such as neural
probes that can monitor the electrophysiological signals in
mouse brain [17], implantable and morphing electronics for
long-term chronic electrical stimulation andmonitoring [18],
cellular scaffolds [19] and so on.

Recently, composite conductive hydrogels, synthesized
via the incorporation of conductive fillers into hydro-
gel matrix, have emerged as another alternative candidate
for bioelectronics. Harnessing the high electrical conduc-
tivity from conductive materials like PEDOT/PSS, car-
bon nanotubes, graphene etc., as well as the softness
and stretchability from hydrogels, the composite materials
could exhibit both high electrical conductivity up to about

50 S/m and mechanical stretchability up to about 600%
[20].

Newmanufacturing technologies
for bioelectronics and biomedical device

From a manufacturing and structural design point of view,
conventionalmanufacturingmethods rely on nanofabrication
methods such as photolithography, e-beam evaporation, and
sputtering of conductive, dielectric, and semiconductor fea-
tures on flexible substrates [21]. Rogers group also invented
a series of transfer printing processes which are compati-
ble with silicon electronics fabrication featuring complex
logic functionalities. Over the years, a series of transfer
printed systems have been demonstrated, such as cerebral
cortex mapping [10], cardiac electrophysiology [22], to
name a few. To overcome the limitations of planar device
geometries which are often incompatible with biological
systems, recent bioelectronics employ conformal additive
stamp (CAS) printing technology to transfer complex silicon
electronics onto non-flat surfaces [23]. Another strategy of
significant interest is the employment ofmechanically guided
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buckling [24, 25] which enables scalable, high-resolution
fabrication of 3D structures. To conform with biological tis-
sues or blood vessels [26], flexible bioelectronics can also be
wrapped around arteries of various sizes to allow the accurate
measurement of blood flow.

As an alternative to conventional nanofabrication meth-
ods, additive manufacturing methods have recently emerged
due to their advantages such as low-cost, rapid prototyping,
and customization. They also allow the patterning of many
materials which are otherwise difficult to integrate using con-
ventional methods. Among different additive approaches,
screen and inkjet printing have been the most reported meth-
ods due to their easy access and relatively long history [27].
Most reports focus on maskless patterning of low concentra-
tion dielectric and conductive inks [28]. Harnessing a diverse
range of functional materials, direct ink writing (DIW) has
recently emerged as a versatile platform for bioelectronics
and biosystem fabrication. Yuk et al. [17] introduced 3D
printed soft neural probes for electrophysiological recording
in themouse dorsal hippocampus (dHPC) using PEDOT/PSS
ink. For multimaterial DIW, Lind et al. [29] demonstrated an
example of instrumented cardiacmicrophysiological devices
for drug response study using a variety of sacrificial, elas-
tomer, conductive and dielectric materials.

Focusing on new materials, design, and manufactur-
ing aspects, we have put up together an exciting special
issue on the topic of “Smart Bioelectronics and Biomedi-
cal Devices,” emphasizing the bio-design and manufacturing
aspects involved in bioelectronics and biomedical devices,
with new materials, design, fabrication, and application
aspects. We begin with an editorial by Han et al. [30] dis-
cussing the additive manufacturing of nerve conduits. The
editorial outlines the advantages of additive manufacturing
in mimicking the topological shape, biocompatibility and
mechanical properties required for nerve tissue extracellular
matrix (ECM), and progresses and challenges with printable
biomaterials and their high-resolution processing.

One perspective by Huang et al. covers the topic of min-
imally invasive biosensor for glucose monitoring especially
using microneedle technology with the aim to safely and
accurately detect subcutaneous microenvironment changes
associated with diabetes complications.

A collection of research articles then ensues. Huang et al.
[31] developed a stretchable self-powered biosensor integrat-
ing enzymatic biofuel cellswhich serve as self-powered sens-
ing modules. The lactate and glucose enzymatic biofuel cells
(EBFCs) sensors were fabricated by a series of spray coat-
ing and casting method, together with a lithography-enabled
microfluidic device for efficient sweat collection and sensing.
Jing et al. [32] developed a new conductive and transpar-
ent dipeptide hydrogel ink using hydrophilic conductive
polydopamine (PDA)-doped polypyrrole (PPy) nanoparticle
incorporated dipeptide hydrogel. This strategy allows good

conductivity and transparency of the material and enables
applications for body-adhered signal detection. Li et al. [33]
applied femtosecond laser processing to modify Pt-Ir neural
electrode with superwicking behavior, which offers highly
improved electrical performance and wettability. Thanks
to the hierarchical surface micro/nanostructures enabled by
laser processing, the electrode shows the increasedmaximum
charge storage capacity which makes them promising for use
in clinical neural electrodes.Wang et al. [34] designed a class
of pneumatic muscle-like actuators, termed highly mimetic
skeletal muscle (HimiSK), consisting of parallelly aligned
contractile units in a flexible matrix. The contractile units
and flexible matrix mimic muscle fiber and connective tis-
sue, respectively, enabling 3D actuation upon activation and
showing intrinsic force–velocity and force–length behaviors
similar to biological muscles. Zeng et al. [35] developed a
bio-inspired 4Dprinting layout strategy by designing the area
delineation and shape memory properties of shape memory
polymers (SMPs). Zhang et al. [36] developed a novel pneu-
matically assisted atomization device (PAAD) which allows
uniform living cell delivery with low pressure. The sprayed
cells maintained high viability and differentiation, making
them ideal for clinical cell therapy andwound healing. Zhang
et al. developed a 3D printed microfluidic gradient concen-
tration chip using digital light processing (DLP) for rapid
antibiotic susceptibility testing. The obtained gradient con-
centration environment of antibiotics provides a rapid testing
method for measuring bacterial susceptibility to antibiotics
in clinical settings. Hesselmann et al. [37] proposed a novel
design for 3D potting of membrane modules based on a
multiaxial centrifugation process, which could improve flow
path and lower stagnation volume, and ultimately improve
efficiency for artificial lungs. Lastly, amid Covid-19 pan-
demic, Park et al. [38] designed and tested cost-effective,
rapidly scalable ventilator (ALIVEVent) using commercially
available components. This solution might offer life-saving
solutions especially for people in resource-scarce regions.

The special issue also collects five review articles across
several important areas of bio-design and manufacturing.
Santoni et al. provided an extensive outlook on scientific lit-
erature and patents on the topics of bioprinting, showing that
the field is undergoing rapid expansion. Echoing the research
article by Huang et al. [31] in this issue, Heng et al. provided
a review on wearable flexible sensors for sweat analysis. The
recent research focuses on sweat sensors with a diverse form
factors andmaterials. The review also covers different mech-
anisms of sensing as well as their advantages and challenges.
Lim et al. [39] discussed the requirement of bioreactor design
for tissue engineering, which should provide a biomimetic
physiological platform by optimizing material design, mass
transfer, mechanical and electrical stimulation. Lin et al. [40]
summarized the exciting topic of biorobots which have the
advantages of energy efficiency and miniaturization. This
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review covers the progress of biohybrid robots regarding
power sources, supporting biomaterials and structures devel-
oped in the recent years. Finally, the work of Willemen et al.
[41] covers various 3D and 4D printing techniques and their
applications in the pharmaceutical field as drug delivery sys-
tems and personalized medicine. It is hoped that this special
issue will serve as a collection of research and views from
different angles and bring new insights to the growing field
of bioelectronic devices and systems, leading to new inspi-
ration to the field and expanding to possibilities of smart
bioelectronics and biomedical devices formany practical and
clinical applications.
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