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Abstract

Limitations of monolayer culture conditions have motivated scientists to explore new models that can recapitulate the archi-
tecture and function of human organs more accurately. Recent advances in the improvement of protocols have resulted in
establishing three-dimensional (3D) organ-like architectures called ‘organoids’ that can display the characteristics of their
corresponding real organs, including morphological features, functional activities, and personalized responses to specific
pathogens. We discuss different organoid-based 3D models herein, which are classified based on their original germinal layer.
Studies of organoids simulating the complexity of real tissues could provide novel platforms and opportunities for generating
practical knowledge along with preclinical studies, including drug screening, toxicology, and molecular pathophysiology of
diseases. This paper also outlines the key challenges, advantages, and prospects of current organoid systems.
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Introduction

Shedding light on the cellular and molecular pathophysi-
ology mechanisms of diseases is a principal goal for sci-
entists. Over the years, existing knowledge of the human
system and its dynamics have developed from the exami-
nation of post-mortem and pathological specimens to
animal models [1]. The latter add significant value while
presenting many challenges, including high time and mon-
etary costs, ethical concerns, and most importantly, they
fail to accurately predict the clinical efficacy of therapeu-
tics due to different pharmacokinetics, pharmacodynam-
ics, and interspecific genetic or metabolic variations [1, 2]
(Fig. 1). In addition, few human tissues are accessible for

2D cell cultures

- Vascularization: Limited
- Biobanking: Feasible

- High-throughput screening:

Applicable Applicable

- Modeling organogenesis: Not
Applicable

- Modeling patient-derived
organoids: Not Applicable

- Manipulation: Feasible

- Modeling for human physiology:

Limited Feasible

- Heterogeneity: Low, more
homogeneous configuration

- Reproducibility: High

- Modeling cellular/mechanical
communications: Feasible

Fig. 1 Advantages and limitations of 2D cell culture systems, 3D
organoid cultures, and the establishing of organoids in animal mod-
els. Organoids have enormous advantages compared to 2D cultures

@ Springer

3D organoid cultures

- Vascularization: Limited
- Biobanking: Feasible

- High-throughput screening:

- Modeling patient-derived
organoids: Feasible

- Manipulation: Feasible

- Modeling for human physiology:
- Heterogeneity: High

- Reproducibility: Low

- Modeling cellular/mechanical
communications: Feasible

investigation and analysis. As a result, many gaps need to
be addressed for a detailed knowledge of human develop-
ment and disease-related events.

A major recent advancement in 3D culture was the gen-
eration of 3D structures called ‘organoids’ [3]. The term
‘organoid’ was first used in the literature in 1946 when
Smith and Cochrane described a cystic teratoma [4]. Now-
adays, organoids are defined as systems originating from
either pluripotent stem cells (ESCs or iPSCs) or neonatal/
adult stem/progenitor cells, both with the potential to self-
organize into in vivo-like organ complexes and the ability to
recapitulate essential organ functions (Fig. 2) [1, 3, 5]. In the
process of organoid generation, extracellular matrix (ECM)
and medium signaling are essential for facilitating cell-cell
interactions—these are integral to self-assembly and cellular

Animal models

- Vascularization: Feasible, along
with immune system activity

- Biobanking: Feasible, only at
the cellular level

- High-throughput screening:
Not Applicable

- Modeling organogenesis:Suitable, - Modeling organogenesis: Not
especially for the generation of iso-
genic tissues and transplantation

suitable, due to confounding by
complex tissue environment

- Modeling patient-derived
organoids: Poorly feasible

- Manipulation: Limited, due to
experimental variabilities

- Modeling for human physiology:
Feasible

- Heterogeneity: High, esp. due
to species differences

- Reproducibility: Low

- Modeling cellular/mechanical
communications: Limited

and animal models, which make them a practical platform for differ-
ent experiments, modeling diseases, and high-throughput screening
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Fig. 2 Different protocols to generate tissue-specific and pluripotent
stem-cell-derived organoids. Organoids can be generated from tissue-
specific sample biopsies from a variety of organs, or from pluripo-
tent stem cells. The figure illustrates different protocols to induce the

differentiation [1, 6]. Consequently, by acting as accurate
human disease models, organoids have paved the way for
discoveries in human biology and have advanced medical
care by providing a platform for drug screening (Fig. 3).
In drug discovery processes, in order to obtain a single
approved drug, tens of thousands of the new compounds
need to pass several screening stages before being consid-
ered as Investigational New Drugs (INDs) for further evalu-
ation and subsequent clinical trials. This process is lengthy
and expensive, though most (about 80%) approved agents
still fail during clinical trials [7]. Thus, organoids can sig-
nificantly facilitate drug testing. To date, organoid models of
microcephaly, cystic fibrosis, ulcerative colitis, and Crohn’s
disease have already helped develop new pharmaceuticals
for these diseases [8, 9]. Besides, organoids can also act as
cancer models; however, it is important to note that primary
cancer-derived organoids face unique challenges, including
the lack of tissue structure and extensive heterogeneity with
no tumor microenvironment, and consequently the inability
to model localized hypoxia and the input from surrounding
immune cells [10] (Box 1).

This review highlights diseases of different germ layers
modeled using distinct organoid structures, including the
neuronal, hepatic, and renal tissue (Fig. 3). In addition, due
to the current COVID-19 pandemic, we have also included
descriptions of organoid models that simulate tissue-specific
responses to COVID-19 (Box 2).

maturation and formation of organoids, such as matrix embedding,
suspension, using U bottom cell culture plates, and so on. Abbrevia-
tions: ASPC, adult stem or progenitor cell; PSC, pluripotent stem cell

Ectodermal-derived disease model
organoids

Organoids of brain disease models

The in vitro modeling of human brain development was per-
formed using embryoid body (EB) cultures. In 2001, human
ESCs were used to generate EBs that could form 2D rosette-
like structures after an initial phase of 3D culture [45]. This
revealed that EBs could generate clusters of neuroepithe-
lial cells that self-organized into neural tube-like structures
[46]. The rosette formations were generated by extending the
time spent in the initial 3D culture phase before plating on
precoated dishes; this technique generated complex strati-
fied structures reminiscent of the developing cerebral cor-
tex [46-52]. Building on these findings, an in vitro system
for the generation of brain-like organoids was developed in
2013 to generate a broader brain region identity termed ‘cer-
ebral organoids’ [53]. Subsequently, various brain organoid
protocols have been introduced over the past few years, all
describing different techniques to generate brain organoids
that closely mimic the brain as an organ.

Currently, brain organoid models open up the prospect of
answering many questions regarding different brain diseases
and developmental disorders (Table 1). A study reported
using iPSC-derived organoids from patient with micro-
cephaly, a genetic condition caused by a mutation in a gene
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Fig.3 Summary of generated human organoid disease models

Box 1 Cancer organoid models

( ;
Inner ear organoid

Congenital and early-onset hearing
\ loss (mutation in TMPRSS3) )

(Skin organoid

Systemic sclerosis
Inflammatory skin diseases
\Atopic eczema

(Heart organoid

Barth syndrome

Dilated cardiomyopathy
Hypertrophic cardiomyopathy
Acute myocardial infarction

| Duchenne muscular dystrophy

Lung organoid

Influenza

Parainfluenza

Idiopathic pulmonary fibrosis
Cryptosporidium

Respiratory syncytial virus infection

“Ikidney organoid

‘ Polycystic kidney disease
Congenital nephrotic syndrome

Gastric organoid

H. pylori infection

Intestinal & colon organoid

> Host-microbe interactions
Cystic fibrosis
Hirschsprung disease
Coronavirus disease 2019

Human organoids are crucial players in the pursuit of advancement in cancer biology studies, to improve preclinical studies and to facilitate
their translation into effective therapies. Previously, human cancer cell lines, mouse cancer models or patient-derived xenografts (PDXs)
consisted the main platform for cancer research and drug discovery [11, 12]. Nowadays, with the advent of adult stem cell-derived
organoid technology, cancer tissues have been cultured in vitro as cancer organoids, also known as tumouroids or canceroids. As such,
cancer organoids can be derived directly from the tumor tissue of any individual, providing an attractive ex vivo platform to study human
cancer biology [11-13]. Cancer organoid models are valuable for recapitulating the human tumor biology, as well as the interactions
between neoplastic cells with extracellular matrix, immune cells and tumor vasculature. Additionally, cancer cells can generally grow
independently of the niche factors when compared with non-cancerous organoids [11]. Patient samples from colon [14-18], esophageal
[19], stomach [20-22], brain [23, 24], prostate [13], pancreas [25-27], liver [28], breast [29], bladder [30], endometrial [31] and lung

[32, 33] cancers have been cultured in cancer organoid models. In a recent analysis of drug responses in patients, organoid cultures were

matched with the patient response up to 90% [34]. Remarkably, Hans Clevers and colleagues recently established tumor organoid cultures
from colorectal cancer and called them ’living organoid biobanks’ [14]. These living biobanks of canceroids from gastrointestinal cancers
recapitulated the patient response to anti-cancer agents in clinical trials [34, 35]. Altogether, an increasing number of patient-derived can-
ceroids have provided unprecedented access to cancer medicine. In this regard, patient-derived organoid models of the future may provide

an in vitro screening platform to predict the best therapeutic option for each individual, to model genetic cancer progression in a better
physiological platform, and to study a tumor niche that represents the different grades of tumors

encoding the CDK5 regulatory subunit-associated protein
2 (CDK5RAP2). Microcephalic patients have a reduced
brain size, and this condition is challenging to model using
mice [53]. Another study described the use of human Seckel
iPSC-derived organoids developed to model Seckel syn-
drome, which is caused by a mutation in the centrosomal
P4.1-associated protein (CPAP) leading to a reduction in the

@ Springer

human brain size as well as reduced pre- and postnatal body
size. Organoids derived from patient iPSCs with mutated
CPAP failed to provide a scaffold for the cilium disassembly
complex (CDC) and thus led to premature cellular differenti-
ation in a study, which demonstrated many unknown features
of neural progenitor cell differentiation that are important
in the mechanism of microcephaly development [54]. To
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Box 2 Current organoid models for COVID-19

IDue to the inadequate knowledge of the biology of SARS-coronavirus 2 (SARS-CoV-2) that causes the current COVID-19 pandemic, the
therapeutic options are limited. Therefore, it is of great importance to construct new disease models to study the biology of SARS-CoV-2
and provide a practical platform for drug screening studies. In one study, human recombinant soluble angiotensin-converting enzyme 2
(hrsACE2) reduced the growth rate of SARS-CoV-2. It was also shown that SARS-CoV-2 can directly infect bioengineered human blood
vessel organoids and human kidney organoids, which can be inhibited by hrsACE2. These results demonstrated that hrsACE2 can signifi-
cantly block the early stages of SARS-CoV-2 infection [36-38] and highlighted its potentially enormous clinical application. Research-
ers established a human liver ductal organoid to model hepatic infection by SARS-CoV-2, and thus validated viral-induced damage of
cholangiocytes ex vivo at the cellular and molecular levels. It was demonstrated that viral infection damages the barrier and bile acid
transporting functions of cholangiocytes due to dysregulation of the genes directly involved in tight junction formation and development,
as well as bile acid transportation. Thus, liver damage in patients with COVID-19 might be a direct result of cholangiocyte injury and bile
acid accumulation [39]. Respiratory symptoms are typical in COVID-19 patients, however, 25% of such patients present gastrointestinal
signs/symptoms including anorexia, diarrhea, vomiting, and abdominal pain [40]. ACE2 acts as a SARS-CoV-2 receptor for the viral S
protein, which is expressed in a variety of human tissues, including the testis, kidneys, gut, and lungs [41, 42]. It is mainly expressed in
the alveolar epithelium type II cells and ciliated cells of lungs, but also has high expression within the brush border of intestinal entero-
cytes [43]. Recently, a colon model was generated using human pluripotent stem cell-derived colonic organoids (hPSC-COs) to explore
the permissiveness of colonic cell types to SARS-CoV-2 infection. Results indicated that, although ACE2 is expressed in all of the hESC-
derived colonic cell types, its expression is significantly higher in enterocytes. The COs have also been used in high-throughput drug
screening studies of 1280 FDA-approved drugs in viral infection treatments. Remarkably, results indicated that two drugs (mycophenolic
acid and quinacrine dihydrochloride) were able to block viral infection in the gut [40]. Finally, human small intestinal organoids have also

been generated and shown to support SARS-CoV-2 replication within infected enterocytes [44]

this end, Li et al. reported that cortical organoids gener-
ated from patient-specific iPSCs with the dysfunction of
Aspm gene, a further genetic cause of primary microcephaly
in humans, were unable to form normal cortical lamination
[55]. Finally, the authors of another study demonstrated that
the CRISPR/Cas9 deletion of PTEN, a gene associated with
human macrocephaly, resulted in the proliferation of neu-
ronal stem cells, and cerebral organoids were created that
were more folded and had larger overall mass than normal
cerebral organoids [56].

Human brain organoid models of early brain development
are invaluable for the study of psychiatric conditions. In
2015, iPSC lines from four patients with severe autism spec-
trum disorder (ASD) were produced, and the subsequently
grown patient-derived organoids exhibited more inhibitory
GABAergic neurons due to an upregulation of the forkhead
box G1 (FoxG1) gene [57]. Furthermore, chromodomain
helicase DNA-binding protein 8 (CHDS) is a commonly
mutated gene in ASD; CHD8'~ cerebral organoids were
generated by Wang et al. using CRISPR-Cas9 technology.
The authors established that CHDS regulates the expression
of other genes implicated in ASD, including the downstream
signaling molecule associated with DLX6-AS1, which is
a long non-coding antisense RNA. DLX6-ASI1 critically
regulates GABAergic interneuron development and is likely
to prove important in therapeutics approaches [58]. The
‘disrupted-in-schizophrenia 1’ gene (DISC1) interacts with
other proteins to influence human brain development, and
its mutations are related to numerous psychiatric disorders,
such as schizophrenia, bipolar disorder, and autism spec-
trum disorders. Disrupting the formation of DISC1/Ndell
complex resulted in cell-cycle deficits in radial glial cells
within human forebrain organoids, and the same disruption

was observed in organoids derived from iPSCs of schizo-
phrenic patients [59]. Rett syndrome (RTT), another neu-
rodevelopmental disorder, is caused by mutations in the
methyl-CpG-binding protein 2 (MECP2) gene, which is a
gene that influences miRNA expression. The MECP2 gene
has also been linked to neuropsychiatric disorders including
ASD. Patient-derived cerebral organoids from Rett patients
demonstrate the effects of MeCP2 deficiency on human neu-
rogenesis and neuronal differentiation and were used to vali-
date the involvement of a novel miRNA-mediated pathway
in ASD [60]. Sandhoff disease, a lysosomal storage disorder,
which is also known as GM2 gangliosidosis, was modeled
in cerebral-specific organoids using iPSCs derived from an
infant carrier of this mutation. The diseased organoids had
enlarged size with increased cellular proliferation and dis-
played accumulated GM2 ganglioside, supporting the idea
that GM2 ganglioside accumulation alters early neurodevel-
opmental processes with downstream postnatal effects [61].

Brain organoid technology has led to the discovery of
many human brain-specific phenotypes. Two papers have
used brain organoids to model a severe genetic condition
named Miller—Dieker syndrome (MDS) associated with
lissencephaly (‘smooth brain’). Mice are naturally lissen-
cephalic and cannot be used to model this defect [62, 63];
therefore, human organoids have enormous potential in elu-
cidating the pathophysiology of this condition.

Zika virus (ZIKV) infection is yet another cause of con-
genital microcephaly. ZIKV-infected human brain organoids
demonstrate delay in the cell cycle progression of neural
progenitor cells, leading to cell death and the smaller size of
infected organoids, thus mimicking microcephaly [64—66].
The innate immune receptor ‘Toll-like receptor 3’ (TLR3)
was found to be upregulated after ZIKV infection, which

@ Springer
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led to alterations in gene expression patterns and the dis-
ruption of physiological neurogenesis. Interestingly, the
inhibition of TLR3 improved the pathological phenotype of
ZIKV-infected human brain organoids [67]. Research using
a model of the developing brain based on embryonic stem
cell-derived brain organoids indicates that prenatal ZIKV
infection may alter the DNA methylation pattern in the entire
genome of neuronal cells, resulting in brain diseases later in
life [68]. Zhou et al. indicated that hippeastrine hydrobro-
mide (HH) improved cellular growth and differentiation in
ZIKV-infected human fetal-like forebrain organoids [69].
To model the effects of ZIKV, Watanabe et al. described
brain organoids that were able to develop cortical and basal
ganglia structures similar to the human fetal brain and iden-
tified new potential receptors for ZIKV entrance to neural
progenitors [70]. Sacramento et al. showed the potential of
sofosbuvir, an anti-hepatitis C virus (HCV) drug, to block
ZIKV replication in hepatoma cells, neuroblastoma cells,
neural stem cells, and brain organoids [71]. By performing
a drug repurposing screening of about 6000 compounds,
Xu et al. identified two classes of effective compounds
(neuroprotective and antiviral) that could be used in com-
bination to protect human neural progenitors and astrocytes
from ZIKV-induced cell death [72]. Li et al. highlighted
the role of cholesterol-25-hydroxylase (CH25H) as a natu-
ral antiviral agent during ZIKV infection, in that it reduced
ZIKV-mediated tissue damage in human cortical organoids
[73]. Overall, these Zika-infected brain organoid models
were applied successfully to test the efficacy of different
treatment strategies for Zika virus infection. However, the
apparent contradiction in findings suggests that organoid
models require further development and should be used in
combination with other models to improve disease modeling
and drug discovery [74-78].

Due to the immaturity of neurons derived in vitro, it
remains unclear how much knowledge on neurodegenera-
tive diseases may be acquired from human iPSC-derived
organoid models. The first study that used human brain orga-
noids to investigate Alzheimer’s disease (AD), published in
2016, developed a scaffold-free culture method to generate
brain organoids derived from multiple patients with famil-
ial AD (FAD). These FAD-generated organoids reproduced
numerous AD-like pathologies, such as amyloid aggrega-
tion, hyperphosphorylated tau protein accumulation, and
endosome abnormalities. Furthermore, they showed that
the patient-derived organoids treated with - and y-secretase
inhibitors exhibited significantly reduced amyloid formation
and tau pathology [79]. To validate the role of p25/Cdk5
in tauopathy, a cerebral organoid model was developed
from isogenic iPSCs and was used to demonstrate that the
blockade of p25 mediates tau-associated pathology and the
increased expression of synaptophysin [80]. A sophisticated
AD model was generated from human iPSCs derived from

@ Springer

AD-affected patients with Down syndrome. Cells within this
model exhibited A accumulation, tau aggregates, and cel-
lular apoptosis, all hallmark features of AD [81]. Park et al.
presented a new 3D human AD tri-culture of neurons, astro-
cytes, and microglia within a microfluidic system, which
was able to model important features of AD, including A
aggregation, phosphorylated tau accumulation and neuro-
inflammatory activity, as well as axonal cleavage resulting
from neurotoxic activities. This study has facilitated the
understanding of neural-glial interactions and AD drug dis-
covery [82].

Parkinson’s disease (PD) is another common neurological
disorder; in one study, midbrain organoids were developed
from iPSCs exhibiting the Parkinson’s disease-associated
LRRK?2 G2019S mutation. These organoids recapitulated
the pathological hallmarks of LRRK2-associated spo-
radic PD and offered great potential for screening targeted
therapies for patients with this disease [83]. In a separate
study, midbrain organoids derived from PD patients car-
rying the LRRK2-G2019S mutation exhibited a reduced
number and complexity of midbrain dopaminergic neurons
and increased expression of FOXA?2 (required for midbrain
dopaminergic neuron generation), when compared to the
control organoids [84]. Recently, an organoid model of idi-
opathic PD was developed from the iPSCs of patients with
idiopathic PD. Compared with their healthy counterparts,
the created mature and multicellular organoid-like structures
displayed significant differences in the expression levels
of neuronal markers, including LIM homeobox transcrip-
tion factor-alpha and tyrosine hydroxylase expression [85].
Mature midbrain-like organoids (MOs) with a homogene-
ous distribution of neurons have also been generated. These
MOs contain multiple neuronal subtypes, including midbrain
dopaminergic neurons. Interestingly, midbrain astrocytes
undergo massive cell death in the generated organoids upon
treatment with astrocyte-mediated dopaminergic neurotoxin
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an
agent known to cause PD [86].

The results of the above studies show that human brain
organoids might provide an efficient drug discovery platform
for brain-related diseases.

Organoids of inner ear disease models

During embryonic development, the inner ear arises from
a thickening of the surface ectoderm adjacent to the hind-
brain. The simple thickened epithelium deepens to form an
otic vesicle. Otic vesicles develop into the mature inner ear
structure in response to specific morphogenetic events and
inductive interactions with surrounding tissues [87, 88]. The
first inner ear organoid was generated in 2013 [89], and the
first report of an inner ear disease organoid model was pub-
lished in 2019 [90] (Table 1). The type II transmembrane
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protease 3 (TMPRSS3) is required for proper mammalian
hearing, and mutations in TMPRSS3 cause congenital and
early-onset hearing loss in humans. The exact mechanism of
this process is unknown; however, mouse stem cell-derived
inner ear organoids recently used to investigate the underly-
ing mechanisms of TMPRSS3-related hearing loss or deaf-
ness revealed that TMPRSS3 is a crucial component for hair
cell homeostasis, and its mutations induce hair cell apoptosis
and degeneration [90].

Organoids of retinal disease models

Retinal organoids can recapitulate the spatiotemporal dif-
ferentiation of the retina and have proven as effective models
for understanding retinal development and diseases, as well
as drug screening tools [91]. Retinal tissue 3D organoids
were first generated in their entirety from mouse cells in
2011 and from human embryonic stem cells in 2012 [92,
93] (Table 1). Several such organoids have been described
to date. Leber Congenital Amaurosis (LCA) is a disease of
the retina that leads to hereditary blindness. Parfitt et al.
generated LCA-retinal organoid models from iPSCs exhib-
iting a common mutation in the cilia-related gene CEP290.
The grown organoid cells were able to form an optic cup
structure but exhibited decreased ciliation and reduced
cilium length. Normal cilium length and ciliary trafficking
returned after treatment to restore the expression of full-
length CEP290 [94]. X-linked retinitis pigmentosa (XLRP)
is a rare genetic eye disease caused by mutations to the Reti-
nitis Pigmentosa GTPase Regulator (RPGR). In one study,
significant defects in the photoreceptor were observed in
patient-specific organoid models generated from three reti-
nitis pigmentosa patients harboring RPGR mutations. How-
ever, the CRISPR-Cas9 correction of the RPGR mutation
rescued both photoreceptor structure and electrophysiologi-
cal properties [95]. In a different study, retinal organoids
generated from a patient carrying the Retinitis Pigmentosa 2
(RP2) nonsense mutation revealed that the loss of Kif7 at the
cilia tips in iPSC-derived 3D optic cup photoreceptors was
rescued by translational read-through inducing drugs, such
as PTC124 [96]. Late-onset RP is more challenging to model
than early-onset RP, while one study successfully developed
retinal organoids from late-onset RP proband-derived iPSCs
harboring the PDE6B mutation. These organoids were able
to recapitulate the late-onset disease phenotype and thus
provided new insights into the PDE6B-related mechanism
of RP [97].

Organoids of skin disease models
The human skin has a surface area of almost 2 m? in adults

and acts as an important physical barrier protecting the inter-
nal environment from outside pathogens. In vitro human

skin organoid models are expected to be useful for studying
the mechanisms of hair follicle induction, inhibition, and
modeling (Table 1). One study generated an organoid model
from systemic sclerosis (SSc)-derived iPSCs by inducing
their differentiation into keratinocytes and fibroblasts. SSc
is a rare autoimmune disease characterized by skin fibro-
sis, featuring the excessive production and accumulation of
collagen in the skin. Patient-derived skin organoids exhibit
the classic characteristics of SSc skin cells, which high-
lights their importance as drug screening tools [98]. Atopic
eczema (also known as ‘atopic dermatitis’ or ‘eczema’) is an
itchy inflammatory skin disorder involving mutations to the
gene encoding filaggrin (FLG). Recently, organoids derived
from primary human keratinocytes with and without siRNA-
mediated knockdown of FLG have been used to elucidate
the mechanisms by which FLG haplo-insufficiency leads to
atopic inflammation [99].

Mesodermal-derived disease model
organoids

Organoids of cardiac disease models

Drug development for cardiovascular diseases is challenged
by a limited supply of tissue samples and appropriate in vitro
culture conditions. Meanwhile, 3D cardiac organoids can
help create new physiological models of cardiovascular dis-
eases (Table 2).

Barth syndrome (BTHS) is a mitochondrial disorder
caused by the mutation of Tafazzin (TAZ). Patient-derived
iPSCs and a microchip were used to create BTHS orga-
noid models that replicated the pathophysiology of BTHS
cardiomyopathy and helped derive a new therapeutic strat-
egy for BTHS [100]. Dilated cardiomyopathy (DCM) is a
major cause of heart failure and premature death and is
characterized by progressive left ventricular dilation and
systolic dysfunction. The most common genetic causes of
DCM are mutations resulting in the truncation of the sar-
comere protein titin (TTNtv). Cardiac organoids derived
from titin-mutated iPSCs have highlighted how the inad-
equate generation of sarcomeres impaired tissue responses
to mechanical and p-adrenergic stress, likely causing DCM
[101]. Hypertrophic cardiomyopathy (HCM) leads to sud-
den cardiac death. The first 3D human engineered car-
diac tissue model for HCM was created using cells from
a patient with cardio-facio-cutaneous syndrome (CFCS),
a syndrome that is characterized by genetic mutations to
any of MEK1 or MEK2 or BRAF genes. A 3D in vitro
disease model was constructed from BRAF-mutant cells
using a combination of tissue engineering and iPSC tech-
nology, which was able to mimic the key features of HCM
associated with CFCS. This new in vitro model has the
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Table 2 Mesoderm-derived organoids for modeling various diseases

Tissue/organ Disease Cell source Outcomes and achievements Matrix Ref

Cardiac Barth syndrome iPSC Organoids well replicated the patho- None [100]
physiology of Barth syndrome
cardiomyopathy. The model offered
insights into the pathogenesis of
Barth syndrome and opened up a
new treatment strategy

Dilated cardiomyopathy The engineered model showed sar- Collagen solution [113]
comere insufficiency and impaired
responses to mechanical and
p-adrenergic stress. This specifies
that titin mutations through disrupt-
ing the linkages between sarcom-
erogenesis and adaptive remodeling
cause dilated cardiomyopathy
Hypertrophic cardiomyopathy The organoid was able to mimic key Collagen-Matrigel mixture [102]
features of hypertrophic cardio-
myopathy associated with cardio-
facio-cutaneous syndrome. This 3D
microtissue proposes a model for
studying intrinsic mechanisms and
for therapeutic screening

The model represented the AMP- Collagen-Matrigel solution [103]
activated protein kinase function
and the mechanism of PRKAG2
cardiomyopathy. The results offered
connections between metabolic
sensing, myocyte survival, and TGFf
signaling
Acute myocardial infarction ESC After triggering cryoinjury with dry Collagen solution [104]
ice, cardiac organoids displayed
tissue regeneration over a period of
2 weeks. This study proposed the
regenerative ability of immature
human heart tissue as an intrinsic
capacity
Duchenne muscular dystrophy iPSC Restoring proper contractile function ~ Collagen solution [105]
was observed in Duchenne muscular
dystrophy-engineered heart muscle
organoids. By including genome
editing tools, this model offered a
powerful tool for eliminating genetic
etiology and correcting muscular
abnormalities

Kidney Polycystic kidney disease iPSC The model recapitulated the glomeru-  Matrigel sandwich [106]
lopathies involved in the podocyte
epithelium injury, and proved as a
reproducible and versatile model in
regenerative medicine

The model highlighted the importance =~ GelTrex [114]
of podocalyxin in microvillus assem-
bly, and provided a powerful tool for
studying human kidney regeneration

PSCs A human cellular system was estab- Matrigel embedding [108]
lished by combining polycystic kid-
ney disease organoids with physical
components. This approach provided
a model of polycystic kidney disease

@ Springer
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Table 2 (continued)

Tissue/organ Disease

Cell source Outcomes and achievements

Matrix Ref

Autosomal recessive polycystic kidney
disease

Congenital nephrotic syndrome

Nephronophthisis-related ciliopathy
(NPHP-RC)

Coronavirus disease 2019

iPSC

hESC

Patient-derived hiPSC-mutant orga-
noids showed cystic phenotype,
which could be effectively prevented
by gene correction or drug treatment.
This finding offered new avenues for
studying kidney development and
drug discovery

This organoid glomeruli model exhib-
ited lower expression of PODOCIN
and NEPHRIN, and established an
accessible approach for screening the
podocyte toxicity

The nephrotic syndrome was recon-
structed using iPSC-derived kidney
organoids. This new approach
revealed the initial phase of podocyte
abnormalities

The tubular epithelia of proband-
derived organoids featured shortened
and club-shaped primary cilia. This
model established the common
pathogenic mechanisms for this rare
heterogenetic disease

Clinical grade hrsACE2 reduced
SARS-CoV-2 recovery of Vero cells
by a factor of 1000-5000; an equiva-
lent mouse rsACE2 had no effect

None

None

None

Matrigel suspension

Vitronectin

[110]

[109]

[111]

[112]

[115]

potential to screen for new therapeutic approaches to treat
this and related heart conditions [102]. Missense muta-
tions in the regulatory subunit PRKAG?2 activate AMP-
activated protein kinase (AMPK), and this process mimics
some features of HCM. To model this type of cardiomyo-
pathy, myocytes differentiated from patient-derived iPSCs
were combined into 3D cardiac micro-tissues. The model
highlighted essential connections between metabolism and
transcript regulation with a better outlook for understand-
ing the AMPK function and the mechanism of PRKAG2
cardiomyopathy [103]. In acute myocardial infarction
(AMI), cardiomyocytes die due to ischemia. The process
of AMI was modeled using human cardiac-derived orga-
noids exposed to local tissue damage using cryoinjury by
dry ice. Interestingly, the organoids displayed tissue regen-
eration over a period of 2 weeks after acute injury [104].
Duchenne muscular dystrophy (DMD) is associated with
the lethal degeneration of cardiac and skeletal muscle. To
explore the therapeutic value of gene editing to bypass
the metabolic abnormalities in DMD cardiac contractility,
Long et al. generated 3D DMD-engineered heart muscles
(DMD-EHM) from human iPSCs. The authors used the
gene editing of heart muscle cells to repair the contractile
dysfunction in DMD-EHM organoids [105].

These achievements highlight the value of organoid tech-
nologies and the means by which developments in human

cardiac disease organoid models may facilitate cardiac drug
discovery.

Organoids of kidney disease models

Recent work has incorporated genome editing tools into
patient iPSC-derived kidney organoids, thus providing a
unique opportunity to study human kidney diseases with a
precise control of the genetic background (Table 2). Freed-
man et al. described a human model for polycystic kidney
disease (PKD) where the knockout of polycystic kidney
disease-related genes PKD1 or PKD2 by CRISPR/Cas9
led to cysts forming in kidney tubules. The authors further
showed that podocalyxin gene (PODXL)-defective kidney
organoids have junctional organization defects in podocyte-
like cells, and hiPSC-derived podocyte cells might have the
potential to recapitulate the glomerulopathies involved in the
podocyte epithelium injury [106]. In a follow-up study, loss-
of-function mutations in the human PODXL gene (PODXL
knockout hiPSC-derived podocytes) were shown to cause
defects in microvillus assembly, leading to increased space
between podocytes and in turn the formation of porous junc-
tions, highlighting the importance of podocalyxin in micro-
villus assembly [107]. By culturing mutant kidney organoids
in suspension culture, Freedman and colleagues established
an efficient model of PKD cystogenesis, in which the cysts of

@ Springer
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PKD patients were recapitulated. The PKD2—/— organoids
were defective in expressing of the polycystin-1 protein, and
the knockdown of polycystin-2 protein also decreased poly-
cystin-1 protein expression. These mutations altered orga-
noid ECM remodeling and thus emphasized the importance
of the ECM in maintaining tubular architecture and adhesion
forces for cystogenesis [108]. Hale et al. grew organoid glo-
meruli from a congenital nephrotic syndrome patient (orga-
noid-derived glomeruli, OrgGloms), which exhibited lower
expression levels of PODOCIN and NEPHRIN. These pro-
teins are uniquely expressed in the kidney and are involved
in the structure of filtration slits of podocytes and renal filtra-
tion barrier function, respectively. Thus, this organoid model
represents an accessible approach for modeling human podo-
cytopathies, screening podocyte toxicity, and exploring drug
efficacy [109]. Low et al. established an in vitro model from
autosomal recessive PKD patient-derived hiPSCs. Notably,
mutant organoids showed a cystic phenotype, a character-
istic PKD feature, which could be prevented by gene cor-
rection or drug treatment [110]. Mutations in the NPHS1
gene causes congenital nephrotic syndrome resulting in an
impaired slit diaphragm (SD) formation. The kidney orga-
noids generated from a patient with an NPHS1 missense
mutation were used to reveal the initial phase of podocyte
abnormalities [111]. Reprogramming and gene editing pro-
tocols were used to derive both proband-derived iPSCs and
isogenic gene-corrected iPSCs for generating kidney orga-
noids. The organoid generated from proband-derived iPSCs
presented a nephronophthisis-related ciliopathy (NPHP-RC),
and interestingly, the tubular epithelium of proband orga-
noids were shortened, club-shaped primary cilia [112].

Although the kidney has a complex structure and intricate
functions, new methods to model kidney disease using orga-
noids and in turn facilitate our understanding of pathobiol-
ogy and drug discovery are emerging.

Endoderm-derived disease model organoids
Organoids of lung disease models

The lung epithelium derived from the endodermal germ
layer undergoes a complex series of endoderm-mesoderm-
mediated signaling events to develop into the final arborized
network of conducting airways (bronchi, bronchioles) and
gas-exchanging units (alveoli). The alveolar surfaces are
lined by alveolar type 1 (AT1) and alveolar type 2 (AT2)
epithelial cells. The covering epithelium of airways and
alveoli faces several inflammatory conditions and progres-
sive diseases, including idiopathic pulmonary fibrosis (IPF),
bronchial asthma, chronic obstructive pulmonary disease,
and respiratory infections such as those by coronavirus and
influenza [116] (Table 3).

@ Springer

The first successful organoid model for lung epithelial
cells was developed by McQualter et al. using stem/pro-
genitor cells in the presence of fractionated primary mouse
lung stromal cells [117]. Wilkinson et al. generated an IPF
model using human iPSC-derived mesenchymal cell orga-
noids, which were treated with TGF-f to induce fibrosis
[118]. Strikoudis et al. developed ESC-derived organoids
using CRISPR/Cas9 to introduce frameshift mutations in
Hermansky-Pudlak syndrome (HPS) genes. The clinical fea-
tures of this syndrome were similar to IPF. Genome-wide
expression analysis revealed the upregulation of interleu-
kin-11 (IL-11) in the epithelial cells of HPS mutant fibrotic
organoids. Notably, IL-11 functioned as a fibrosis inducer
in wild-type (WT) organoids, while the IL-11 deletion pre-
vented fibrosis in HPS4—/—. These data suggest that IL-11
is a therapeutic target and a promising molecule to facilitate
fibrosis-associated lung disease modeling [119]. Using 3D
lung organoids from patients with IPF, Surolia et al. demon-
strated that the inhibition of vimentin intermediate filaments
(VimlIFs) decreased the invasiveness of IPF fibroblasts and
conferred protection against fibrosis in a murine model of
experimental lung injury [120].

Viral infections of the distal lung parenchyma can pro-
gress from pneumonia to acute respiratory distress syn-
drome. Recent developments in multicellular and physi-
ologically active organoid cultures derived from PSCs, as
well as stem cells isolated from biopsies, have opened up
horizons to better understand microbial pathogenesis and
host-microbe interactions [121]. Cryptosporidium, a proto-
zoan parasite, is a primary cause of diarrhea and a major
culprit of child mortality worldwide, though no relevant
experimental culture system to facilitate drug development
has yet been constructed. In a recent study, epithelial orga-
noids were established derived from the human small intes-
tine and lungs, and were infected with Cryptosporidium. The
results indicated that Cryptosporidium could replicate and
complete its entire life cycle within these organoids [122].
Infections with a different pathogen, the influenza virus, rep-
resent a major global public health threat. Zhou et al. devel-
oped long-term expanding human airway organoids (AO)
composed of four types of airway epithelial cells: ciliated,
goblet, club, and basal cells. These AOs exhibited physiolog-
ical phenotypes including beating cilia and elevated serine
protease levels crucial for the productive infection of human
influenza viruses [123]. One study established human stem
cell-derived airway organoids with similar morphological
characteristics to human airways, including mucus-secret-
ing goblet cells, club cells, and ciliated epithelial cells with
active ciliary beating and mucus movement over the epithe-
lial surface. These organoids served as a platform to com-
pare the viral replication capability, tissue tropism, as well
as cytokine and chemokine induction of avian influenza A
viruses isolated from humans (types Sh2/H7N9, H5N1/483,
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H5N6/39715, and HIN1pdm/415742). They were compara-
ble to human ex vivo bronchus cultures and could serve as
an alternative experimental model for studying virus tropism
and replication competence to assess the pandemic threats of
novel influenza viruses [134]. Porotto et al. demonstrated the
successful spread of human parainfluenza virus 3 (HPIV3)
in lung organoids derived from hPSCs by infecting AT2
cells in the organoids. Using this model, viral evolution
and pathogenesis could be simulated, and essential features
of human viral infection could be mimicked in these orga-
noids [125]. Respiratory syncytial virus (RSV) is the most
common cause of bronchiolitis and pneumonia in children
younger than 1 year of age in the United States [121]. Lung
bud organoids (LBO) generated from hPSCs were used to
model lung parenchyma in the second trimester of gestation
in human life. The LBOs were composed of mesoderm and
pulmonary endoderm cells that developed into branching
airways and early alveolar structures upon xenotransplanta-
tion or in a Matrigel 3D culture. The analysis of expression
and structural features showed that the branching structures
were similar to those observed in the second trimester of
human gestation. Two days after the infection of LBOs with
RSV, infected cells began to swell, detach, and shed into the
organoid lumen [126].

In summary, lung organoids represent state-of-the-art
platforms to model lung diseases by recapitulating the inter-
actions between host pulmonary cells, immune cells, the
ECM, and invading pathogens. Therefore, they consist pow-
erful tools for modeling human lung diseases, drug screen-
ing, and toxicity assays.

Organoids of liver disease models

Liver diseases are among the most common pathologies of
the digestive tract, occurring at increasing frequencies due
to alcohol abuse, obesity, viral infections, and the lack of
physical activity [127]. Fatty liver and viral hepatitis are
two common liver diseases leading to cirrhosis and ulti-
mately liver cancer. The liver is a complex metabolic and
detoxifying organ with a sophisticated inner microenviron-
ment; therefore, generating accurate models of the diseased
liver for exploring treatment options has been challenging
[128-130] (Table 3).

Liver fibrosis is characterized by excessive ECM depo-
sition, which leads to scarred tissue and eventually organ
failure. Hepatic stellate cells (HSCs), the major collagen-
producing cells of the liver, are the main cell types involved
in liver fibrosis following injury from metabolic, cholestatic,
viral, or toxic causes. When hepatocytes are damaged, a cas-
cade of events is triggered activating quiescent HSCs into
a myofibroblastic (activated) HSC state [131]. Leite et al.
developed a 3D co-culture of primary stellate cells and
the HepaRG cell line. Following repeated exposure to the

@ Springer

pro-fibrotic compounds for 14 days, including allyl alcohol
and methotrexate, hepatic organoids displayed fibrotic fea-
tures, such as HSC activation, collagen secretion, and ECM
deposition [132]. Another research consortium developed
a liver fibrosis model using highly reproducible iPSCs-
derived HSCs that remained quiescent when maintained as
3D spheroids with HepaRG, but became activated to secrete
pro-collagen in response to hepatocyte toxicity, thus reca-
pitulating in vivo human HSCs function [133].

Non-alcoholic fatty liver disease (NAFLD), a complex
condition characterized by steatosis, is multifactorial in eti-
ology with many identified environmental and genetic risk
factors. NAFLD patients may develop a more severe non-
alcoholic steatohepatitis (NASH) disease that can further
progress to liver fibrosis and cirrhosis [134]. Kruitwagen
et al. established a liver steatosis organoid model using adult
liver stem cells from mouse, human, dog, and cat [135].
When fatty acids were added to the culture media, the liver
stem cells absorbed the fat, leading to lipid accumulation.
The analysis of genes central to fat accumulation, including
SREBF1, CPT1A and PPARG, revealed that liver organoids
from dog and human cells exhibited the distinct regulation
of lipid metabolic pathways [135]. However, pro-fibrotic or
inflammatory cell types are absent in culture conditions, lim-
iting the ability to fully model liver diseases in vitro. Ouch
et al. used 11 pluripotent stem cell lines from healthy and
sick individuals to differentiate into multicellular human
liver organoids composed of hepatocyte-like cells, hepatic
stellate-like cells, and Kupffer-like cells. The organoids were
incubated with free fatty acids to induce steatosis and fibro-
sis [136], which led to the increased secretion of IL-6, TNF-
a, and IL-8 compared to untreated organoids. Moreover, the
authors used patient-derived iPSCs to create organoid mod-
els of Wolman disease, an inherited disorder, and established
that the organoids were capable of stipulating many of the
clinical disease features. These patient-derived organoids
were treated with FGF19, which increased the survival rate
of the cultured system and reduced lipid accumulation, ROS
production, and stiffening [136]. A recent organoid model
was developed by Pingitore et al., which is based on cells
homozygous for the PNPLA3 1148M sequence variant,
the most vital genetic determinant of NAFLD. Hepatocyte
(HepG2) and hepatic stellate (LX-2) cell lines were incu-
bated with free fatty acids, which resulted in fat accumula-
tion (steatosis) and collagen secretion (fibrosis). A physi-
ological phenotype was restored by incubating the organoids
with anti-steatotic and anti-fibrotic drugs, including liraglu-
tide and elafibranor [137].

Alcoholic liver diseases (ALDs) are among the major
causes of chronic liver illnesses affecting many people
worldwide, and leading to irreversible fibrosis and cirrho-
sis. Wang et al. developed liver organoids from hESCs co-
cultured with MSC, and treatment of the organoids with
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ethanol successfully induced numerous ALD-associated
pathophysiological changes, including oxidative stress, stea-
tosis, release of inflammatory mediators, and fibrosis [138].

Chronic viral hepatitis has a high incidence in the gen-
eral population; approximately 2 billion people are infected
with HBV worldwide, leading to significant morbidity and
mortality [139]. Several models have been developed for
HBV infection, but none display individualized genetic
backgrounds. Primary human hepatocytes (PHHs) are a
valuable model for HBV infection studies due to the high
expressions levels of NTCP, a receptor used by HBV to enter
hepatocytes [140]; PHHs, however, have limited supply and
are of variable quality [141]. A recent study revealed that
PHHs could be efficiently converted into hepatic progenitor-
like cells (HepLCs) by exploiting relevant developmental
signals, such as the NAD+-dependent deacetylase SIRT1
signaling. Organoids formed using HepLCs were found to
express NTCP, and molecular data suggested the presence
of HBV transcriptome in host cells upon transfection, cor-
roborating the use of this organoid model for exploring HPV
infection [142]. Liver organoids have also been generated
from a co-culture of iPSC-derived hepatocytes, mesenchy-
mal stem cells (MSCs), and human umbilical vein endothe-
lial cells (HUVEC). Interestingly, these liver organoids
expressed high levels of NTCP and maintained long-term
HBYV propagation, which was associated with hepatic dys-
function [143].

Inherited liver diseases are a group of metabolic and
genetic defects that occur due to the failure of enzyme/
transport proteins involved in specific metabolic pathways
in the liver [144]. Alpha-1 antitrypsin (A1AT) deficiency
is a hereditary condition that leads to chronic obstructive
pulmonary disease and chronic liver disease; the most com-
mon related disorders are Alagille syndrome and cystic
fibrosis (CF). Alagille syndrome is caused by mutations in
the Notch-signaling pathway, which results in partial to com-
plete biliary atresia.

Several studies developed patient-derived hepatocytes
and cholangiocytes to investigate and model genetic liver
diseases [136]. Huch et al. employed Lgr5 + liver stem
cells to construct organoid-based inherited disease mod-
els using biopsies from patients with A1AT deficiency or
Alagille syndrome. A1AT accumulated in these organoids
similarly to the original biopsies from patients. The results
also confirmed that the aggregation of A1AT protein blocks
elastase activity in A1AT organoids. Organoids derived from
an Alagille syndrome patient reproduced the structural duct
defects in the biliary tree of such patients, and this study
was the first model of human 3D system generated to study
the syndrome. Homologous recombination by CRISPR/

Cas9 was able to successfully repair the associated genetic
defect [145]. Guan et al. also developed an in vitro model
system to study the JAG1 mutation in Alagille syndrome
using iPSCs differentiated into 3D human hepatic organoids.
The generated organoids were composed of hepatocytes and
cholangiocytes organized into epithelial cells surrounding
the lumina of bile duct-like structures [146]. Ogawa et al.
recently developed a cystic fibrosis model and corrected
the CFTR (cystic fibrosis transmembrane conductance
regulator) misfolding and translocation in cell membranes
in patient-derived cholangiocyte organoids (hPSC-derived
cholangiocytes) by using inhibitors to decrease misfolding
and promote protein stabilization [147].

In conclusion, although the current differentiation proto-
cols in the development of hepatic organoids are not prom-
ising, it is essential to continue developing in vitro models
to study disease pathophysiology and to conduct preclini-
cal pharmaco-toxicological studies. This may be achieved
through the adaptation of media composition and the appli-
cation of ECM in organoid culture systems.

Organoids of pancreatic disease models

In general, the pancreas is a composite gland containing
an exocrine compartment of acinar and ductal cells and an
endocrine compartment of alpha, beta, gamma, epsilon, and
PP (pancreatic polypeptide) cells organized within ‘Langer-
hans islets’ [148]. Numerous diseases arising from defects
in the different compartments affect the pancreas, including
diabetes mellitus (DM), CF, and pancreatic adenocarcinoma
(Table 3). DM is the most frequent endocrine disease, which
is characterized by hyperglycemia, and is classically catego-
rized in 2 types: type 1 is an autoimmune disease in which
pancreatic  cells suffer damage, and type 2 is caused by
peripheral insulin resistance with insufficient insulin pro-
duction by pancreatic p cells [149]. Kim et al. developed
pancreatic islet-like clusters in vitro from hESCs and iPSCs
and demonstrated that cell cultures had glucose-responsive
insulin secretion. The hPSC-derived endocrine cells (ECs)
were shown to express pancreatic endocrine hormones (insu-
lin, somatostatin, and pancreatic polypeptide) and EC clus-
ters (ECCs) started insulin secretion in response to glucose
stimulus and potassium channel inhibition in vitro [150].
Cystic fibrosis is an inherited disorder that affects multi-
ple organs, including the pancreas, which is typically one of
the first affected organs; current knowledge about the patho-
physiological changes in the pancreas during CF is limited
[151]. Hohwieler et al. designed an approach to generate
pancreatic organoids from hPSCs that resembled acinar and
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ductal progeny. Following the same approach, iPSC-derived
organoids from CF patients were also generated, which
exhibited pancreatic cell specification and recapitulated the
key developmental events in vitro. The CFTR mutated pan-
creatic organoids proved to be a promising reliable platform
to reflect the patient phenotype in the functional swelling
assay, and thus are potential disease models for individual-
ized drug testing in pancreatic tissue [152].

Organoids of gastric disease models

Gastric diseases, including digestive ulcer disease and gas-
tric cancer, affect 10% of the world’s population. Most of
them are caused by chronic Helicobacter pylori infection
[153]. Gastric organoids (GO) can be derived from iPSCs
as well as adult stem cells from the corpus and antropyloric
epithelium [154] (Table 3). McKracken et al. established
hiPSC-GO cultures to identify the unique signaling mecha-
nisms that regulate early endoderm patterning and gastric
endocrine cell differentiation upstream to NEUROG3. More-
over, they modeled the pathophysiological response of the
gastric epithelium to H. pylori and showed that H. pylori
infection caused the rapid association of virulence factor
CagA with the c-Met receptor, leading to the activation of
signaling and stimulation of epithelial proliferation [155].
Bartfeld et al. also generated GOs from surgical samples of
human gastric corpus and provided sufficient evidence to
demonstrate that stem cells existed in adult human gastric
tissue. The organoids contained four different cells of the
stomach: pit mucous cells, gland mucous cells, chief cells,
and enteroendocrine cells. The GOs were used to analyze the
primary response of the human epithelium to H. pylori and
revealed that the infection induced robust NF-kB activation
[156]. Numerous studies have reported on the pathogenesis
of H. pylori infection using organoid models for validating
the established hypothesis, and discovering new mechanisms
[157-160].

Organoids of intestinal and colon disease models

In the intestine, several signaling pathways, including Wnt,
Notch, fibroblast growth factor (FGF)/epidermal growth fac-
tor (EGF), and bone morphogenetic protein (BMP)/Nodal
signaling, are essential during tissue development, adult
homeostasis, and repair following injury [161, 162]. The
luminal surface of the mammalian intestine consists of a sin-
gle layer of self-assembling epithelial cells. This epithelium
is divided into two regions: villus and crypt. The latter con-
tains intestinal stem cells with high expression of LGRS, a

@ Springer

protein involved in WNT signaling. Thus, LGRS + cells rep-
resent a reliable source to generate organoids [163]. Intes-
tinal organoids (IOs) have been developed from different
sources, including postnatal and adult epithelial cells [164],
adult intestinal stem cells (known as ’enteroids’) [165], and
PSC-derived organoids [166] (Table 3).

The apical part of the epithelial surface of the lumen is
the main attachment site for many intestinal pathogens. The
generation of 10s offers a tool for studying host-microbe
interactions [167]. The mechanisms of secretory diarrhea
caused by Vibrio cholerae have been studied using organoid
models from human duodenal and jejunal biopsies [168].
HiPSC-derived organoids have also been used to explore
the interactions between human intestinal epithelium and
enteric pathogens. Forbester et al. developed human intesti-
nal organoids (HIOs) from hiPSCs to investigate the interac-
tion of Salmonella enterica serovar Typhimurium with the
human intestinal epithelium; the authors demonstrated that,
after exposing organoids to the bacteria by microinjection
into the organoid lumen, the cytokine expression pattern was
changed and S. e. Typhimurium attacked the epithelial bar-
rier [169]. These results show that HIOs can recapitulate
human tissue responses to bacterial pathogens, including the
internalization of bacteria, upregulated secretion of mucus,
epithelial barrier interruption, and prompted pro-inflamma-
tory cytokine expression [170-172].

In other diseases such as CF, IOs generated from patient-
derived primary intestinal stem cells accurately recapitulated
the CF phenotype, and CRISPR/Cas9-mediated gene edit-
ing was able to repair the CFTR mutation and restore the
functional phenotypes [173]. Studies on intestinal fibrosis
modeling have been used with respect to Crohn’s disease
(CD). Stem cell-derived HIOs have been developed as a
model of fibrosis in CD using TGF-f to induce fibrosis.
Treatment with spironolactone, an anti-fibrotic drug, was
able to reverse fibrosis caused by TGF-f induction [174].

The enteric nervous system (ENS) is the intrinsic nerv-
ous system of the bowel that regulates many gut functions,
such as motility, secretion, and epithelial permeability. The
congenital absence of this system within the bowel results
in Hirschsprung disease [175]. HIOs have been generated to
model this disorder; these HIOs comprised functional ENS
derived from human PSCs differentiated to form neural crest
cells. ENS-containing HIOs were able to form neuroglial
structures and had an electromechanical coupling that reg-
ulated waves of propagating contraction. This model was
used to study the cellular and molecular pathogenesis of
Hirschsprung’s disease with a mutation in the PHOX2B gene
[166].
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Box 3 Vascularized organoids

diseases and facilitate drug discovery through advanced modeling

Given the incredible successes achieved so far, the organoid field faces many limitations hindering its broader application in disease mod-
eling. For example, the lack of supportive vasculature for increased perfusion is highly critical. Vasculature not only plays an important
role in many physiological regulations, but blood vessels are also known to promote signal transduction between cell—cell and cell-
matrix, with their main function of transporting nutrients, oxygen, and remove wastes [179]. By incorporating vasculature into organoids,
the size and duration organoid culture performance could be significantly increased. This might be crucial for organoids to mimic real
organs [179]. Recently, studies have progressively focused on developing vascularized organoids with different approaches ranging
from co-culture with endothelial cells, to co-differentiation with mesodermal progenitors and in vivo transplantation, etc. In this regard,
successful experiments were able to establish brain, liver, and kidney organoids [176, 179-182]. Among them, sufficient perfusion was
achieved in organoids through in vivo transplantation because of the appropriate microenvironment and niche. Currently, scientists’
attempts continue to find a better way to vascularize organoids, which will help to construct more accurate disease models. Eventually,
as an improved technology, organoid technology combined with high-tech approaches such as microfluidic engineering or bio-printing
techniques could lead to fully in vitro vascularized organoids, acting as more reliable platforms to further expand our understanding of

On the whole, current technologies with multiple co-
cultured cells and strategies for rebuilding culture micro-
environments need to be improved. More advanced culture
media and improved ECM can provide the possibility to gain
deeper insights into interactions between GI epithelial cells
and microbiota, which constitutes a high-priority research
field.

Challenges and future prospects

Organoids are powerful tools to overcome many of the fail-
ures inherent to current in vitro or animal systems, and have
the potential to significantly expand our understanding of
the pathogenic mechanism of numerous diseases. They have
the capacity to self-organize and form complex structures
making them ideal in vitro platforms for disease modeling
and drug screening; however, many obstacles remain in
the technology that need to be addressed in future work.
Specifically, the size of all organoids developed to date is
limited by the diffusion distance restriction due to the lack
of vascular structures (i.e., blood vessels). Strategies such
as vascularization by co-culturing with endothelial cells or
engineering approaches may help to overcome this obstacle
[176] (Box 3). Some organoid models are insufficient and
slow-maturing, thus limiting the modeling of later develop-
mental disease stages, with this issue more typical of retinal

and cerebral organoids and thicker tissues such as the brain
that may undergo necrosis in the organoid interior. Grow-
ing the organoids by transplantation may be a solution to
this hurdle. In multi-organ individuals like humans, each
organ is involved in synchronous and multiple interactions
with all other organ systems. Thus, modeling the interac-
tions between ecto-, meso-, and endoderm tissues during
development may be a promising approach to better reca-
pitulate the organ system interactions typical of in vivo
organisms. Combining organoids into assembloids can
be used to model similar aspects of cell-cell interactions
and connectivity between regions to those between human
body tissues. Koike et al. generated a multi-organ system
that structurally and functionally integrates hepato-biliary-
pancreatic organ domains, and that was developed at the
foregut-midgut boundary [177]. Interactions with other cells
and ECM components are critical aspects of organoid mod-
els. Tissue engineering is an ever-evolving approach to using
ECM and other synthetic cell-instructive matrices in com-
posite organoids [178] (Fig. 4). However, we are far from the
exact models of real organs, which necessitates considerable
improvement in this field. The ultimate goal of organoid
technologies will be to harness the control of amazing self-
organizing abilities of cells for our own benefit and apply
them for cell replacement, whole-organ transplantation, and
drug screening approaches.
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2
3

Maturation

Fig.4 View of organoid challenges and perspectives. The schematic
illustration represents organoid technology challenges including slow
maturation, lack of ECM, vascularization, and ecto-meso-endoderm
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