Skip to main content
Log in

Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Developing artificial muscles that can replace biological muscles to accomplish various tasks is what we have long been aiming for. Recent advances in flexible materials and 3D printing technology greatly promote the development of artificial muscle technology. A variety of flexible material-based artificial muscles that are driven by different external stimuli, including pressure, voltage, light, magnetism, temperature, etc., have been developed. Among these, fluid-driven artificial muscles (FAMs), which can convert the power of fluid (gas or liquid) into the force output and displacement of flexible materials, are the most widely used actuation methods for industrial robots, medical instruments, and human-assisted devices due to their simplicity, excellent safety, large actuation force, high energy efficiency, and low cost. Herein, the bio-design, manufacturing, sensing, control, and applications of FAMs are introduced, including conventional pneumatic/hydraulic artificial muscles and several innovative artificial muscles driven by functional fluids. What’s more, the challenges and future directions of FAMs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Madden JDW, Vandesteeg NA, Anquetil PA, Madden PGA, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Ocean Eng 29:706–728. https://doi.org/10.1109/JOE.2004.833135

    Article  Google Scholar 

  2. Mirvakili SM, Hunter IW (2018) Artificial muscles: mechanisms, applications, and challenges. Adv Mater 30:1–28. https://doi.org/10.1002/adma.201704407

    Article  Google Scholar 

  3. Fan Z, Raun K, Hein L, Kiil HE (2008) Application of artificial muscles as actuators in engineering design. In: Yan XT, Jiang C, Eynard B (eds) Advanced design and manufacture to gain a competitive edge. Springer, London. https://doi.org/10.1007/978-1-84800-241-8_88

    Chapter  Google Scholar 

  4. Park N, Kim J (2020) Hydrogel-based artificial muscles: overview and recent progress. Adv Intell Syst 2:1900135. https://doi.org/10.1002/aisy.201900135

    Article  Google Scholar 

  5. Wang H, Qu S (2016) Constitutive models of artificial muscles: a review. J Zhejiang Univ Sci A 17:22–36. https://doi.org/10.1631/jzus.A1500207

    Article  Google Scholar 

  6. Zhang J, Sheng J, Ciaran TO, Walsh CJ, Wood RJ, Ryu J, Desai JP, Yip MC (2016) Robotic artificial muscles: current progress and future perspectives for biomimetic actuators. IEEE Trans Robot 35:761–781. https://doi.org/10.1109/TRO.2019.2894371

    Article  Google Scholar 

  7. Zhang Z, Philen M (2012) Pressurized artificial muscles. J Intell Mater Syst Struct 23:255–268. https://doi.org/10.1177/1045389X11420592

    Article  Google Scholar 

  8. Polygerinos P, Correll N, Morin SA, Mosadegh B, Onal CD, Petersen K, Cianchetti M, Tolley MT, Shepherd RF (2017) Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv Eng Mater 19:1700016. https://doi.org/10.1002/adem.201700016

    Article  Google Scholar 

  9. Abrar T, Putzu F, Konstantinova J, Althoefer K (2019) EPAM: eversive pneumatic artificial muscle. In: RoboSoft 2019 2nd IEEE international conference on soft robotics, pp 19–24

  10. Sangian D, Foroughi J, Farajikhah S, Naficy S, Spinks GM (2017) A bladder-free, non-fluidic, conductive McKibben artificial muscle operated electro-thermally. Smart Mater Struct 26:1–7. https://doi.org/10.1088/1361-665X/26/1/015011

    Article  Google Scholar 

  11. Zhang JJ, Yin YH, Zhu JY (2013) Electrical resistivity-based study of self-sensing properties for shape memory alloy-actuated artificial muscle. Sensors (Switzerland) 13:12958–12974. https://doi.org/10.3390/s131012958

    Article  Google Scholar 

  12. Kim YS, Liu M, Ishida Y, Ebina Y, Osada M, Sasaki T, Hikima T, Takata M, Aida T (2015) Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat Mater 14:1002–1007. https://doi.org/10.1038/nmat4363

    Article  Google Scholar 

  13. Zhang X, Pint CL, Lee MH, Schubert BE, Jamshidi A, Takei K, Ko H, Gillies A, Bardhan R, Urban JJ, Wu M, Fearing R, Javey A (2011) Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett 11:3239–3244. https://doi.org/10.1021/nl201503e

    Article  Google Scholar 

  14. Wang E, Desai MS, Lee SW (2013) Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett 13:2826–2830. https://doi.org/10.1021/nl401088b

    Article  Google Scholar 

  15. Taniguchi H, Miyake M, Suzumori K (2010) Development of new soft actuator using magnetic intelligent fluids for flexible walking robot. In: ICCAS 2010—international conference on control, automation and systems. https://doi.org/10.1109/ICCAS.2010.5669801

  16. Hosoda M, Nishimoto Y, Nashima S (2007) Magnetic-field-driven artificial muscle based on the H. Huxley model: fundamental experiments. Jpn J Appl Phys 46:2–5. https://doi.org/10.1143/JJAP.46.L170

    Article  Google Scholar 

  17. Ventura E, Oztan C, Palacios D, Isabel Vargas I, Celik E (2020) Magnetically-doped polydimethylsiloxane for artificial muscle applications. Funct Mater Lett 13:50–53. https://doi.org/10.1142/S1793604719500899

    Article  Google Scholar 

  18. Qiu Y, Zhang E, Plamthottam R, Pei Q (2019) Dielectric elastomer artificial muscle: materials innovations and device explorations. Acc Chem Res 52:316–325. https://doi.org/10.1021/acs.accounts.8b00516

    Article  Google Scholar 

  19. Ma S, Zhang Y, Liang Y, Ren L, Tian W, Ren L (2020) High-performance ionic-polymer–metal composite: toward large-deformation fast-response artificial muscles. Adv Funct Mater 30:1–9. https://doi.org/10.1002/adfm.201908508

    Article  Google Scholar 

  20. Jager EWH, Inganäs O, Lundström I (2000) Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation. Science 288:2335–2338. https://doi.org/10.1126/science.288.5475.2335

    Article  Google Scholar 

  21. Zhang Z, Wang X, Tan S, Wang Q (2019) Superior electrostrictive strain achieved under low electric fields in relaxor ferroelectric polymers. J Mater Chem A 7:5201–5208. https://doi.org/10.1039/c8ta11938d

    Article  Google Scholar 

  22. Kim S, Hawkes E, Cho K, Jolda M, Foley J, Wood R (2009) Micro artificial muscle fiber using NiTi spring for soft robotics. In: 2009 IEEE/RSJ international conference on intelligent robots and systems IROS 2009, pp 2228–2234. https://doi.org/10.1109/IROS.2009.5354178

  23. Ishihara M, Sato H, Tateishi H, Kawagoe T, Shimatani Y, Kurisu S, Sakai K (1995) Intraaortic balloon pumping as adjunctive therapy to rescue coronary angioplasty after failed thrombolysis in anterior wall acute myocardial infarction. Am J Cardiol 76:73–75. https://doi.org/10.1016/S0002-9149(99)80805-4

    Article  Google Scholar 

  24. Lopes V, Steffen V, Savi MA (2016) Dynamics of smart systems and structures: concepts and applications. Springer, London

    Book  Google Scholar 

  25. Koh JS, Cho KJ (2013) Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators. IEEE/ASME Trans Mech 18:419–429. https://doi.org/10.1109/TMECH.2012.2211033

    Article  Google Scholar 

  26. Miková L, Medvecká-Beňová S, Kelemen M, Trebuňa F, Virgala I (2015) Application of shape memory alloy (SMA) as actuator. Metalurgija 54:169–172

    Google Scholar 

  27. Rodrigue H, Wang W, Han MW, Kim TJY, Ahn SH (2017) An overview of shape memory alloy-coupled actuators and robots. Soft Robot 4:3–15. https://doi.org/10.1089/soro.2016.0008

    Article  Google Scholar 

  28. Bar-Cohen Y (2002) Electroactive polymers as artificial muscles: a review. J Spacecr Rockets 39:822–827. https://doi.org/10.2514/2.3902

    Article  Google Scholar 

  29. Bar-cohen Y, Anderson IA (2019) Electroactive polymer (EAP) actuators-background review. Mech Soft Mater 1(5):1–14. https://doi.org/10.1007/s42558-019-0005-1

    Article  Google Scholar 

  30. Gu G, Zou J, Zhao R, Zhao X, Zhu X (2018) Soft wall-climbing robots. Sci Robot 2874:1–13. https://doi.org/10.1126/scirobotics.aat2874

    Article  Google Scholar 

  31. Li T, Li G, Liang Y, Cheng T, Dai J, Yang X, Liu B, Zeng Z, Huang Z, Luo Y, Xie T, Yang W (2017) Fast-moving soft electronic fish. Sci Adv 3:1–8. https://doi.org/10.1126/sciadv.1602045

    Article  Google Scholar 

  32. Ji X, Liu X, Cacucciolo V, Imboden M, Civet Y, El-Haitami A, Cantin S, Perriard Y, Shea H (2019) An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci Robot 4:eaaz6451. https://doi.org/10.1126/scirobotics.aaz6451

    Article  Google Scholar 

  33. Hajiesmaili E, Clarke DR (2019) Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nat Commun 10:10–16. https://doi.org/10.1038/s41467-018-08094-w

    Article  Google Scholar 

  34. Chen Z, Um TI, Bart-Smith H (2011) A novel fabrication of ionic polymer-metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens Actuators A Phys 168:131–139. https://doi.org/10.1016/j.sna.2011.02.034

    Article  Google Scholar 

  35. Yang D, Kong X, Ni Y, Ren Z, Li S, Nie J, Chen X, Zhang L (2019) Ionic polymer-metal composites actuator driven by the pulse current signal of triboelectric nanogenerator. Nano Energy 66:104139. https://doi.org/10.1016/j.nanoen.2019.104139

    Article  Google Scholar 

  36. Chen Z, Um TI, Bart-Smith H (2012) Bio-inspired robotic manta ray powered by ionic polymer-metal composite artificial muscles. Int J Smart Nano Mater 3:296–308. https://doi.org/10.1080/19475411.2012.686458

    Article  Google Scholar 

  37. Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JDW, Kim SH, Fang S, De Andrade MJ, Göktepe F, Göktepe Ö, Mirvakili SM, Naficy S, Lepró X, Oh J, Kozlov ME, Kim SJ, Xu X, Swedlove BJ, Wallace GG, Baughman RH (2014) Artificial muscles from fishing line and sewing thread. Science 343:868–872. https://doi.org/10.1126/science.1246906

    Article  Google Scholar 

  38. Haines CS, Li N, Spinks GM, Aliev AE, Di J, Baughman RH (2016) New twist on artificial muscles. Proc Natl Acad Sci USA 113:11709–11716. https://doi.org/10.1073/pnas.1605273113

    Article  Google Scholar 

  39. Maziz A, Concas A, Khaldi A, Stålhand J, Persson NK, Jager EWH (2017) Knitting and weaving artificial muscles. Sci Adv 3:1–12. https://doi.org/10.1126/sciadv.1600327

    Article  Google Scholar 

  40. Kanik M, Orguc S, Varnavides G, Kim J (2019) Strain-programmable fiber-based artificial muscle. Science 150:145–150. https://doi.org/10.1126/science.aaw2502

    Article  Google Scholar 

  41. Li S, Vogt DM, Rus D, Wood RJ (2017) Fluid-driven origami-inspired artificial muscles. Proc Natl Acad Sci USA 114:13132–13137. https://doi.org/10.1073/pnas.1713450114

    Article  Google Scholar 

  42. Aziz S, Spinks GM (2020) Torsional artificial muscles. Mater Horiz 7:667–693. https://doi.org/10.1039/C9MH01441A

    Article  Google Scholar 

  43. Mirvakili SM, Hunter IW (2018) Artificial muscles: mechanisms, applications, and challenges. Adv Mater 30:1704407. https://doi.org/10.1002/adma.201704407

    Article  Google Scholar 

  44. Ariano P, Accardo D, Lombardi M et al (2015) Polymeric materials as artificial muscles: an overview. J Appl Biomater Funct Mater 2015:1–9. https://doi.org/10.5301/jabfm.5000184

    Article  Google Scholar 

  45. Mirfakhrai T, Madden JDW, Baughman RH (2007) Polymer artificial muscles. Mater Today 10:30–38. https://doi.org/10.1016/S1369-7021(07)70048-2

    Article  Google Scholar 

  46. Bar-Cohen Y (2007) Artificial muscles based on electroactive polymers as an enabling tool in biomimetics. Proc Inst Mech Eng C J Mech Eng Sci 221:1149–1156. https://doi.org/10.1243/09544062JMES510

    Article  Google Scholar 

  47. Kang HW, Lee IH, Cho DW (2006) Development of a micro-bellows actuator using micro-stereolithography technology. Microelectron Eng 83:1201–1204. https://doi.org/10.1016/j.mee.2006.01.228

    Article  Google Scholar 

  48. Baldwin HA (1969) Realizable models of muscle function. Biomechanics. https://doi.org/10.1007/978-1-4615-6558-1_14

    Article  Google Scholar 

  49. Yokota S, Yajima F, Takemura K, Edamura K (2010) Electro-conjugate fluid jet-driven micro artificial antagonistic muscle actuators and their integration. Adv Robot 24:1929–1943. https://doi.org/10.1163/016918610X529048

    Article  Google Scholar 

  50. Yamaguchi A, Takemura K, Yokota S, Edamura K (2011) An in-pipe mobile robot using electro-conjugate fluid. J Adv Mech Des Syst Manuf 5:214–226. https://doi.org/10.1299/jamdsm.5.214

    Article  Google Scholar 

  51. Mirvakili SM, Sim D, Hunter IW, Langer R (2020) Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Sci Robot 4239:1–10. https://doi.org/10.1126/scirobotics.aaz4239

    Article  Google Scholar 

  52. Sanan S, Lynn PS, Griffith ST (2014) Pneumatic torsional actuators for inflatable robots. J Mech Robot 6:1–7. https://doi.org/10.1115/1.4026629

    Article  Google Scholar 

  53. Veale AJ, Xie SQ, Anderson IA (2016) Characterizing the Peano fluidic muscle and the effects of its geometry properties on its behavior. Smart Mater Struct 25:065013. https://doi.org/10.1088/0964-1726/25/6/065013

    Article  Google Scholar 

  54. Kellaris N, Venkata VG, Smith GM, Mitchell SK, Keplinger C (2018) Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci Robot 3:1–11. https://doi.org/10.1126/scirobotics.aar3276

    Article  Google Scholar 

  55. Hiramitsu T, Wada A, Suzumori K, Nabae H, Endo G (2017) Hose-free pneumatic bags-muscle driven by gas/liquid conversion. In: SII 2016—2016 IEEE/SICE international symposium on system integration, pp 616–621. https://doi.org/10.1109/SII.2016.7844067

  56. Daerden F, Lefeber D (2001) The concept and design of pleated pneumatic artificial muscles. Int J Fluid Power 2:41–50. https://doi.org/10.1080/14399776.2001.10781119

    Article  Google Scholar 

  57. Daerden F, Lefeber D, Verrelst B, Van Ham R (2001) Pleated pneumatic artificial muscles: compliant robotic actuators. IEEE Int Conf Intell Robot Syst 4:1958–1963. https://doi.org/10.1109/iros.2001.976360

    Article  Google Scholar 

  58. Zhuo S, Zhao Z, Xie Z, Hao Y, Xu Y, Zhao T, Li H, Knubben EM, Wen L, Jiang L, Liu M (2020) Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines. Sci Adv 6:1–11. https://doi.org/10.1126/sciadv.aax1464

    Article  Google Scholar 

  59. Joshi A, Kulkarni A, Tadesse Y (2019) FludoJelly: Experimental study on jellyfish-like soft robot enabled by soft pneumatic composite (SPC). Robotics 8:56. https://doi.org/10.3390/robotics8030056

    Article  Google Scholar 

  60. Frame J, Lopez N, Curet O, Engeberg ED (2018) Thrust force characterization of free-swimming soft robotic jellyfish. Bioinspir Biomim 13:064001. https://doi.org/10.1088/1748-3190/aadcb3

    Article  Google Scholar 

  61. Suzumori K, Iikura S, Tanaka H (1992) Applying a flexible microactuator to robotic mechanisms. IEEE Control Syst Mag 12:21–27. https://doi.org/10.1109/37.120448

    Article  Google Scholar 

  62. Yamaguchi A, Takemura K, Yokota S, Edamura K (2011) A robot hand using electro-conjugate fluid: Imitating a palm motion of human hand using soft balloon actuator. In: 2011 IEEE international conference on robotics and biomimetics, ROBIO 2011, pp 1807–1812. https://doi.org/10.1109/ROBIO.2011.6181552

  63. Yamaguchi A, Takemura K, Yokota S, Edamura K (2012) A robot hand using electro-conjugate fluid: grasping experiment with balloon actuators inducing a palm motion of robot hand. Sens Actuators A Phys 174:181–188. https://doi.org/10.1016/j.sna.2011.11.036

    Article  Google Scholar 

  64. Yamaguchi A, Takemura K, Yokota S, Edamura K (2011) A robot hand using electro-conjugate fluid. Sens Actuators A Phys 170:139–146. https://doi.org/10.1016/j.sna.2011.06.002

    Article  Google Scholar 

  65. Mori K, Yamaguchi A, Takemura K, Yokota S, Edamura K (2012) Control of a novel flexible finger using electro-conjugate fluid with built-in angle sensor. Sens Actuators A Phys 183:75–83. https://doi.org/10.1016/j.sna.2012.04.028

    Article  Google Scholar 

  66. Nagaoka T, Mao Z, Takemura K, Yokota S, Kim JW (2019) ECF (electro-conjugate fluid) finger with bidirectional motion and its application to a flexible hand. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aaf49a

    Article  Google Scholar 

  67. Yamaguchi A, Takemura K, Yokota S, Edamura K (2012) Robot finger using electro-conjugate fluid. Adv Robot 26:861–876. https://doi.org/10.1163/156855312X632913

    Article  Google Scholar 

  68. Abe R, Takemura K, Edamura K, Yokota S (2007) Concept of a micro finger using electro-conjugate fluid and fabrication of a large model prototype. Sens Actuators A Phys 136:629–637. https://doi.org/10.1016/j.sna.2006.10.046

    Article  Google Scholar 

  69. Miyoshi T, Yoshida K, Kim JW, Eom SI, Yokota S (2016) An MEMS-based multiple electro-rheological bending actuator system with an alternating pressure source. Sens Actuators A Phys 245:68–75. https://doi.org/10.1016/j.sna.2016.04.041

    Article  Google Scholar 

  70. Han J, Jiang W, Niu D, Li Y, Zhang Y, Lei B, Liu H, Shi Y, Chen B, Yin L, Liu X, Peng D, Lu B (2019) Untethered soft actuators by liquid-vapor phase transition: remote and programmable actuation. Adv Intell Syst 1:1900109. https://doi.org/10.1002/aisy.201900109

    Article  Google Scholar 

  71. Shepherd RF, Ilievski F, Choi W, Morin SA, Stokes AA, Mazzeo AD, Chen X, Wang M, Whitesides GM (2011) Multigait soft robot. Proc Natl Acad Sci USA 108:20400–20403. https://doi.org/10.1073/pnas.1116564108

    Article  Google Scholar 

  72. Zhang M, Li G, Yang X, Xiao Y, Yang T, Wong TW, Li T (2018) Artificial muscle driven soft hydraulic robot: electromechanical actuation and simplified modeling. Smart Mater Struct 27:095016. https://doi.org/10.1088/1361-665X/aacfe3

    Article  Google Scholar 

  73. Cacucciolo V, Shintake J, Kuwajima Y, Maeda S, Floreano D, Shea H (2019) Stretchable pumps for soft machines. Nature 572:516–519. https://doi.org/10.1038/s41586-019-1479-6

    Article  Google Scholar 

  74. Sudhawiyangkul T, Yoshida K, Eom SI, wan Kim J (2020) A study on a hybrid structure flexible electro-rheological microvalve for soft microactuators. Microsyst Technol 26:309–321. https://doi.org/10.1007/s00542-019-04492-2

    Article  Google Scholar 

  75. Wakimoto S, Ogura K, Suzumori K, Nishioka Y (2009) Miniature soft hand with curling rubber pneumatic actuators. In: Proceedings of the IEEE international conference on robotics and automation, pp 556–561. https://doi.org/10.1109/ROBOT.2009.5152259

  76. Deimel R, Brock O (2013) A compliant hand based on a novel pneumatic actuator. In: Proceedings of the IEEE international conference on robotics and automation, pp 2047–2053. https://doi.org/10.1109/ICRA.2013.6630851

  77. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ (2015) Soft robotic glove for combined assistance and at-home rehabilitation. Robot Auton Syst 73:135–143. https://doi.org/10.1016/j.robot.2014.08.014

    Article  Google Scholar 

  78. Onal CD, Rus D (2012) A modular approach to soft robots. In: Proceedings of the IEEE RAS EMBS international conference on biomedical robotics and biomechatronics, pp 1038–1045. https://doi.org/10.1109/BioRob.2012.6290290

  79. Guan Q, Sun J, Liu Y, Wereley NM, Leng J (2020) Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk. Soft Robot 00:1–18. https://doi.org/10.1089/soro.2019.0079

    Article  Google Scholar 

  80. Schaffner M, Faber JA, Pianegonda L, Rühs PA, Coulter F, Studart AR (2018) 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat Commun 9:878. https://doi.org/10.1038/s41467-018-03216-w

    Article  Google Scholar 

  81. Connolly F, Polygerinos P, Walsh CJ, Bertoldi K (2015) Mechanical programming of soft actuators by varying fiber angle. Soft Robot 2:26–32. https://doi.org/10.1089/soro.2015.0001

    Article  Google Scholar 

  82. Martinez RV, Fish CR, Chen X, Whitesides GM (2012) Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv Funct Mater 22:1376–1384. https://doi.org/10.1002/adfm.201102978

    Article  Google Scholar 

  83. Yang D, Mosadegh B, Ainla A, Lee B, Khashai F, Suo Z, Bertoldi K, Whitesides GM (2015) Buckling of elastomeric beams enables actuation of soft machines. Adv Mater 27:6323–6327. https://doi.org/10.1002/adma.201503188

    Article  Google Scholar 

  84. Gorissen B, Chishiro T, Shimomura S, Reynaerts D, De Volder M, Konishi S (2014) Flexible pneumatic twisting actuators and their application to tilting micromirrors. Sens Actuators A Phys 216:426–431. https://doi.org/10.1016/j.sna.2014.01.015

    Article  Google Scholar 

  85. Jiao Z, Zhang C, Wang W, Pan M, Yang H, Zou J (2019) Advanced artificial muscle for flexible material-based reconfigurable soft robots. Adv Sci 1901371:1901371. https://doi.org/10.1002/advs.201901371

    Article  Google Scholar 

  86. Lee JY, Kim WB, Choi WY, Cho KJ (2016) Soft robotic blocks: introducing SoBL, a fast-build modularized design block. IEEE Robot Autom Mag 23:30–41. https://doi.org/10.1109/MRA.2016.2580479

    Article  Google Scholar 

  87. Handorf AM, Zhou Y, Halanski MA, Li WJ (2015) Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11:1–15. https://doi.org/10.1080/15476278.2015.1019687

    Article  Google Scholar 

  88. Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521:467–475. https://doi.org/10.1038/nature14543

    Article  Google Scholar 

  89. Engineering ToolBox (2003) Young's modulus—tensile and yield strength for common materials. https://www.engineeringtoolbox.com/young-modulus-d_417.html. Accessed 13 Sept 2020

  90. Tolley MT, Shepherd RF, Mosadegh B, Galloway KC, Wehner M, Karpelson M, Wood RJ, Whitesides GM (2014) A resilient, untethered soft robot. Soft Robot 1:213–223. https://doi.org/10.1089/soro.2014.0008

    Article  Google Scholar 

  91. Abdulrab HQA, Mohd Nordin INA, Muhammad Razif MR, Mohd Faudzi AA (2018) Snake-like soft robot using 2-chambers actuator. Elektr J Electr Eng 17:34–40. https://doi.org/10.11113/elektrika.v17n1.39

    Article  Google Scholar 

  92. Marchese AD, Katzschmann RK, Rus D (2015) A recipe for soft fluidic elastomer robots. Soft Robot 2:7–25. https://doi.org/10.1089/soro.2014.0022

    Article  Google Scholar 

  93. Katzschmann RK, Thieffry M, Goury O, Kruszewski A, Guerra TM, Duriez C, Rus D (2019) Dynamically closed-loop controlled soft robotic arm using a reduced order finite element model with state observer. In: RoboSoft 2019—2019 IEEE international conference on soft robotics, pp 717–724. https://doi.org/10.1109/ROBOSOFT.2019.8722804

  94. Katzschmann RK, Marchese AD, Rus D (2016) Hydraulic autonomous soft robotic fish for 3D swimming. In: Hsieh M, Khatib O, Kumar V (eds) Experimental robotics. Springer tracts in advanced robotics, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-23778-7_27

    Chapter  Google Scholar 

  95. Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, Wood RJ (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–455. https://doi.org/10.1038/nature19100

    Article  Google Scholar 

  96. Martinez RV, Branch JL, Fish CR, Jin L, Shepherd RF, Nunes RMD, Suo Z, Whitesides GM (2013) Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv Mater 25:205–212. https://doi.org/10.1002/adma.201203002

    Article  Google Scholar 

  97. Park YL, Chau K, Black RJ, Cutkosky MR (2007) Force sensing robot fingers using embedded fiber Bragg grating sensors and shape deposition manufacturing. In: Proceedings of the IEEE international conference on robotics and automation, pp 1510–1516. https://doi.org/10.1109/ROBOT.2007.363538

  98. Cham JG, Bailey SA, Clark JE, Full RJ, Cutkosky MR (2002) Fast and robust: hexapedal robots via shape deposition manufacturing. Int J Robot Res 21:869–882. https://doi.org/10.1177/0278364902021010837

    Article  Google Scholar 

  99. McClung AJ, Cutkosky MR, Cham JG (2004) Rapid maneuvering of a biologically inspired hexapedal robot. In: American society of mechanical engineers, dynamic systems and control division (publication) DSC, pp 1195–1202. https://doi.org/10.1115/IMECE2004-61150

  100. Cho KJ, Koh JS, Kim S, Chu WS, Hong Y, Ahn SH (2009) Review of manufacturing processes for soft biomimetic robots. Int J Precis Eng Manuf 10:171–181. https://doi.org/10.1007/s12541-009-0064-6

    Article  Google Scholar 

  101. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  102. Zhou L, Fu J, He Y (2020) A review of 3D printing technologies for soft polymer materials. Adv Funct Mater 2000187:1–38. https://doi.org/10.1002/adfm.202000187

    Article  Google Scholar 

  103. Gul JZ, Sajid M, Rehman MM, Siddiqui GU, Shah I, Kim KH, Lee JW, Choi KH (2018) 3D printing for soft robotics—a review. Sci Technol Adv Mater 19:243–262. https://doi.org/10.1080/14686996.2018.1431862

    Article  Google Scholar 

  104. Wallin TJ, Pikul J, Shepherd RF (2018) 3D printing of soft robotic systems. Nat Rev Mater 3:84–100. https://doi.org/10.1038/s41578-018-0002-2

    Article  Google Scholar 

  105. Yap HK, Ng HY, Yeow CH (2016) High-force soft printable pneumatics for soft robotic applications. Soft Robot 3:144–158. https://doi.org/10.1089/soro.2016.0030

    Article  Google Scholar 

  106. Miriyev A, Stack K, Lipson H (2017) Soft material for soft actuators. Nat Commun 8:1–8. https://doi.org/10.1038/s41467-017-00685-3

    Article  Google Scholar 

  107. Trimmer B, Lewis JA, Shepherd RF, Lipson H (2015) 3D printing soft materials: what is possible? Soft Robot 2:3–6. https://doi.org/10.1089/soro.2015.1502

    Article  Google Scholar 

  108. Hamidi A, Tadesse Y (2020) 3D printing of very soft elastomer and sacrificial carbohydrate glass/elastomer structures for robotic applications. Mater Des 187:108324. https://doi.org/10.1016/j.matdes.2019.108324

    Article  Google Scholar 

  109. Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204. https://doi.org/10.1002/adfm.200600434

    Article  Google Scholar 

  110. Robinson SS, O’Brien KW, Zhao H, Peele BN, Larson CM, Mac Murray BC, Van Meerbeek IM, Dunham SN, Shepherd RF (2015) Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mech Lett 5:47–53. https://doi.org/10.1016/j.eml.2015.09.005

    Article  Google Scholar 

  111. Fu K, Wang Y, Yan C, Yao Y, Chen Y, Dai J, Lacey S, Wang Y, Wan J, Li T, Wang Z, Xu Y, Hu L (2016) Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater 28:2587–2594. https://doi.org/10.1002/adma.201505391

    Article  Google Scholar 

  112. Rost A, Schädle S (2013) The SLS-generated soft robotic hand—an integrated approach using additive manufacturing and reinforcement learning. In: Proceedings of the—2013 12th international conference on machine learning and applications ICMLA 2013, vol 1, pp 215–220. https://doi.org/10.1109/ICMLA.2013.44

  113. Cianchetti M, Menciassi A (2017) Soft robotics: trends, applications and challenges. Biosyst Biorobot 17:75–85. https://doi.org/10.1007/978-3-319-46460-2

    Article  Google Scholar 

  114. Peele BN, Wallin TJ, Zhao H, Shepherd RF (2015) 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspir Biomim 10:055003. https://doi.org/10.1088/1748-3190/10/5/055003

    Article  Google Scholar 

  115. Patel DK, Sakhaei AH, Layani M, Zhang B, Ge Q, Magdassi S (2017) Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv Mater 29:1–7. https://doi.org/10.1002/adma.201606000

    Article  Google Scholar 

  116. Bartlett NW, Tolley MT, Overvelde JTB, Weaver JC, Mosadegh B, Bertoldi K, Whitesides GM, Wood RJ (2015) A 3D-printed, functionally graded soft robot powered by combustion. Science 349:161–165. https://doi.org/10.1126/science.aab0129

    Article  Google Scholar 

  117. Truby RL, Wehner M, Grosskopf AK, Vogt DM, Uzel SGM, Wood RJ, Lewis JA (2018) Soft somatosensitive actuators via embedded 3D printing. Adv Mater 30:1–8. https://doi.org/10.1002/adma.201706383

    Article  Google Scholar 

  118. Drotman D, Jadhav S, Karimi M, Dezonia P, Tolley MT (2017) 3D printed soft actuators for a legged robot capable of navigating unstructured terrain. In: Proceedings of the IEEE international conference on robotics and automation, pp 5532–5538. https://doi.org/10.1109/ICRA.2017.7989652

  119. Han D, Gu H, van Kim J, Yokota S (2017) A bio-inspired 3D-printed hybrid finger with integrated ECF (electro-conjugate fluid) micropumps. Sens Actuators A Phys 257:47–57. https://doi.org/10.1016/j.sna.2017.02.002

    Article  Google Scholar 

  120. Kato T, Higashi T (2010) Teleoperation of a robot arm system using pneumatic artificial rubber muscles teleoperation over the internet using UDP and a web camera. In: 2010 international conference on broadband, wireless computing, communication and applications, pp 714–718. https://doi.org/10.1109/BWCCA.2010.160

  121. Skorina EH, Tao W, Chen F, Luo M, Onal CD (2016) Motion control of a soft-actuated modular manipulator. In: Proceedings of the IEEE international conference on robotics and automation 2016, pp 4997–5002. https://doi.org/10.1109/ICRA.2016.7487706

  122. Katzschmann RK, DelPreto J, MacCurdy R, Rus D (2018) Exploration of underwater life with an acoustically controlled soft robotic fish. Sci Robot 3:eaar3449. https://doi.org/10.1126/scirobotics.aar3449

    Article  Google Scholar 

  123. Onal CD, Rus D (2013) Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspir Biomim 8:026003. https://doi.org/10.1088/1748-3182/8/2/026003

    Article  Google Scholar 

  124. Robertson MA, Dejace L, Lacour SP, Paik J (2019) Bi-modal control of vacuum-powered soft pneumatic actuators with embedded liquid metal-based strain sensitive skin. In: RoboSoft 2019 2nd IEEE international conference on soft robotics, pp 217–221.https://doi.org/10.1109/ROBOSOFT.2019.8722810

  125. Yamamoto Y, Wakimoto S, Suzumori K (2011) Evaluation of electro conductive film and strain gage as displacement sensor for pneumatic artificial muscle. In: 2011 IEEE international conference on robotics and biomimetics, ROBIO 2011, pp 1206–1211. https://doi.org/10.1109/ROBIO.2011.6181452

  126. Truby RL, Della SC, Rus D (2020) Distributed proprioception of 3d configuration in soft, sensorized robots via deep learning. IEEE Robot Autom Lett 5:3299–3306. https://doi.org/10.1109/LRA.2020.2976320

    Article  Google Scholar 

  127. Petersen KH, Shepherd RF (2019) Fluid-driven intrinsically soft robots. Adv Mater Manuf. https://doi.org/10.1016/B978-0-08-102260-3.00004-4

    Article  Google Scholar 

  128. Wang H, Totaro M, Beccai L (2018) Toward perceptive soft robots: progress and challenges. Adv Sci 5:1800541. https://doi.org/10.1002/advs.201800541

    Article  Google Scholar 

  129. Wang C, Dong L, Peng D, Pan C (2019) Tactile sensors for advanced intelligent systems. Adv Intell Syst 1:1900090. https://doi.org/10.1002/aisy.201900090

    Article  Google Scholar 

  130. Zhao H, O’Brien K, Li S, Shepherd RF (2016) Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci Robot 1:7529. https://doi.org/10.1126/scirobotics.aai7529

    Article  Google Scholar 

  131. Dang W, Hosseini ES, Dahiya R (2018) Soft robotic finger with integrated stretchable strain sensor. Proc IEEE Sens 2018:1–4. https://doi.org/10.1109/ICSENS.2018.8589671

    Article  Google Scholar 

  132. Koivikko A, Raei ES, Sariola V, Mosallaei M, Mantysalo M (2017) Soft actuators with screen-printed curvature sensors. Proc IEEE Sens 2017:1–3. https://doi.org/10.1109/ICSENS.2017.8234045

    Article  Google Scholar 

  133. Kim T, Member S, Yoon SJ, Park Y (2018) Soft inflatable sensing modules for safe and interactive robots. IEEE Robot Autom Lett 3:3216–3223. https://doi.org/10.1109/LRA.2018.2850971

    Article  Google Scholar 

  134. Helps T, Rossiter J (2018) Proprioceptive flexible fluidic actuators using conductive working fluids. Soft Robot 5:175–189. https://doi.org/10.1089/soro.2017.0012

    Article  Google Scholar 

  135. Tondu B (2012) Modelling of the McKibben artificial muscle: a review. J Intell Mater Syst Struct 23:225–253. https://doi.org/10.1177/1045389X11435435

    Article  Google Scholar 

  136. Wu J, Huang J, Wang Y, Xing K (2014) Nonlinear disturbance observer-based dynamic surface control for trajectory tracking of pneumatic muscle system. IEEE Trans Control Syst Technol 22:440–455. https://doi.org/10.1109/TCST.2013.2262074

    Article  Google Scholar 

  137. Merola A, Colacino D, Cosentino C, Amato F (2018) Model-based tracking control design, implementation of embedded digital controller and testing of a biomechatronic device for robotic rehabilitation. Mechatronics 52:70–77. https://doi.org/10.1016/j.mechatronics.2018.04.006

    Article  Google Scholar 

  138. Sun N, Di Liang WuY, Chen Y, Qin Y, Fang Y (2020) Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints. IEEE Trans Ind Inform 16:969–979. https://doi.org/10.1109/TII.2019.2923715

    Article  Google Scholar 

  139. Hocking EG, Wereley NM (2013) Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles. Smart Mater Struct 22:014016. https://doi.org/10.1088/0964-1726/22/1/014016

    Article  Google Scholar 

  140. Webster RJ, Jones BA (2010) Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res 29:1661–1683. https://doi.org/10.1177/0278364910368147

    Article  Google Scholar 

  141. Gravagne IA, Rahn CD, Walker ID (2003) Large deflection dynamics and control for planar continuum robots. IEEE ASME Trans Mech 8:299–307. https://doi.org/10.1109/TMECH.2003.812829

    Article  Google Scholar 

  142. Sadati SMH, Naghibi SE, Walker ID, Althoefer K, Nanayakkara T (2018) Control space reduction and real-time accurate modeling of continuum manipulators using Ritz and Ritz-Galerkin methods. IEEE Robot Autom Lett 3:328–335. https://doi.org/10.1109/LRA.2017.2743100

    Article  Google Scholar 

  143. Renda F, Boyer F, Dias J, Seneviratne L (2018) Discrete Cosserat approach for multisection soft manipulator dynamics. IEEE Trans Robot 34:1518–1533. https://doi.org/10.1109/TRO.2018.2868815

    Article  Google Scholar 

  144. VanGriethuijsen LI, Trimmer BA (2009) Kinematics of horizontal and vertical caterpillar crawling. J Exp Biol 212:1455–1462. https://doi.org/10.1242/jeb.025783

    Article  Google Scholar 

  145. Woods WA, Fusillo SJ, Trimmer BA (2008) Dynamic properties of a locomotory muscle of the tobacco hornworm Manduca sexta during strain cycling and simulated natural crawling. J Exp Biol 211:873–882. https://doi.org/10.1242/jeb.006031

    Article  Google Scholar 

  146. Matzner H, Gutfreund Y, Hochner B (2000) Neuromuscular system of the flexible arm of the octopus: physiological characterization. J Neurophysiol 83:1315–1328. https://doi.org/10.1152/jn.2000.83.3.1315

    Article  Google Scholar 

  147. Farrow N, Correll N (2015) A soft pneumatic actuator that can sense grasp and touch. IEEE Int Conf Intell Robot Syst 2015:2317–2323. https://doi.org/10.1109/IROS.2015.7353689

    Article  Google Scholar 

  148. Marchese AD, Rus D (2016) Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. Int J Robot Res 35:840–869. https://doi.org/10.1177/0278364915587925

    Article  Google Scholar 

  149. Turkseven M, Ueda J (2016) Observer based impedance control of a pneumatic system with long transmission lines. Proc IEEE Int Conf Robot Autom 2016:1160–1165. https://doi.org/10.1109/ICRA.2016.7487245

    Article  Google Scholar 

  150. Melingui A, Lakhal O, Daachi B, Mbede JB, Merzouki R (2015) Adaptive neural network control of a compact bionic handling arm. IEEE/ASME Trans Mech 20:1–14. https://doi.org/10.1109/TMECH.2015.2396114

    Article  Google Scholar 

  151. Caldwell DG, Tsagarakis NG, Kousidou S, Costa N, Sarakoglou I (2007) “Soft” exoskeletons for upper and lower body rehabilitation—design, control and testing. Int J Humanoid Robot 4:549–573. https://doi.org/10.1142/S0219843607001151

    Article  Google Scholar 

  152. Gordon KE, Sawicki GS, Ferris DP (2006) Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. J Biomech 39:1832–1841. https://doi.org/10.1016/j.jbiomech.2005.05.018

    Article  Google Scholar 

  153. Ferris DP, Gordon KE, Sawicki GS, Peethambaran A (2006) An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture 23:425–428. https://doi.org/10.1016/j.gaitpost.2005.05.004

    Article  Google Scholar 

  154. Ferris DP, Czerniecki JM, Hannaford B (2005) An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech 21:189–197. https://doi.org/10.1123/jab.21.2.189

    Article  Google Scholar 

  155. Gupta A, O’Malley MK (2006) Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans Mechatron 11:280–289. https://doi.org/10.1109/TMECH.2006.875558

    Article  Google Scholar 

  156. Nuchkrua T, Leephakpreeda T, Mekarporn T (2013) Development of robot hand with Pneumatic Artificial Muscle for rehabilitation application. In: IEEE international conference on nano/molecular medicine and engineering NANOMED, pp 55–58. https://doi.org/10.1109/NANOMED.2013.6766315

  157. Mccarthy G, Effraimidis D, Jennings B, Corso N, Onal CD, Popovic M (2014) Hydraulically actuated muscle (HAM) exo-musculature. In: Robot makers: the future of digital rapid design and fabrication of robots", (RoMa) workshop the 2014 robotics: science and systems conference (RSS), July 2014.

  158. Kawashima K, Sasaki T, Miyata T, Nakamura N, Sekiguchi M, Kagawa T (2004) Development of robot using pneumatic artificial rubber muscles to operate construction machinery. J Robot Mechatron 16:8–16. https://doi.org/10.20965/jrm.2004.p0008

    Article  Google Scholar 

  159. Van Damme M, Van Ham R, Vanderborght B, Daerden F, Lefeber D (2006) Design of a “soft” 2-DOF planar pneumatic manipulator. In: Proceedings of the 8th international conference on climbing and walking robots and support technologies for mobile machines CLAWAR 2005, pp 559–566. https://doi.org/10.1007/3-540-26415-9-67

  160. Van Damme M, Daerden F, Lefeber D (2005) A pneumatic manipulator used in direct contact with an operator. Proc IEEE Int Conf Robot Autom 2005:4494–4499. https://doi.org/10.1109/ROBOT.2005.1570812

    Article  Google Scholar 

  161. Ichim I (2007) Pneumatic applied to logistic systems. Ann Oradea Univ Fascicle Manag Technol Eng 6:2282–2289

    Google Scholar 

  162. Mishra AK, Wallin TJ, Pan W, Xu P, Wang K, Giannelis EP, Mazzolai B, Shepherd RF (2020) Autonomic perspiration in 3D-printed hydrogel actuators. Sci Robot 5:1–10. https://doi.org/10.1126/scirobotics.aaz3918

    Article  Google Scholar 

  163. Miron G, Bédard B, Plante JS (2018) Sleeved bending actuators for soft grippers: A durable solution for high force-to-weight applications. Actuators 7:1–16. https://doi.org/10.3390/act7030040

    Article  Google Scholar 

  164. Harihara K, Dohta S, Akagi T, Zhang F (2010) Development of a search type rescue robot driven by pneumatic actuator. In: Proceedings of SICE annual conference 2010, Taipei, 2010, pp 1311–1317

  165. Vasios N, Gross AJ, Soifer S, Overvelde JB, Bertoldi K (2020) Harnessing viscous flow to simplify the actuation of fluidic soft robots. Soft Robot 7:1–9. https://doi.org/10.1089/soro.2018.0149

    Article  Google Scholar 

  166. Ozkan-Aydin Y, Murray-Cooper M, Aydin E, McCaskey EN, Naclerio N, Hawkes EW, Goldman DI (2019) Nutation AIDS heterogeneous substrate exploration in a robophysical root. In: RoboSoft 2019—2019 IEEE international conference on soft robotics, pp 172–177. https://doi.org/10.1109/ROBOSOFT.2019.8722717

  167. Hawkes EW, Blumenschein LH, Greer JD, Okamura AM (2017) A soft robot that navigates its environment through growth. Sci Robot 2:1–8. https://doi.org/10.1126/scirobotics.aan3028

    Article  Google Scholar 

  168. Niiyama R, Kuniyoshi Y (2008). Pneumatic biped with an artificial musculoskeletal system. In: 4th international symposium on adaptive motion of animals and machines (AMAM2008)

  169. Boblan I, Schulz A (2010) A humanoid muscle robot torso with biologically inspired construction. In: ISR 2010 (41st international symposium on robotics) and ROBOTIK 2010 (6th German conference on robotics), Munich, Germany, 2010, pp 1–6

  170. Niiyama R, Nishikawa S, Kuniyoshi Y (2010) Athlete robot with applied human muscle activation patterns for bipedal running. In: 2010 10th IEEE-RAS international conference on humanoid robots 2010, pp 498–503. https://doi.org/10.1109/ICHR.2010.5686316

  171. Kingsley DA, Quinn RD, Ritzmann RE (2006) A cockroach inspired robot with artificial muscles. In: IEEE international conference on intelligent robots and systems, pp 1837–1842. https://doi.org/10.1109/IROS.2006.282229

  172. Kerscher T, Albiez J, Berns K (2002) Joint control of the six-legged robot AirBug driven by fluidic muscles. In: Proceedings of the 3rd international workshop on robot motion and control RoMoCo 2002, pp 27–32. https://doi.org/10.1109/ROMOCO.2002.1177079

  173. Zou J, Lin Y, Ji C, Yang H (2018) A reconfigurable omnidirectional soft robot based on caterpillar locomotion. Soft Robot 5:164–174. https://doi.org/10.1089/soro.2017.0008

    Article  Google Scholar 

  174. Zhang B, Fan Y, Yang P, Cao T, Liao H (2019) Worm-like soft robot for complicated tubular environments. Soft Robot 6:399–413. https://doi.org/10.1089/soro.2018.0088

    Article  Google Scholar 

  175. Liao B, Zang H, Chen M, Wang Y, Lang X, Zhu N, Yang Z, Yi Y (2020) Soft rod-climbing robot inspired by winding locomotion of snake. Soft Robot 00:1–12. https://doi.org/10.1089/soro.2019.0070

    Article  Google Scholar 

  176. Marchese AD, Onal CD, Rus D (2014) Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot 1:75–87. https://doi.org/10.1089/soro.2013.0009

    Article  Google Scholar 

  177. Brown G, Haggard R, Almassy R, Benney R, Dellicker S (1999) The affordable guided airdrop system (AGAS). In: 15th aerodynamic decelerator systems technology conference, pp 316–325. https://doi.org/10.2514/6.1999-1742

  178. Pohl M (2005) A motion seat using pneumatic membrane actuators in a hexapod system structure. In: 6th international workshop on research and education in mechatronics, June 2005, Annecy, France

  179. Bubert EA, Woods BKS, Lee K, Kothera CS, Wereley NM (2010) Design and fabrication of a passive 1D morphing aircraft skin. J Intell Mater Syst Struct 21:1699–1717. https://doi.org/10.1177/1045389X10378777

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2018YFB2000903), National Natural Science Foundation of China under Grant Numbers 51875507 and 51890885, Open Fund of Key Laboratory of Electronic Equipment Structure Design in Xidian University (EESD1905), applied by Author Yangqiao Lin, which support the research, the Fundamental Research Funds for the Central Universities, and Director's Fund of State Key Laboratory of Fluid Power and Mechatronic Systems.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and literature collection were performed by PAZ. The first draft of the manuscript was written by CZ and PAZ. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jun Zou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhu, P., Lin, Y. et al. Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications. Bio-des. Manuf. 4, 123–145 (2021). https://doi.org/10.1007/s42242-020-00099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00099-z

Keywords

Navigation