Skip to main content
Log in

A novel wavy non-uniform ligament chiral stent with J-shaped stress–strain behavior to mimic the native trachea

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Tracheal stents are an important form of treatment for benign or malignant central airway obstruction. However, the mechanical behavior of current tracheal stents is significantly different from that of the native trachea, which leads to a variety of serious complications. In this study, inspired by the structure of the native trachea, a wavy non-uniform ligament chiral tracheal stent is proposed, in which J-shaped stress–strain behavior and negative Poisson's ratio response are achieved by replacing the tangential ligament of tetrachiral and anti-tetrachiral hybrid structure with a wavy non-uniform ligament. Through the combination of theoretical analysis, finite element analysis and experimental tests, a wide range of desired J-shaped stress–strain curves are explored to mimic the native porcine trachea by tailoring the stent geometry. Besides, the negative Poisson’s ratio and auxetic diameter curves versus axial strain of the stent are also studied in detail, thus contributing to the enhancement of cross-section ventilation and reducing the migration of the stent. This novel tracheal stent with a unique microstructure shows a potential to perfectly match the physiological activities of the native trachea and thereby reduce potential complications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murgu SD, Egressy K, Laxmanan B et al (2016) Central airway obstruction benign strictures, tracheobronchomalacia, and malignancy-related obstruction. Chest 150(2):426–441. https://doi.org/10.1016/j.chest.2016.02.001

    Article  Google Scholar 

  2. Milian RD, Foley E, Bauer M et al (2019) Expiratory central airway collapse in adults: corrective treatment (part 2). J Cardiothorac Vasc Anesth 33(9):2555–2560. https://doi.org/10.1053/j.jvca.2018.09.009

    Article  Google Scholar 

  3. Avasarala SK, Freitag L, Mehta AC (2019) Metallic endobronchial stents a contemporary resurrection. Chest 155(6):1246–1259. https://doi.org/10.1016/j.chest.2018.12.001

    Article  Google Scholar 

  4. Guibert N, Saka H, Dutau H (2020) Airway stenting: technological advancements and its role in interventional pulmonology. Respirology 25(9):953–962. https://doi.org/10.1111/resp.13801

    Article  Google Scholar 

  5. Kamel KS, Beckert LE, Stringer MD (2009) Novel insights into the elastic and muscular components of the human trachea. Clin Anat 22(6):689–697. https://doi.org/10.1002/ca.20841

    Article  Google Scholar 

  6. Boazak EM, Auguste DT (2018) Trachea mechanics for tissue engineering design. Acs Biomater Sci Eng 4(4):1272–1284. https://doi.org/10.1021/acsbiomaterials.7b00738

    Article  Google Scholar 

  7. Baiguera S, Del Gaudio C, Jaus MO et al (2012) Long-term changes to in vitro preserved bioengineered human trachea and their implications for decellularized tissues. Biomaterials 33(14):3662–3672. https://doi.org/10.1016/j.biomaterials.2012.01.064

    Article  Google Scholar 

  8. Guimaraes CF, Gasperini L, Marques AP et al (2020) The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 5(5):351–370. https://doi.org/10.1038/s41578-019-0169-1

    Article  Google Scholar 

  9. Wong VW, Paterno J, Sorkin M et al (2011) Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation. FASEB J 25(12):4498–4510. https://doi.org/10.1096/fj.10-178087

    Article  Google Scholar 

  10. Karush JM, Seder CW, Raman A et al (2017) Durability of silicone airway stents in the management of benign central airway obstruction. Lung 195(5):601–606. https://doi.org/10.1007/s00408-017-0023-4

    Article  Google Scholar 

  11. Wu XD, Zhang X, Zhang W et al (2019) Long-term outcome of metallic stenting for central airway involvement in relapsing polychondritis. Ann Thorac Surg 108(3):897–904. https://doi.org/10.1016/j.athoracsur.2019.02.039

    Article  Google Scholar 

  12. Yang W, Sherman VR, Gludovatz B et al (2015) On the tear resistance of skin. Nat Commun 6:10. https://doi.org/10.1038/ncomms7649

    Article  Google Scholar 

  13. Kwansa AL, Empson YM, Ekwueme EC et al (2010) Novel matrix based anterior cruciate ligament (ACL) regeneration. Soft Matter 6(20):5016–5025. https://doi.org/10.1039/c0sm00182a

    Article  Google Scholar 

  14. Chamiot-Clerc P, Copie X, Renaud JF et al (1998) Comparative reactivity and mechanical properties of human isolated internal mammary and radial arteries. Cardiovasc Res 37(3):811–819. https://doi.org/10.1016/s0008-6363(97)00267-8

    Article  Google Scholar 

  15. Meyers AD, Bishop HE, Peters S (1980) Biomechanical characteristscs of the human trchea. Otolaryngology-Head Neck Surg 88(4):409–411. https://doi.org/10.1177/019459988008800416

    Article  Google Scholar 

  16. Lomeli-Mejia PA, Cruz-Orea A, Araujo-Monsalvo VM et al (2020) Evaluation of tensile force in a porcine trachea using a reflective optical method. J Spectroscopy 2020:7816969. https://doi.org/10.1155/2020/7816969

    Article  Google Scholar 

  17. Yan DJ, Chang JH, Zhang H et al (2020) Soft three-dimensional network materials with rational bio-mimetic designs. Nat Commun 11(1):11. https://doi.org/10.1038/s41467-020-14996-5

    Article  Google Scholar 

  18. Ma YJ, Feng X, Rogers JA et al (2017) Design and application of ‘J-shaped’ stress-strain behavior in stretchable electronics: a review. Lab Chip 17(10):1689–1704. https://doi.org/10.1039/c7lc00289k

    Article  Google Scholar 

  19. Ma Q, Cheng H, Jang KI et al (2016) A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures. J Mech Phys Solids 90:179–202. https://doi.org/10.1016/j.jmps.2016.02.012

    Article  MathSciNet  Google Scholar 

  20. Yan ZG, Wang BL, Wang KF et al (2019) A novel cellular substrate for flexible electronics with negative Poisson ratios under large stretching. Int J Mech Sci 151:314–321. https://doi.org/10.1016/j.ijmecsci.2018.11.026

    Article  Google Scholar 

  21. Zhalmuratova D, La TG, Yu KTT et al (2019) Mimicking “J-Shaped” and anisotropic stress-strain behavior of human and porcine aorta by fabric-reinforced elastomer composites. ACS Appl Mater Interf 11(36):33323–33335. https://doi.org/10.1021/acsami.9b10524

    Article  Google Scholar 

  22. Ray TR, Choi J, Bandodkar AJ et al (2019) Bio-integrated wearable systems: a comprehensive review. Chem Rev 119(8):5461–5533. https://doi.org/10.1021/acs.chemrev.8b00573

    Article  Google Scholar 

  23. Ma YJ, Zhang YC, Cai SS et al (2020) Flexible hybrid electronics for digital healthcare. Adv Mater 32(15):23. https://doi.org/10.1002/adma.201902062

    Article  Google Scholar 

  24. Lei M, Hong W, Zhao Z et al (2019) 3D printing of auxetic metamaterials with digitally reprogrammable shape. ACS Appl Mater Interf 11(25):22768–22776. https://doi.org/10.1021/acsami.9b06081

    Article  Google Scholar 

  25. Xin X, Liu L, Liu Y et al (2020) 4D printing auxetic metamaterials with tunable, programmable, and reconfigurable mechanical properties. Adv Funct Mater 30(43):2004226. https://doi.org/10.1002/adfm.202004226

    Article  Google Scholar 

  26. Wu WW, Hu WX, Qian GA et al (2019) Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater Des 180:13. https://doi.org/10.1016/j.matdes.2019.107950

    Article  Google Scholar 

  27. Wang ZW, Luan CC, Liao GX et al (2020) Progress in auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications. Adv Eng Mater 22(10):23. https://doi.org/10.1002/adem.202000312

    Article  Google Scholar 

  28. Yu HB, Wu WW, Zhang JX et al (2019) Drastic tailorable thermal expansion chiral planar and cylindrical shell structures explored with finite element simulation. Compos Struct 210:327–338. https://doi.org/10.1016/j.compstruct.2018.11.043

    Article  Google Scholar 

  29. Ruan X, Yuan W, Hu Y et al (2020) Chiral constrained stent: effect of structural design on the mechanical and intravascular stent deployment performances. Mech Mater 148:103509. https://doi.org/10.1016/j.mechmat.2020.103509

    Article  Google Scholar 

  30. Farrugia PS, Gatt R, Grima-Cornish JN et al (2020) Tuning the mechanical properties of the anti-tetrachiral system using nonuniform ligament thickness. Phys Status Solidi B-Basic Solid State Phys 257(10):1900507. https://doi.org/10.1002/pssb.201900507

    Article  Google Scholar 

  31. Liu J, Yao X, Wang Z et al (2021) A flexible porous chiral auxetic tracheal stent with ciliated epithelium. Acta Biomater 124:153–165. https://doi.org/10.1016/j.actbio.2021.01.044

    Article  Google Scholar 

  32. Geng LC, Ruan XL, Wu WW et al (2019) Mechanical properties of selective laser sintering (SLS) additive manufactured chiral auxetic cylindrical stent. Exp Mech 59(6):913–925. https://doi.org/10.1007/s11340-019-00489-0

    Article  Google Scholar 

  33. Liu J, Yan D, Zhang Y (2021) Mechanics of unusual soft network materials with rotatable structural nodes. J Mech Phys Solids 146:104210. https://doi.org/10.1016/j.jmps.2020.104210

    Article  MathSciNet  Google Scholar 

  34. Tufekci E, Ozdemirci O (2006) Exact solution of free in-plane vibration of a stepped circular arch. J Sound Vib 295(3–5):725–738. https://doi.org/10.1016/j.jsv.2006.01.048

    Article  Google Scholar 

  35. Fan Z, Zhang Y, Ma Q et al (2016) A finite deformation model of planar serpentine interconnects for stretchable electronics. Int J Solids Struct 91:46–54. https://doi.org/10.1016/j.ijsolstr.2016.04.030

    Article  Google Scholar 

  36. Babu AR, Gundiah N (2014) Role of crosslinking and entanglements in the mechanics of silicone networks. Exp Mech 54(7):1177–1187. https://doi.org/10.1007/s11340-014-9895-x

    Article  Google Scholar 

  37. Nooni AR, Aslan TA, Temel B (2018) An efficient approach for in-plane free and forced vibrations of axially functionally graded parabolic arches with nonuniform cross section. Compos Struct 200:701–710. https://doi.org/10.1016/j.compstruct.2018.05.077

    Article  Google Scholar 

  38. Greaves GN, Greer AL, Lakes RS et al (2011) Poisson’s ratio and modern materials. Nat Mater 10(11):823–837. https://doi.org/10.1038/nmat3134

    Article  Google Scholar 

  39. Wang D, Xiong Y, Zhang B et al (2020) Design framework for mechanically tunable soft biomaterial composites enhanced by modified horseshoe lattice structures. Soft Matter 16(6):1473–1484. https://doi.org/10.1039/c9sm02119a

    Article  Google Scholar 

  40. Hoffman B, Martin M, Brown BN et al (2016) Biomechanical and biochemical characterization of porcine tracheal cartilage. Laryngoscope 126(10):E325–E331. https://doi.org/10.1002/lary.25861

    Article  Google Scholar 

  41. Xue ZG, Song HL, Rogers JA et al (2020) Mechanically-guided structural designs in stretchable inorganic electronics. Adv Mater 32(15):32. https://doi.org/10.1002/adma.201902254

    Article  Google Scholar 

  42. Zhu YZ, Joralmon D, Shan WT et al (2021) 3D printing biomimetic materials and structures for biomedical applications. Bio-Des Manuf 4(2):405–428. https://doi.org/10.1007/s42242-020-00117-0

    Article  Google Scholar 

  43. Safshekan F, Tafazzoli-Shadpour M, Abdouss M et al (2020) Finite element simulation of human trachea: normal vs. surgically treated and scaffold implanted cases. Int J Solids Struct 190:35–46. https://doi.org/10.1016/j.ijsolstr.2019.10.021

    Article  Google Scholar 

  44. Wang YE, Guo Y, Wei QH et al (2021) Current researches on design and manufacture of biopolymer-based osteochondral biomimetic scaffolds. Bio-Des Manuf 4(3):541–567. https://doi.org/10.1007/s42242-020-00119-y

    Article  Google Scholar 

  45. Ahn CB, Son KH, Yu YS et al (2019) Development of a flexible 3D printed scaffold with a cell-adhesive surface for artificial trachea. Biomed Mater 14(5):9. https://doi.org/10.1088/1748-605X/ab2a6c

    Article  Google Scholar 

  46. She YL, Fan ZW, Wang L et al (2021) 3D printed biomimetic pcl scaffold as framework interspersed with collagen for long segment tracheal replacement. Front Cell Dev Biol 9:14. https://doi.org/10.3389/fcell.2021.629796

    Article  Google Scholar 

  47. Askari M, Hutchins DA, Thomas PJ et al (2020) Additive manufacturing of metamaterials: A review. Addit Manuf 36:101562. https://doi.org/10.1016/j.addma.2020.101562

    Article  Google Scholar 

  48. Lin M, Firoozi N, Tsai CT et al (2019) 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies. Acta Biomater 83:119–129. https://doi.org/10.1016/j.actbio.2018.10.035

    Article  Google Scholar 

  49. Hamzehei R, Rezaei S, Kadkhodapour J et al (2020) 2D triangular anti-trichiral structures and auxetic stents with symmetric shrinkage behavior and high energy absorption. Mech Mater 142:10. https://doi.org/10.1016/j.mechmat.2019.103291

    Article  Google Scholar 

Download references

Acknowledgements

This article was supported by the National Key Research and Development Program of China (No. 2020YFC1107103), the National Natural Science Foundation of China (No. 51821093), and the Research Project of Public Welfare Technology Application of Zhejiang Province, China (No. LGF21H010006).

Author information

Authors and Affiliations

Authors

Contributions

JPL contributed to conceptualization, formal analysis, data curation, investigation, methodology, visualization and writing—original draft; XHY and JY contributed to conceptualization, supervision, validation, and writing—review & editing; ZWW and CCL helped in formal analysis and methodology; JZF and YH helped in resources, supervision, validation and project administration.

Corresponding authors

Correspondence to Xinhua Yao or Jian Ye.

Ethics declarations

Conflict of interest

All authors declare that there is no financial or commercial conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 12897 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yao, X., Wang, Z. et al. A novel wavy non-uniform ligament chiral stent with J-shaped stress–strain behavior to mimic the native trachea. Bio-des. Manuf. 4, 851–866 (2021). https://doi.org/10.1007/s42242-021-00159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-021-00159-y

Keywords

Navigation