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Abstract: Since its inception, the full Lagrangian meshless smoothed particle hydrodynamics (SPH) has experienced a tremendous 
enhancement in methodology and impacted a range of multi-physics applications in science and engineering. This review presents a 
concise survey on latest developments and achievements of the SPH method, including: (1) Brief review of theory and fundamental 
with kernel corrections, (2) The Riemann-based SPH method with dissipation limiting and high-order data reconstruction by using 
MUSCL, WENO and MOOD schemes, (3) Particle neighbor searching with particle sorting and efficient dual-criteria time stepping 
schemes, (4) Total Lagrangian formulation with stablized, dynamics relaxation and hourglass control schemes, (5) Fluid-structure 
interaction scheme with interface treatments and multi-resolution discretizations, (6) Novel applications of particle relaxation in SPH 
methodology for mesh and particle generations. Last but not least, benchmark tests for validating computational accuracy, 
convergence, robustness and efficiency are also supplied accordingly. 
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Introduction  
As a fully Lagrangian meshless method, whereby 

a set of particles are introduced to discretize the con- 
tinuum media and their interactions determined by a 
Gaussian-like kernel function are to approximate the 
mechanics, the smoothed particle hydrodynamics 
(SPH)[1-2] has been demonstrated to be a promising 
alternative of mesh-based methods and received 
significant interest in the past decades[3-6]. Thanks to 
its Lagrangian feature, SPH method has shown 
peculiar advantages in handling free-surface flows[7-8] 
involving violent impact and breaking events[9], struc- 
ture analysis with crack propagation and large 
deformation[4, 10-11] and multi-physics problems[12] 
including fluid-structure interactions (FSI)[13-15] multi- 
phase flows[16-19], additive manufacturing[20-21] and 
cardiac modeling[22-24], and comprehensive reviews 
can be found in recent Refs. [9, 14, 25-29]. From the 
methodological point of view, tremendous efforts 
have been devoted to address the grand challenges of 
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convergence, consistency and stability, the treatment 
of boundary conditions, the development of adaptive 
discretization and the extension to multi-physics 
applications, as highlighted by Refs. [12, 30-31]. 

This review aims at providing a concise des- 
cription on the state-of-the-art methodology deve- 
lopment and achievement for the SPH method. In 
particular, attempts are devoted to address the per- 
spectives of the Riemann-based SPH method with 
dissipation limiting and high-order data reconstruction, 
efficient particle-interaction configuration update, 
stabilized scheme, dynamics relaxation and hourglass 
control by total Lagrangian formulation, novel 
applications to mesh and particle generations, and FSI 
schemes. 
 
 
1. SPH methodology 
 
1.1 Theory and fundamental of SPH 

In the SPH method, a set of Lagrangian particles 
whose interactions determined by a Gaussian-like 
kernel function is introduced to discretize the con- 
tinuum media. Then, the particle-average based dis- 
cretization of a variable field ( )f r  can be defined as 
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= ( ) ( , )di if f W h r r r r                                             (1) 

 
where i  is the particle index, if  the discretized 

particle-average variable and ir  the particle position. 

For the compact-support kernel function ( , )iW hr r , 

h  is the smoothing length determining a radially 
symmetric support domain with respect to ir . As the 

mass of each particle im  is known and invariant 

(indicating mass conservation), one has the particle 
volume = /i i iV m   with i  denoting the particle- 

average density. 
    By introducing particle summation, Eq. (1) can 
be approximated by 
 

( ) ( , ) = ( , )j
j j j j j

j j j

m
f V f W h f W h


   r r r r r     (2) 

 
Here the summation is over all the neighboring 
particles j  located in the support domain of particle 

i . Substituting the variable ( )f r  with density, one 

gets the approximation of the particle-average density 
 

( ) ( , ) = ( )j
j j j j

j jj

m
W h m W 


  r r r r                (3) 

 
which is an alternative way to write the continuity 
equation for updating the density. 
    Similarly, the approximation of the spatial 
derivative of ( )f r  can be derived as follows 

 

( ) ( ) ( , )d =jf f W h V


   r r r r  

 

( ) ( , )dj jf W h V


    r r r  

 

( , )j j j
j

V f W h   r r                                             (4) 

 
Furthermore, Eq. (4) can be rewritten into a strong 
form 
 

= 1+i i i j ij i ij
j

f f f V f W                                     (5) 

 
where the inter-particle difference value =ij i jf f f  

and ( / )=i ij ij ij ijW W r  e  with ijr  and ije  deno- 

ting the distance and unit vector of the particle pair 
( , )i j , respectively. The strong-form approximation of 
the derivative is used to determine the local structure 

of a field. On the other hand, with a slight different 
modification, Eq. (4) can be rewritten into a weak 
form as 
 

= 1 2  i i i j ij i ij
j

f f f V f W       
                            (6) 

 
where the inter-particle average value = ( +ij if f

/ 2)jf . The weak-form approximation of derivative is 

used to compute the surface integration with respect to 
a variable for solving its conservation law. Thanks to 
its anti-symmetric property, i.e., =i ij j jiW W  , the 

momentum conservation of the particle system is 
implied. 
 
1.2 Kernel correction 

When particle is close to boundary or particle 
distribution is irregular, the 0th-order and 1st-order 
consistency of particle approximation of Eqs. (2) and 
(4) are not satisfied, respectively. To remedy this issue, 
a number of correction techniques has been proposed 
in the literature[4, 6, 32-37]. Here, we briefly review the 
mostly applied techniques, i.e., kernel correction, ker- 
nel gradient correction and the finite particle method 
(FPM). The kernel and kernel gradient corrections, 
due to Johnson and Beissel[33] and fully investigated 
by Randles and Liberscky[4], are also known as 
Shepard filter and renormalization formulation[4, 38], 
respectively. These two corrections can remediate the 
boundary deficiency and the inconsistency in particle 
approximation. The FPM is developed by Liu et  
al.[35, 39] to retain the particle approximation consis- 
tency by simultaneously applying the Taylor series 
expansion. 
    (1) Kernel correction 
    Following Refs. [4, 40-41], the improved 
partition of unity, 0th-order consistency, can be 

achieved by interpolating with a correction kernel W  
as 
 

( ) ( ) = ( ) ( )j j j j j j
j j

f V f W V f W  r r r r r            (7) 

 
where the parameter ( ) r  is evaluated by enforcing 

that any constant distribution is exactly interpolated, 
that is 
 

0 0= ( )j j
j

C V C W   r r                                                 (8) 

 
Therefore, the following condition must be satisfied 
with the corrected kernel 
 

( ) = 1j j j
j

V f W   r r                                                     (9) 
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which gives 
 

1
( )

( )j j
j

V W
 


r

r
                                                    (10) 

 
The scalar parameter of ( ) r  is also known as 

Shepard filter[4, 32] and provides a much improved 
partition of unity, in particular for particles near the 
domain boundary[37, 42]. 
    (2) Kernel gradient correction 
    To assess the consistency order of the particle 
approximation of Eq. (4), we can Taylor-expand jf  

around r  
 

2= ( ) + ( ) ( ) + ( )j jf f f O r r r r r                          (11) 

 
and substitute it to Eq. (4) 
 

( ) [ ( ) + ( ) ( )] ( , )j j j
j

f V f f W h      r r r r r r r

                                                                                     (12) 
 
Accurate approximation of ( )f r  requires that 

 

( , ) 0j j
j

V W h   r r                                               (13) 

 
and 
 

( ) ( , )j j j
j

V W h    r r r r                                   (14) 

 
where   is the unit matrix. Eq. (13) is a gradient 
expression of the partition of unity requirement. To 
satisfy Eq. (14), a correction matrix   is introduced 
to modify the kernel gradient as 
 

( , ) = ( ) ( , )j jW h W h    r r r r r                          (15) 

 
and inserted into Eq. (14) 
 

( ) ( ) ( , ) =j j j
j

V W h   r r r r r                          (16) 

 

resulting 
 

1

( ) = ( ) ( , )j j j
j

V W h


 

   
 
r r r r r                      (17) 

 
The introduction of the kernel gradient correction can 
improve the gradient approximation, in particular for 
irregular distributed particles[4, 38, 41]. However, extra 

computational efforts are induced due to the interpo- 
lation and matrix inverse for each particle at every 
time step. On the other hand, this kernel gradient 
correction is widely applied in the total Lagrangian 
formulation as it only needs to be calculated once at 
the initial reference configuration[43-45] which will be 
presented in details in Section 3. 
    (3) Finite particle method 
    The FPM is one of the high order approximation 
in particle-based methods[14]. Multiplying both sides 
of Eq. (11) with the kernel ( , )jW hr r

 
and its 

derivative ( , )jW h r r , and then integrating over 

the problem space, we can get the following 
equations: 
 

( , )d ( ) ( , )d +j j jf W h V f W h V
 

   r r r r r  
 

( ) ( ) ( , )dj jf W h V


  r r r r r                     (18) 

 
and 
 

( , )d ( ) ( , )d +j j jf W h V f W h V
 

     r r r r r  

 

( ) ( ) ( , )dj jf W h V


   r r r r r             (19) 

 
Considering Eqs. (18) and (19), the FPM approxima- 
tions of the field function ( )f r  and its first deriva- 

tive ( )f r  can be derived as 

 

0 1
( , )d( )

=
( ) ( , )d

j j

j j

f W h Vf

f f W h V
 



           




r rr

r r r
                (20) 

 
where 
 

( , )d ( ) ( , )d
=

( , )d ( ) ( , )d

j j j

j j j

W h V W h V

W h V W h V



 


   
 
      

 
 

r r r r r r

r r r r r r


                                                                                     (21) 
 

Similar with kernel gradient correction the FPM can 
improve the conventional SPH method to have 2nd 
order accuracy and be not sensitive to irregular 
particle distributions[14, 27]. 
 
 
2. Fluid dynamics 
 
2.1 Governing equations 
    For inviscid flow, the conservation of mass and 
momentum in the Lagrangian framework can be 
written as 
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d

=
dt

    v , 
d 1

= + +
d

sp
t 

 
v

g f                     (22) 

 
where v  is the velocity,   the density, p  the 

pressure, g  the gravity, d / d = ( / ) +t t  v  

stands for the material derivative and sf  presents 

the force exerting on the fluid due to the existence of 
solid, which can be rigid stationary or moving solid or 
flexible structure. 

To close the system of Eq. (22), the pressure can 
be calculated with an artificial isothermal equation of 
state (EoS) in the form of 

 
0 2

0
= 1

c
p


 
 

  
  

   
                                               (23) 

 
where = 1 or 7  is an empirically determined 

constant, 0  the reference density and c  the speed 

of sound[7, 46]. Following the weakly-compressible 
assumption[47], an artificial speed of sound =c

max10U  with maxU  denoting the maximum 

anticipated flow speed is employed for density 
fluctuation to be approximately 1%, implying the 
Mach number 0.1Ma  . 
 
2.2 Traditional SPH method 
    Having Eqs. (5) and (6), the discretization of Eq. 
(22) in the traditional SPH formulation reads[6, 41, 48-49] 
 

d
=

d
ji

i ij i ij
j j

m
W

t





 v ,  

 

+d
= + +

d
i j si

j i ij
j i j

p p
m W

t  
 

   
 

v
g f                    (24) 

 
where =ij i jv v v

 
is the relative velocity. To 

dampen the pressure oscillation and prevent instability 
in the particle motion, where single particle moves in 
a rather chaotic way, Monaghan and Gingold[50] intro- 
duced a Neumann-Richtmeyer type artificial viscosity 
term 
 

2
= ij ij

i j i ij
j ij

hc
m W

r





  
v r

                                   (25) 

 
where = ( + / 2)i jc c c , = ( + / 2)i j  

 
and a 

tunable parameter 1.0   to control the numerical 
damping. While a moderate artificial viscosity is able 

to stabilize the computation, it may lead to excessive 
dissipation which affects the physical flow charac- 
teristics[41, 51]. Another weakness is that the tunable 
parameter   requires careful numerical calibrations 
and its values usually are case dependent[8]. 
 
2.2.1 Density reinitialization 

Implementing density reinitialization, i.e., the 
density is integrated by the continuity equation and 
periodically reinitialized by applying proper formula- 
tion, is an efficient way to address the high frequency 
density oscillations. The straight forward formulation 
reads[4, 16, 52] 
 

=
j ij

j
i

j ij
j

m W

V W





                                                            (26) 

 
by using the Shepard filter[4] of Eq. (10), resulting in 
first-order accuracy. Colagrossi and Landrini[16] 
suggested to consider a moving-least-square (MLS) 
kernel interpolation 
 

MLS= ( )i j j j
j

m W  r                                                   (27) 

 

where MLS
jW

 
is the MLS kernel[16] given by: 

 
MLS 1

1( () = )j i ij jW W r M e b r , 

 
T = [1, ( ), ( ), ( )]ij j i j i j ix x y y z z  b , 

 
T
1 = [1,0,0]e , = ( )dj ij ij j j

j

W VM b b r                 (28) 

 
This formulation achieves 2nd-order accuracy and 
shows good results while is computationally rather 
expensive[53]. 
    More recently, Zhang et al.[54] and Rezavand et 
al.[55] proposed new density reinitialization 
formulations which read 
 

0
0 0

0 0 *
= + max 0,ij ij

i
ij ij

W W

W W

   



 

  
 

 
 

         (29) 

 
and 
 

0
0

= ij
i

ij

W

W
  


                                                           (30) 

 
for free-surface and internal flow, respectively. Here 
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  denotes the density before reinitialization and 

superscript 0  represents the initial reference value. 
Note that the density reinitialization is applied every 

-n time steps, for example = 20n  in Refs. [16, 52]. 
Zhang et al.[19, 54, 56] apply it every advection time step 
which consists of several acoustic time steps for 
particle relaxation. 
 

2.2.2 Diffusive term in the continuity equation 
Another approach to reduce the density oscilla- 

tion is to introduce a diffusive term into the continuity 
equation of Eq. (24), resulting smooth pressure field 
and stable time integration. Inspired by the Riemann- 
based SPH method[41, 57], Ferrari et al.[8] modified the 
original SPH discretization of the continuity equation 
as 
 

d
= +

d
ji

i ij i ij i
j j

m
W

t





 v D                                    (31) 

 
by introducing a Rusanov diffusive term iD  defined 
as 
 

= max , ()( )j ij
i i j i j

j j ij

m W
c c

r
 




 
D                    (32) 

 

As highlighted by Ref. [8], the Rusanov diffusive term 

iD  is independent of any tunable parameter and no 
artificial viscosity of Eq. (25) is required in the 
momentum equation. However, this scheme is not 
compatible with the hydrostatic solution, exhibiting 
unphysical free-surface motion and expansion in long 
term simulations due to the inconsistency induced by 
the singularity of the density approximation at the 
surface[53, 58]. 
    Molten and Colagrossi[59] pursued a similar idea 
of introducing diffusive term but it still suffers the 
incompatibility with the hydrostatic solution[60]. To 
decrease such artifacts, Antuono et al.[53] proposed an 
improvement by reformulating the diffusive term as 
 

2
= 2( +)j ij

i i j ij i ij
j j ij

m
hc W

r
  


 

   
  


r

D F          (33) 

 
where   is a non-dimensional parameter, and =ijF

 +i j     a renormalized correction term to prevent 

the singularity at the surface[61]. This corrected -
term is compatible with the hydrostatic solution, 
whereas induces extra computational efforts due to the 
introduction of ijF . Note that the parameter   is not 

freely tunable and is usually set to 0.1[61], and a small 
amount of artificial viscosity defined by Eq. (25) with 
parameter of = 0.02  is still applied for numerical 

stability. 
 
2.3 Riemann-based SPH method 

As a variant of the SPH method, the Riemann- 
based SPH method solves a one-dimensional Riemann 
problem along each particle pair to determine its inter- 
action. Compared with the traditional SPH method 
presented in Section 2.2, the Riemann-based SPH 
method introduces implicit numerical dissipation other 
than using explicit artificial viscosity, and achieves 
the dissipation in a more accurate  manner[41, 62-64]. 
Monaghan[62] pointed out that the artificial viscosity[50] 
is analogous to the dissipative terms of the Riemann 
solver, which scales with the wave speed and the 
velocity jump between interacting particles, whereas 
shown that using the exact, or well approximated, 
Riemann solution[65] can obtain more accurate results 
in capturing shock wave. The pioneering work of 
developing Riemann-based SPH method can be 
tracked back to Vila[41], where a Riemann-based 
arbitrary Lagrangian Eulerian (ALE) SPH scheme was 
proposed by discretizing the Euler equations in 
conservative form and calculating the fluxes between 
particles with a Riemann solver. It is worth noting that 
the particle in the Riemann-based ALE-SPH scheme 
represents a volume of the considered discretized fluid 
medium and it may move with the fluid velocity 
(Lagrangian description), remain still (Eulerian des- 
cription) or move in any arbitrary way. Instead of 
following the ALE description, Parshikov et al.[66-67] 
proposed a Riemann-based SPH formulation in purely 
Lagrangian framework by using a first-order Riemann 
solution to describe the contact interaction between 
particles. To improve the accuracy of capturing strong 
shocks, Inutsuka[68] has reformulated the Riemann- 
based SPH formulation with 2nd-order Riemann 
solution. Then, Cha and Whitworth[69] derived 
different versions of Riemann-based SPH schemes, 
and performed a von Neumann stability analysis and 
concluded that the Riemann-based SPH is stable for 
all wavelengths, while the traditional SPH is unstable 
for certain wavelengths. Subsequently, enormous pro- 
gress has been made toward accomplishing high-order 
data reconstruction[70-73], dissipation limiting[74-75] and 
solid boundary treatment[19, 74, 76], which will be 
reviewed in the following parts. 

To derive the Riemann-based SPH discretization 
of Eq. (22), we rewrite its traditional SPH discreti- 
zation as 
 

 d
= 2

d
ji

i i ij i ij
j j

m
W

t





  v v , 

 

d
= 2 + +

d
ij si

j i ij
j i j

p
m W

t  
 

   
 

v
g f                      (34) 
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by introducing the inter-particle average velocity 
)= ( + / 2ij i jvv v  and pressure )= ( + / 2ij i jp p p . 

Then, the inter-particle average variables are replaced 

by the Riemann solution, i.e., U   and P , resulting 
 

d
= 2

d
)(ji

i i i ij
j j

m
W

t





  v v , 

 

d
= 2

d
i

j i ij
j i j

P
m W

t  

 
   

 
v

                                     (35) 

 

where = + ( )ij ij ijU U  v e v e . In this case, the 

inter-particle average variables are replaced by 
solutions of the Riemann problem, implying that 
numerical dissipation, i.e., density regularization and 
numerical viscosity, is implicitly presented. 
    In Riemann-based SPH, the solution to the 
Riemann problem is reduced to a one-dimensional 
problem constructed along the interaction line of 
particle pair. Then, the first step is to construct the L  
and R  states between each pair of interacting 
particles. Following the Godunov-type method, which 
applies piece-wise constant assumption, i.e., 1st-order 
reconstruction, the L  and R  states are defined as: 
 
( , , = ( , ,) )L L L i i ij iU P p  v e , 

 
( , , = ( , ,) )R R R j j ij jU P p  v e                                    (36) 

 
    In this case, the initial Riemann left and right 
states res are defined on particles i  and j , 

respectively, and the discontinuity is at the middle 
point = 1 / 2( + )ij i jr r r , as shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 (Color online) Construction of Riemann problem along 

the interacting line of particles i  and j  

 
2.3.1 Riemann solver with dissipation limiter 

Since its inception, the Riemann-based SPH 
method has been applied to solve strong shocks 

problems[77-79], solid mechanics problems[66-67, 80], 
interface instability[81-82] and magnetohydrodynamics 
(MHD)[83] problems. However, it is generally too 
dissipative to reliably reproduce violent free-surface 
flows involving violent events such as impact and 
breaking[38, 84-85]. To cope with the excessive dissipa- 
tion introduced by directly applying a Riemann solver, 
Zhang et al.[74] proposed a simple low-dissipation 
limiter to the classic linearized Riemann solver[86-87], 
ensuring no or decreased numerical dissipation for 
expansion or compression waves, respectively. This 
method is compatible with the hydrostatic solution 
and able to resolve violent wave breaking and impact 
events accurately, exhibits very small damping of 
mechanical energy, produces smooth pressure fields 
and predicts reasonable pressure peaks. Then, this 
method was extended by Rezavand et al.[18] for 
modeling multiphase flow with high density ratio and 
Zhang et al.[19, 24, 56] for single- and multi-phase FSI 
problems. Inspired by Ref. [74], Meng et al.[75] 
proposed a dissipation limiter to Roe’s approximated 
Riemann solver[88-89] to develop a multiphase SPH 
model for complex interface flows. Furthermore, 
Meng et al.[75] derived the equivalent relation between 
the intrinsic dissipation of the Riemann solver and the 
Reynolds number for accurate modeling of viscous 
flow. 

(1) Linearized Riemann solver 
    According to Toro[65, 87], the solution of a 
Riemann problem results in three waves emanating 
from the discontinuity, denoted by ( , , )L L LU P  

 and 

( , , )R R RU P    as shown in Fig. 2. Two waves, which 
can be shock or rarefaction wave, travel with the 
smallest or largest wave speed. The middle wave is 
always a contact discontinuity and separates two 
intermediate states. By assuming that the intermediate 

state satisfies = =L RU U U    and = =L RP P P   , a 
linearized Riemann solver[65, 86] for smooth flows or 
with only moderately strong shocks can be written as: 
 

+ +
=

+
L L L R R R L R

L L R R

c U c U P P
U

c c

 
 

 
, 

 
+ + ( )

=
+

L L R R R L L L R R L R

L L R R

c P c P c c U U
P

c c

    
 

 
     (37) 

 
where the limiter is defined as 
 

= min max ,0 ,1.0L R

LR

U U

c
 

  
     

                        (38) 

 
with ) / ( )= ( + +LR L L R R L Rc c c    . Here, the dissi- 

pation limiter   ensures that there is no dissipation 
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when the fluid is under the action of an expansion 
wave, i.e., <L RU U , and that the parameter   is 

used to modulate dissipation when the fluid is under 
the action of a compression wave, i.e., L RU U . In 

Ref. [74], constant parameter = 3  is suggested 
according to numerical experiments. Meng et al.[75] 
presented that the relation between   and the 

parameter   in artificial viscosity of Eq. (25) is 
given by 
 

( +
=

2

)

( )
L R

L R ij

h c c

U U




 r
                                                   (39) 

 
Having the equivalent relation of the artificial 
viscosity and the physical kinematics viscosity[66, 90], 
Meng et al.[75] derived the relation between the 
parameter   and the Reynolds number as 
 

2( + 2)
=

( )
c c

L R ij

d U L

Re U U


 r
                                                 (40) 

 
where d  is the dimension, Re  is the Reynolds 
number, cU  and cL  are the characteristic velocity 
and length, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Simplified Riemann fan with two intermediate states 
 

Figure 3 presents the validation of the linearized 
Riemann solver with dissipation limiter by studying 
the Taylor-Green vortex flow[74]. Without the dissipa- 
tion limiter, the Riemann-based SPH is too dissipative 
to predict a reasonable kinetic energy decay. While 
with the limiter, low-dissipation feature and better 
agreement with the analytical solution are achieved in 
comparison with the traditional SPH method with the 
artificial viscosity ( = 0.02) . Also, the Riemann- 
based SPH achieves 2nd-order convergence for the 
total kinetic energy with increasing particle resolution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 (Color online) Taylor-Green vortex flow with = 100Re : 
Decay of the kinetic energy by using Riemann-based 
SPH method with the Linearized Riemann solver with 
and without the dissipation limiter, and the traditional 
SPH method with artificial viscosity ( = 0.02)  

 
    The performance of the Riemann-based SPH 
with dissipation limiter for modeling free-surface 
flows exhibiting violent events such as impact and 
breaking is addressed in Fig. 4 where dam-break and 
sloshing flows are investigated by comparing with 
experimental data. Both tests demonstrate that the 
Riemann-based SPH can accurately predict the violent 
motion of free surface and meanwhile capture the 
impacting pressure reasonably. 

(2) HLLC Riemann solver 
    The HLLC Riemann solver proposed by Toro[65] 
has been applied in Riemann-based SPH method for 
capturing strong shock waves[77-78] and energetic 
flows[64], exhibiting excessive numerical dissipation 
with the piece-wise constant assumption[64]. Following 
Ref. [87], the wave speeds estimate respectively from 
left ( )L  and right ( )R  regions, Ls  and Rs , are: 

 
=L L Ls U c , = +R R Rs U c                                      (41) 

 
and then the intermediate wave speed s  is 
calculated as 
 

( ) (

(

)

( )

+
=

)
R L L L L L R R R R

L L L R R R

P P U s U U s U
s

s U s U

 
 

   
  


    (42) 

 
Subsequently, the intermediate states of pressure can 
be obtained accordingly by 
 

( )(= )+K K K K K KP P U s U s   , = ,K R L           (43) 
 
Finally, the HLLC solution to the Riemann problem is 
expressed by 
 

HLLC = LF F , 0 Ls , = ,K L R                             (44a) 
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HLLC = LF F  , 0Ls s  , = ,K L R                    (44b) 
 

HLLC = RF F  , 0 Rs s   , = ,K L R                    (44c) 
 

HLLC = RF F , 0 Ls , = ,K L R                            (44d) 
 
Note that the dissipation limiter of Eq. (39) can be 
applied in the calculation of the intermediate wave 
speed with proper adjustment of the parameter. 
 
2.3.2 High-order reconstruction 

Another key feature of the Riemann-based SPH 
is the possibility of implementing high-order data 
reconstructions[91-93], which is widely applied in 
Eulerian Godunov-method[93-94], to decrease the dissi- 
pation and improve the accuracy[38, 41]. Vila[38] first 
introduced the monotonic upstream-centered scheme 
for conservation laws (MUSCL) scheme for 2nd-order 
data reconstruction into the Riemann-base ALE-SPH 
method. Similar approach was developed by Inutsuka[68] 
with reformulating a 2nd-order Riemann-based SPH 
scheme. Since then, more attempts have been aimed at 
implementing different limiting functions for MUSCL 
scheme, e.g., van Leer limiter[83, 95], SuperBee 
limiter[64, 85, 96] and Barth-Jespersen-type limiter[97], to 
reduce the numerical dissipation and increase spatial 
order of the Riemann-based SPH method. More 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
recently, increasing attentions are drawn to implement 
weighted essentially non-oscillatory (WENO) 
scheme[93, 98] and its variants[99-101]. Zhang et al.[102] 
have considered a 5th-order WENO reconstruction for 
computing one-dimensional problems, however, its 
multidimensional extension is not straightforward. 
The first WENO reconstruction for computing 
multi-dimensional problems is proposed by Avesani et 
al.[70], in which the directionally-biased multi- 
dimensional candidate stencils with high-order MLS 
reconstructions are combined with the WENO 
weighting strategy. Although this method achieves 
higher accuracy than those using linear reconstruc- 
tions, it exhibits much lower computational efficiency 
due to a large number of multi-dimensional candidate- 
stencil evaluations. Nogueira et al.[103] proposed an 
SPH-MOOD-MLS method which uses a MLS-based 
approximation and a posteriori multidimensional 
optimal order detection (MOOD) approach for nume- 
rical stability. This method shows considerable 
improvement for modeling compressible flows with 
shock and blast waves. Different with Ref. [70], 
Zhang et al.[71] proposed an efficient one-dimensional 
4-point incremental stencil WENO (IS-WENO) 
reconstruction[72] along the interaction line of each 
particle pair, where the variable calculation of the 
missing points is based on the SPH derivative 
approximation as that of MUSCL scheme, for the 
Riemann-based SPH method to increase accuracy by 

 

 
 
Fig. 4 (Color online) Numerical modeling of free-surface flows by using the Riemann-based SPH method with linearized 

Riemann solver and dissipation limiter: Snapshots of particle distribution with pressure contour (left panel) and the time 
history of the numerical and experimental pressure signals (right panel) for dam-break (a) and sloshing (b) flows
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decreasing the numerical dissipation other than 
increasing the formal approximation order. This 
method preserves the capability of producing smooth 
and accurate pressure fields of the original method 
and exhibits very small numerical dissipation. Similar 
with Ref. [71], Wang et al.[72] developed 5-point 
stencil WENO reconstruction[93, 98] along the particle 
interacting line, while the missing variables are 
evaluated by firstly searching their nearest fluid 
particles and then adopting the 1st-order Taylor 
expansion. The tests showed that this method is robust 
and able to accurately capture shockwaves. Benefiting 
from the low-dissipation property, it also has a good 
performance in resolving small-scale structures in 
flows. Similar with Refs. [71-72], Meng et al.[104] 
implemented the target ENO (TENO) scheme[100] to 
capture the shocks and small-scale structures in some 
compressible flows, and obtain superior accuracy in 
some incompressible vortex flows and free surface 
flows. 

(1) MUSCL reconstruction 
The MUSCL scheme was developed by van 

Leer[91, 105] to replace the piecewise constant approxi- 
mation of the Godunov-type scheme by reconstructing 
left and right states with piecewise linear approxima- 
tions to calculate fluxes in the Eulerian methods[87]. In 
MUSCL scheme, the spatial derivatives of field 
variable are used for data reconstruction, while direct 
usage results unstable scheme due to spurious 
oscillations near high gradients[87]. To remedy the 
spurious oscillation, slope limiter or flux limiter, is 
applied to limit the approximated gradient near shocks 
or discontinuities. 

As in Eulerian method, the reconstructed, limited 
left and right states are used as input to the Riemann 
solver in the Riemann-based SPH method[64, 68], or to 
obtain the fluxes in the Riemann-based ALE-   
SPH[41, 97]. With the piecewise linear approximation, 
the left and right states of the Riemann problem are 
reconstructed from 
 

1
= + ( )

2L i i i ji      r , 
1

= + ( )
2R j j j ij      r  

                                                                                     (45) 
 
where   is the limiting function and   the ratio of 

successive gradients defined as ) /= (i i i ij    r

( )j i   and ) / (= )j j i j ji j        r , 

respectively. Also, the i  and j  are the 

corresponding gradients calculated from the SPH 
approximation with 
 

= ( )j
i j i i ij

j j

m
W  


                                         (46) 

or with kernel gradient correction defined in Eq. (16). 
Here, we briefly summarize several widely used slope 
limiters. In the Minmod limiter[106], the limiting 
function is defined as 
 

) = max[0,min(1, )](mm                                          (47) 
 
For the SuperBee[106] limiter, the limiting function is 
given by 
 

) = max[0,min(2 ,1),min( ,2)](sb r                         (48) 
 
As for the van Leer[107] limiter, the limiting function 
reads 
 

+
) =(

1+vl

 
 


                                                          (49) 

 
Base on the Barth-Jespersen-type limiter[108], 
Hopkins[97] proposed a limiting function defined as 
 

max min
, ngb , ngb

max min
,mid , mid

= min 1, min ,ij i i ij
bj

ij i i ij

   
 

   

   
       

         (50) 

 
where   is constant, max

,ngbij  and min
,ngbij  are the 

maximum and minimum values of j  among all 

neighboring particles j  of particle i , and max
, midij   

and min
, midij  are the maximum and minimum values 

(over all pairs ij  of the j  neighbors of i ) 

reconstructed on the “ i   side” of the interface be- 

tween particles i  and j  (i.e., max
, mid = max( +ij i 

)i ji  r ). 

    (2) WENO reconstruction 
Different with the classical point-wise one- 

dimensional WENO reconstruction from structured 
mesh data[93, 98, 109], the reconstruction from scattered 
data, i.e., cell average data using unstructured mesh or 
meshless particle data, is numerically very critical 
challenging as it requires solving interpolation pro- 
blem[110-111], in particular when the reconstruction 
order is high, or when the scattered data are very 
unevenly distributed[112-113]. The mostly common pro- 
cedure applied in the unstructured mesh method is to 
construct a set of reconstruction stencils for each 
element by dividing its neighbor elements to different 
groups[114]. Concerning WENO date reconstruction in 
the Riemann-based SPH method, two types of stencil 
reconstruction, i.e., multi-dimensional[70] and one- 
dimensional[71] stencils, are developed. 

Following Refs. [112, 114], Avesania et al.[70] 
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proposed a new class of MLS-ALE-SPH methods by 
first producing each particle a set of high-order MLS 
reconstructions based on multi-dimensional recon- 
structed stencils and then applying a nonlinear WENO 
technique to combine reconstructions with each other. 
For each particle i , the reconstructed stencils are 
defined as: 
 

,0 0=i
j

S  , ij hr                                               (51a) 

 

, = 2i ij
j

S h   r , [1, ]s                              (51b) 

 

,

2
= 2( 1) ,i

j

S
s s 

       
                          (51c) 

 

where ,0iS  is the central stencil containing 

neighboring particle union 0  with distance less 

than h , and ,iS  with [1, ]s   are the one-sided 

stencils consisting of neighboring particle union   
with distance less than 2h  and located at specified 
Circular sector determined by the angle   formed by 
the vector ijr  and the -x axis, as shown in Fig. 5(a). 

Note that more one-sided stencils can be constructed 
by diving the cutoff region of particle i  into more 
Circular sectors. Having the definition of the con- 
structed stencils, the MLS interpolation is applied for 
each particle by assuming the reconstruction poly- 
nomials in the form 
 

,
=1

) = +( ( )
N

i i i i iq C B 




 r r r                                   (52)   

 

for each stencil defined in Eq. (51). Here N  is the      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

size of the polynomial basis (that depends on the 
polynomial degree and on the space dimension), 

( )i iB r r  are the associated basis functions and iC   
are the (unknown) polynomial coefficients, more 
details are referred to Ref. [70]. With the constructed 
polynomials, the classical WENO scheme can be 
applied to obtain the final polynomial defined as 
 

,)( )(=i iq w q 

r r                                                    (53) 

 
with the normalized nonlinear weights given by 
 

=w 








, 
4(

=
+ )k
 



 


 
                                   (54) 

 

Here the constant parameter 610 , and 0 1.0   

and 510
  for central and sided stencils, respec- 

tively. For the calculation of the smoothness indicator, 
Avesania et al.[70] proposed the following equation 
 

2)= ( iC 




                                                             (55) 

 
The MLS-ALE-SPH method was further im- 

proved by Nogueira et al.[103] using the MOOD 
paradigm to improve the accuracy and robustness and 
Avesani et al.[73] adopting ADER approach (arbitrary 
derivative in space and time) to guarantee a high order 
space–time reconstruction. The MLS-ALE-SPH me- 
thod and its improvements are able to capture the 
discontinuity, maintain accuracy and exhibit low 
numerical dissipation in smooth regions, while they 
are generally excessive computational expensive due 
to particle search for all the stencils of each particle 
and the corresponding MLS interpolations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Fig. 5 (Color online) Sketch of the one- and multi-dimensional stencils constructed from meshless particle data 
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To efficiently implement WENO reconstruction 
with the target of increasing the accuracy through 
decreasing dissipation, Zhang et al.[71] developed a 
one-dimensional stencil reconstruction along the 
interacting line of each particle pair as shown in Fig. 
5(b). They first introduced an IS-WENO reconstruc- 
tion, by which the full 4-point stencil as shown in Fig. 
5 is constructed following the concept of Refs. 
[100-101]. To construct the 4-point stencil for each 
interacting particle pair, such as particle i  and j , 

the values at the stencil points are calculated as: 
 

1 =i i i ijq     r , =i iq  , +1 =i jq  , 

 

+2 = +i j j ijq    r                                                    (56) 

 
where i  and j  represent the primitive values, i.e., 

 , P  and ijv e , at particle i  and j  respectively. 

In this 4-point stencil, two visual particles, namely 
1i   and +1j , are constructed along the interacting 

line ijr  with the gradients calculated from the SPH 

approximation of Eq. (46). Similar to  Ref. [71], 
Wang et al.[72] introduced a 5-point stencil by 
constructing more visual particles along the interac- 
ting line ijr  and whose values are calculated as 

 
= + ( )m c c ijq i m    r ,  2, 1, + 2m i i i      (57) 

 
where c  denotes the variable of particle c  which 
is the closed particle to the visual particle located at 

+ ( )i iji m r r . Compared with the 4-point stencil 

construction, the construction proposed by Wang et 
al.[72] provides the possibility of implementing the 
classical 5th-order WENO scheme, while requires 
extra computational efforts for nearest particle search 
of each visual particles. This searching procedure 
increases the complexity of neighbor searching from 

( )O N  to 5 ( )O N [72]. 
    Compared with the multi-dimension WENO 
reconstruction[70], the one-dimensional version[71-72] 
can no longer maintain the higher-order property. 
However, it is reasonable as the main objective of 
applying the WENO reconstruction aims to increase 
accuracy by decreasing the numerical dissipation 
other than increase the formal approximation order of 
the SPH method[70], which depends on many factors 
and is quite difficult to achieve in practice. It is shown 
that a general SPH method applying Gaussian-like 
kernel achieves only 2nd-order convergence even 
when the integration error is sufficiently small[3, 115]. 

Following the WENO reconstruction, the mid- 

point value, i.e., 1/2q  as shown in Fig. 6, is predicted 
by the non-linear weighted average 
 

( )
1/2 1/2= k

k
k

q w q                                                           (58) 

 

where ( )
1/2

kq  and kw  with 1,2,3k   are the recon- 

structed values from the candidate stencils and their 
non-linear weights. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 6 (Color online) Full stencil and candidate stencils for 
classic 5-point WENO[109] (upper panel) and 4-point 
IS-WENO[71, 101] (bottom panel) for the data recon- 

struction at +1/2ir  
of one-dimensional stencil 

 
    For classic 5-point stencil WENO scheme, the 
reconstructed values are defined as: 
 

(1)
1/2 2 1
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6 i i iq q q q  , 
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(3)
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1
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6
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with the renormalized nonlinear weights given by: 
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Also, the smoothing indicator is calculated from 
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2 2
3 +1 +2 +1 +2

1 13
= ( 4 + + ( 2 +

4
)

12
)i i i i i iq q q q q q      (61) 

 
As for the 4-point stencil IS-WENO scheme, 

these reconstructed values are defined as[71, 101] 
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Also, the non-linear weights are 
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                                                                                     (63) 
 
where the linear weights are determined as 1 = 1 / 3d , 

2 = 1 / 6d  and 3 = 1 / 2d . Also, k  with = 1,2,3k  
and 12  are the smoothness indicators for the 
candidate stencils 
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1 +1= ( )i iq q  , 2

2 1= ( )i iq q  , 
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( 2 + + (3 4 + )
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                                                                                     (64) 
 
and 4  is a global reference smoothness indicator[100] 

given as 
 

4 1 1 +1 2= [ 547 2522 +19( 22 9 +)4 4i i i i iq q q q q      
 
  +1 +23423 5966 +1602 +( )i i i iq q q q  
 
  1 +1 +2 22843 1642 + 267 ] / 240( )i i i iq q q q             (65) 
 
    Both the WENO and IS-WENO reconstruction 
can be further improved by the TENO scheme[100] 
with the non-linear weights reformulated as 
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k k
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
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                                                             (66) 

 
where kd  are optimal weights with respect to their 

dispersion and dissipation properties[99-101] and   is 
a sharp cutoff function to determine the contribution 
of each sub-stencil. Following Fu et al.[100], the cutoff 
function is defined as 
 

= 0k  if <r TC                                                   (67a) 
 

= 1k , otherwise                                                     (67b) 
 
with threshold 5= 10TC  and the parameter r  is a 
normalized smoothness measure. For each sub-stencil, 

r  is defined as 
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where   is a scale separation to distinguish dis- 

continuities from smooth region. For 5 -point WENO 
scheme 
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and for 4 -point IS-WENO 
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                                                      (70) 

 
The convergence rate of different data recon- 

struction, i.e., piece-wise constant reconstruction ter- 
med as “Baseline”, MUSCL and IS-WENO schemes, 
is presented in Fig. 7 which gives the density error 
with increasing particle resolution for one-dimen- 
sional acoustic wave propagation[71]. Both MUSCL 
and IS-WENO reconstructions achieve 2nd-order 
convergence, which is the formal accuracy of a 
general SPH approximation with Gaussian-like 
smoothing kernels when the particle integration error 
is negligible[115]. As expected, the Baseline achieves 
1st-order convergence only, and MUSCL exhibits 
considerably larger errors due to numerical dissi- 
pation. 
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    (3) MOOD scheme 

The aforementioned MUSCL and WENO 
schemes provide a priori limitation procedure, which 

is performed with data at time nt  to eliminate the 
spurious numerical oscillation in the vicinity of dis- 

continuity at time +1nt [70]. Recently, Clain et al.[116] 
proposed a posteriori MOOD limiting paradigm 
within the finite volume Eulerian framework on 
unstructured mesh. The MOOD paradigm consists of 
detecting problematic situations after each time update 
of the solution and of reducing the local polynomial 
degree before recomputing the solution. Nogueira et 
al.[103] implemented the MOOD paradigm in the 
MLS-WENO-SPH method[70, 73] to determine, a 
posteriori, the optimal order of the polynomial 
reconstruction of MLS interpolation for each particle 
that provides the best compromise between accuracy 
and stability. Then, Antona et al. [117] extended this 
method to the simulation of weakly-compressible 
viscous flow. 

Different with Refs. [103, 117], where the 
posteriori limiting procedure is performed at the MLS 
interpolation process, we derive herein the exploita- 
tion of MOOD paradigm to determine the optimal 
data reconstruction of the left and right states in the 
Riemann-based SPH method. The key idea is to 
introduce a Data Reconstruction Degree decrementing 
process to replace the counterpart based on Particle 
Polynomial Degree (PPD) applied in the original 
MOOD paradigm[103, 116]. More precisely, the present 
MOOD paradigm consists of two ingredients, a DRD 
and a detector. The DRD indicates the optimal data 
reconstruction, Baseline, MUSCL or WENO scheme, 
for the Riemann problem to obtain the candidate 

Riemann solution of  , i.e., U   and P . The 
detector controls the admissibility of the resulting 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Riemann solution and the particle DRD will be 
decremented from the WENO scheme to MUSCL 
scheme even further to Godunov scheme when a 
detector is activated. The Riemann solution with 1st- 
order robust Godunov scheme, i.e., the reconstructin 
with piecewise constant assumption, is assumed to be 
always valid as the original MOOD paradigm in Refs. 
[103, 116]. Figure 8 sketches the Riemann-based SPH 
method with Godunov in the top panel, MUSCL or 
WENO reconstruction, while displays in the bottom 
panel the present posteriori MOOD procedure. 
Concerning the detector, the physical admissibility 
detection 
 

threshold0 < P P                                                           (71) 
 

or the discrete maximum principle 
 

)min( , max( ),i j i j                                        (72) 
 

proposed by Nogueira et al. [103] can be applied. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 8 Sketch of the Riemann-based SPH (top panel) and the 

one with MOOD posteriori limiting paradigm (bottom 
panel) 

 

 
 

Fig. 7 (Color online) Numerical study of one-dimensional acoustic wave: The convergence of the density error as a function of 
particle resolution by using the Baseline scheme, MUSCL with the Sweby limiter and IS-WENO reconstructions 
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2.4 Particle-interaction configuration 
In the particle-base methods, the pairwise inter- 

action between neighboring particles is determined 
through a Gaussian-like kernel function which has 
radial-symmetric compact support. Therefore, imple- 
menting the particle-interaction configuration, i.e., 
searching of neighboring particles and computing 
corresponding kernel weights and gradients, is a 
critical aspect of the high-performance particle-based 
solver. Concerning the particle neighbor search, two 
different approaches, i.e., cell-linked list (CLL)[118] 
and Verlet list (VL)[119], are widely used in the 
particle-method community[120-122]. With different 
neighbor search technique, the particle-interaction 
configuration can be updated accordingly. For the 
CLL approach, the neighbor search procedure must be 
performed at each numerical iteration, indicating that 
the particle-interaction configuration is also updated 
accordingly. As for the VL approach, a VL containing 
all potential neighboring particles is created and stored 
for each particle. Therefore, a VL may be used for 
multiple times without executing neighbor search if 
the particle-interaction configuration can be obtained 
and stored[120-122]. Notwithstanding the wide imple- 
mentation of the CLL and VL approaches in the 
particle-based methods, they may become not 
sufficiently efficient when adaptive particle resolution 
with variable smoothing lengths is applied[123-124], 
where tree-based neighboring search technique can be 
applied to address this issue[125-127]. With the CLL and 
VL approaches in hand, several schemes, data sorting 
with space filling curve[120, 128-130], dual-criteria time 
stepping[54] and multi-cell linked lists[131], are 
developed for the further improvement of compu- 
tational efficiency. 
 

2.4.1 Cell-linked and Verlet lists 
    In the linked list approach, i.e., CLL and VL, the 
whole computational domain is partitioned into 
equisized cells and each cell possesses a list consisting 
of the references of all the particles located inside it, 
as shown in Fig. 9. 

For the CLL approach, the cell size is equal to 
that of the support or cut-off radius of the kernel 
function, i.e., 2h , and the particle neighbor search is 
restricted to the nearest neighboring cells, 9 cells in 
two dimensions as shown in Fig. 9. After the 
neighbor-searching operation, the kernel function 
values and interaction forces can be calculated with 
respect to the particles belong to these neighboring 
cells only if they are found within the cut-off radius. 
As the CLL approach does not store the neighboring 
particle identities and the corresponding kernel func- 
tion values, the particle-interaction configuration must 
be updated multiple times during a single time step in 
the time integration, e.g., the particle-interaction 
configuration is updated twice when the kick-drift- 

kick time integration scheme is applied[74, 132-133]. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 (Color online) Sketch of the different approaches used to 

create the neighboring particle list: The cell-linked list 
(upper panel) and the Verlet list (bottom panel) 
approaches 

 

    Different with the CLL approach, the VL 
increases the cell size to 2 +h h , creates and stores a 
Verlet list which contains the references to all 
potential neighboring particles for each particle by 
checking all particles within the adjacent cells[120], as 
shown in Fig. 9. Without conducting neighbor particle 
search, a VL can be used for multiple times, twice for 
one single time step with the kick-drift-kick scheme, 
with non-vanishing kernel function values[120]. 

Dominguez et al.[120] conducted a comprehensive 
study of the CLL and VL approaches, and concluded 
that the VL approach has to use cells with consi- 
derably larger size than the cut-off radius to increase 
the possibility of reusing the Verlet list. They 
demonstrated that with a 50% increase of the cell size, 
only a slight performance gain of 8% is achieved 
when the Verlet list is reused for 13 times in 7 time 
steps. Winkler et al.[134] also found that in general this 
approach is not able to substitute the CLL due to its 
poor performance. More recently, Fraga Filho et al.[135] 
evaluated the performance of the CLL and the VL 
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approaches, and concluded that the VL approach is an 
optimisation proposal in which the neighbor list is not 
updated at each numerical iteration through an 
appropriate choice of the cutoff radius ensuring no 
accuracy loss in the location of neighboring particles. 
 
2.4.2 Particle sorting with space filling curve 
    Traditionally, particles are generated and stored 
following a given order, row or column order for 
Lattice distributed particles, and the corresponding 
memory allocation of particle data is unaltered during 
the dynamic relaxation process. This results poor 
temporal and spatial data access and insufficient usage 
of memory hierarchy[120, 123] due to the full Lagrangian 
feature of the particle-based methods. Therefore, 
sorting particle data to change their memory location 
for better data locality, which has positive effects on 
hardware caching[136], can improve the memory access 
and decrease the computational time, achieving 
scalability and efficiency for large scale particle 
simulations. To that end, particle data arrays including 
particle index and other physical variables are 
rearranged so that the neighboring particles are close 
in computer memory space. This procedure can be 
realized by implementing sorting algorithm with 
proper space filling curve (SFC), for example the 
Morton SFC[137] and the Hilbert SFC[138], which 
traverses higher dimensional space in a continuous 
fashion[139]. Note that particle sorting does not change 
the particle-interaction configuration. 

Springel[123] implemented an efficient Hilbert 
SFC in a cosmological N-body/SPH code to domain 
decomposition and particle sorting within each 
processor, exhibiting approximated speedup of 2 
compared with random sorting.  For pure SPH simu- 
lation, the CLL approach is introduced to avoid the 

naive 2( )O n  neighbor searching and particle sorting 
can be conducted with respect to the mapped cell 
index[120, 129]. Dominguez et al.[120] showed that 
implementing particle sorting with the Morton SFC[137] 
can increase the computational performance about 20% 
for weakly-compressible SPH simulations. Since then, 
particle sorting has been implemented in particle- 
based code with the coupling of MPI[140], GPU- 
acceleration[128, 134, 141] and share-memory high- 
performance computing strategy[129]. 

Following Refs. [120, 129], the cell index in the 
CLL will be defined by a SFC function[137-138] 

cell cell cell cell( , , ) =H x y z n
 

which produces one dimen- 

sional indices celln  where two cells i  and j   that 
are geometrically close will be ordinally close. As 
pointed out by Dominguez et al.[120] particle sorting 
provides a way to improve the data access pattern and 
neighboring particle search, while it increases the 
memory requirements. 

2.4.3 Dual-criteria time stepping 
Zhang et al.[54] proposed a dual-criteria time 

stepping scheme to optimize the computational 
efficiency of the weakly compressible SPH (WCSPH) 
method by introducing two time-step criteria charac- 
terized by the particle advection and the acoustic 
speeds, respectively. In this scheme, the advection 
criterion determines the updating frequency of the 
particle-interaction configuration, i.e., the simplest VL 
approach with a cell size of 2h  and the corres- 
ponding kernel weights and gradients, and the 
acoustic criterion controls the frequency of the 
pressure relaxation process, i.e., the time integration 
of the particle density, position and velocity. 
    The time-step size determined by the advection 
criterion, termed adt , has the following form 
 

2

max

= CFL min ,ad ad

h h
t



 
   

 v
                                 (73) 

 
where CFL 0.25ad  , | |maxv  is the maximum 

particle advection speed in the flow and   the 
kinematic viscosity. The time-step size according to 
the acoustic criterion, termed act , has the form 

 

max

= CFL
+ac ac

h
t

c


v
                                              (74) 

 
where CFL = 0.6ac . Therefore, the pressure relaxa- 

tion process is carried out approximately /adk t 

act  times, for example k  is about 4 to 5 when 
considering inviscid flow[54], during one advection 
step. Also, the particle-interaction configuration is not 
altered in one advection time step, a large 
CFL = 0.6ac  value typically for a Eulerian method is 
allowable without introducing numerical instability. 
    As reported in Ref. [54], the dual-criteria time 
stepping scheme can achieve a speedup up to 2.8 with 
good robustness and accuracy, in comparison to the 
traditional counterpart where the CLL approach is 
applied. 
 
 
3. Solid mechanics 

In SPH method, there are generally two types of 
formulations, namely update Lagrangian (UL) [4, 43] 
and total Lagrangian (TL)[44] formulations, developed 
for solid dynamics. The UL formulation, where the 
current configuration is used as the reference, suffers 
from several shortcomings, e.g., the presence of tensile 
instability[142-143] exhibiting non-physics fracture, the 
appearance of zero-energy modes due to the rank- 
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deficiency inherent to the use of under-integrated 
particle integration[144] and the reduced order of 
convergence for derived variable[10]. To address these 
problems, many modifications by correcting the 
kernel function[34, 43, 145], improving the interpolation 
integral[146-148] or introducing transport-velocity 
formulation[143] have been proposed. Compared with 
the UL formulation, the TL formulation shows 
promising potential in the simulation of finite 
deformation due to its attractive advantages in being 
free from tensile instability and ensuring 1st-order 
consistency when computing deformation gradient by 
introducing the kernel gradient correction. Since its 
inception, it has been applied for the problems of 
thermomechanical deformations[149], fluid-structure 
interaction (FSI)[56, 150-152] and biomechanics[23, 153-154], 
among many others.  In this review, we focus on the 
TL formulation with highlights on stabilized term, the 
steady state solution and the hourglass control 
scheme. 
 
3.1 Governing equations 

The kinematics of the finite deformation can be 
characterized by introducing a deformation map  , 

which maps a material point 0r  from the initial re- 
ference configuration 0 d    to the point =r

0( , )tφ r  in the deformed configuration 0= )( φ . 

Here, the superscript 0(•)  denotes the quantities in 
the initial reference configuration. Accordingly, the 
deformation tensor   can be defined by its 
derivative with respect to the initial reference configu- 
ration as 
 

0
0 0

= = =
  


 

r

r r
                                                (75) 

 

With the definition of the displacement 0= u r r , 
the deformation tensor   can also be reformulated 
as 
 

0= + u                                                               (76) 
 
with   representing the unit matrix. 
    In total Lagrangian framework, the conservation 
of mass and the linear momentum corresponding to 
the solid mechanics can be expressed as 
 

0 1
=

J
  , 0 , ][0 T                                            (77a) 

 

0 0 T 0d
= +

d
 

t
 v

g , 0 , ][0 T                      (77b) 

 
where   is the density, = det ( )J  ,   the first 

Piola-Kirchhoff stress tensor =   with   the 

second Piola-Kirchhoff stress tensor. In particular, 
when the material is linear elastic and isotropic, the 
constitutive equation can be simply given by 
 

1
= tr ( ) + 2 tr ( ) = tr ( ) + 2

3
  
 

K G            

                                                                                     (78) 
 
where   and   are the Lamé parameters[155], 

= + (2 / 3)K    the bulk modulus and =G   the 
shear modulus. The relation between the two modulus 
reads 
 

= 2 (1+ ) = 3 (1 2 )E G K                                        (79) 

 
with E  denoting the Young’s modulus and   the 
Poisson’s ratio. Note that the artificial speed of sound 

is defined as = /Sc K  . The Neo-Hookean 
material model can be defined in a general form with 
the introduction of the strain-energy density function 
 

2= ) ln + (ln
2

 )tr ( J J
 W                            (80) 

 
Then the second Piola-Kirchhoff stress   is derived 
as 
 

=



 
W

                                                                   (81) 

 
3.2 Total Lagrangian formulation 
    In the TL formulation, the correction matrix of Eq. 
(17) of the kernel gradient correction is calculated 
from the initial reference configuration as[4, 44]

 
 

1

0 0 0 0)= (


 
  
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b
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where 
 

 0

0 0

0

,
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


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ab
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ab

W h
W

r
e
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                                           (83) 

 
denotes the gradient of the kernel function. Here, the 
subscript a  and b  are introduced to denote the 
solid particles. It is worth noting that the correction 
matrix is only calculated once before the simulation as 
it is evaluated at the initial reference configuration. 
Then, the discretization form of the mass and 
momentum conservation equations, Eq. (77), yields 
 

0 1
=

det( )a   ,  0d 2
= + +

dt
fa

aba b a ab
bi

V V W
m

v
g f  

                                                                                     (84) 
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where ff  denotes the force exerting on the solid 
particles due the existence of the fluid particles and 
 denotes the inter-particle averaged first Piola- 
Kirchhoff stress and is defined by 
 

 0 01
= ( +

2
)ab a a b b                                                (85) 

 

Note that the first Piola-Kirchhoff stress tensor is 
computed from the constitutive law with the defor- 
mation tensor   given by 
 

0 0= ( +)
   
 
 b b a a ab a

b

V Wr r                         (86) 

 
3.3 Stabilized scheme 

Without appropriate stabilization technique, the 
original TL formulation may exhibit spurious fluc- 
tuations especially in the vicinity of sharp spatial 
gradients. This deficiency can result in numerical 
instability and lead to wrongly predicted deformation 
for problems involving large strain. To rectify this 
deficiency, Lee et al.[156] proposed a Jameson- 
Schmidt-Turkel SPH (JST-SPH) method, which 
shows good performance of eliminating spurious 
pressure oscillations in the simulation of nearly 
incompressible solid. In JST-SPH, the nodally con- 
servative JST stabilization is additively decomposed 
into harmonic operator (2nd-order) and biharmonic 
operator (4th-order) which require excessive computa- 
tional efforts[157]. In a more recent work, Lee et al.[158] 
further proposed a total Lagrangian upwind SPH 
(TLU-SPH) method by introducing a characteristic- 
based Riemann solver in conjunction with a linear 
reconstruction procedure to guarantee the consistency 
and conservation of the overall algorithm. This 
method also shows good performance in the simula- 
tion of nearly and truly incompressible explicit fast 
solid dynamics with large deformations. 

More recently, Zhang et al.[154] proposed an 
efficient artificial damping method by introducing a 
Kelvin-Voigt (KV) type damper for the TL 
formulation with adding appropriate damping terms 
into the constitutive equation. Note that many stabili- 
zation strategies for UL formulation, e.g. artificial 
viscous fluxes[3, 4, 159], conservative strain smoothing 
regularization[10, 160] and Riemann-based scheme[66], 
can also be applied in the TL framework. In KV 
model, a viscous damper and a purely elastic spring 
connected in parallel are involved. Following the 
same idea, an elastic solid undergoing large strain can 
also be modeled with the mechanical components of 
springs and dashpots. Thus, the total stress total  can 

be decomposed into two parts, i.e., the elastic stress 

S  and the damper stress D  as 
 

total = +S D                                                             (87) 
 
where the damper stress is defined by 
 

d ( )
=

dD

t

t
  

                                                             (88) 

 
Here d ( ) / dt t  denotes the strain rate and   the 
physical viscosity. Applying the KV model to TL 
formulation, the second Piola-Kirchhoff stress    
can be rewritten as 
 

= +S D                                                                 (89) 
 
where S  is given by the constitutive equation of Eq. 

(78) or Eq. (80), and the damper D  is defined as 
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t
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   
             (90) 

 
By introducing a von Neumann-Richtmyer type 
scaling factor with the speed of sound c , the artificial 
viscosity π  in Eq. (90) is defined by 
 
π = ch                                                                    (91) 
 
where = 0.5  is a constant parameter and h  
denotes the smoothing length. 

Figure 10 shows the validations of the TL 
formulation and the KV-type damper for solid 
mechanics and its applications in bio-mechanics. 
Figure 10(a) presents the time histories of velocity and 
displacement in the length direction at the right tip end 
of an elastic cable which experiences a wave propa- 
gation initialized by imposing a velocity = 5 m / sv  
along the length direction on the right quarter[154]. For 
the original TL formulation without stabilized 
schemes, excessive oscillation and similar overshoots 
in the velocity and displacement profiles are exhibited. 
With both JST[156] and KV-type[154] stabilized scheme, 
correct velocity and displacement are predicted as 
expected, whereas small overshoots are observed with 
the JST scheme[156]. Figure 10(b) reports the deformed 
configuration with von Mises stress contour and the 
displacement of the free end for three-dimensional 
bending rubber-like cantilever whose bottom face is 
clamped to the ground and its body is allowed to bend 
freely by imposing an initial uniform velocity[45]. 
Compared with the numerical data in literature 
obtained by mesh-based method[161], the nonlinear 
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deformation of the structure is accurately predicted by 
the TL formulation with the KV-type damper. The 
robustness and versatility in biomedical applications 
of the TL formulation is portrayed in Fig. 10(c) where 
the C-shaped stent is considered by imposing initial 
velocity at its top and bottom[154]. To the best 
knowledge of the authors, this is first time that an 
SPH-based method is successfully extended to the 
simulation of realistic cardiovascular stent and this 
will open up interesting possibilities for modeling 
bio-mechanical applications. 
 
3.4 Steady state solution 

Coupling a mechanical system to converge to a 
static equilibrium state plays a key role in static and 
dynamic analyses. For SPH-based simulations, where 
an explicit time integration scheme is mainly applied, 
fast achieving the static equilibrium state is a very  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

critical numerical challenging. Also, traditional im- 
plicit methods solving the entire system with iterative 
solvers are not applicable for large scale applications 
especially in nonlinear cases. Instead, dynamic relaxa- 
tion, which was originally proposed for finite element 
method (FEM)[162-164], is attractive as its explicit 
iterative algorithm is simpler and more efficient. 

Generally, there are two groups of dynamic 
relaxation technique, i.e., viscous dynamic relaxation 
(VDR)[165] and kinetic dynamic relaxation 
(KDR)[166-167], with respect to the manner of applying 
damping. In VDR, an artificial viscous damping term 
is added into the equation of motion to reduce the 
number of iterations. While VDR is able to obtain 
system equilibrium without the loss of momentum 
conservation, it suffers one difficulty that the solution 
for nonlinear problems may be path dependent and 
vary with different damping ratio as noted By Lin et 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Fig. 10 (Color online) Total Lagrangian SPH formulation for solid mechanics: (a) Velocity (left panel) and displacement (right 

panel) profiles for wave propagation in an elastic cable with different stabilized scheme, (b) Deformed configurations 
with von Mises stress contour (left panel) and the displacement profile at the free end (right panel) for bending 
rubber-like cantilever, (c) The deformed configuration with von Mises stress contour of C-shaped stent 
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al.[168]. Also, the relaxation process is slow if insuffi- 
cient damping ratio is applied, on the other hand, 
excessive damping not only can lead to numerical 
stability issue for explicit damping scheme but also 
hinder the system from achieving the correct final 
steady state as the damped velocity can be very small. 
The inefficiency of the damping leads low efficiency 
to achieve the final solution, which is the main 
drawback of VDR[169]. As an alternative approach, the 
KDR was first proposed by Cundall[170] for static 
structure analysis. In the KDR, the damping is intro- 
duced to a dynamic system by resetting all current 
velocities to zero when kinetic energy peak is 
detected[164]. After performing this relaxation pro-  
cedure several times for successive local peak kinetic 
energy, the final state can be achieved and the static 
equilibrium solution is obtained. The procedure is 
simple with no damping coefficient required and has 
been applied to a wide range of engineering 
problems[169, 171]. However, it also exhibits two 
obvious drawbacks. One is that it violates the 
momentum conservation, therefore, it cannot be 
applied to moving systems for their equilibrium state 
analysis due to the variation of the entire mechanical 
energy.  The other is that the additional process for 
kinetic energy peak detection brings extra computa- 
tional efforts[166, 172]. Concerning the development of 
dynamic relaxation in SPH method, the first effort is 
due to Lin et al. [168] where a dynamic relaxation 
scheme is developed for shell-based SPH by 
exploiting the formulations in finite element analysis. 
However, the damping matrix as well as the damping 
ratio have to be chosen suitably, which is not an easy 
task. 
    Recently, Zhu et al.[173] proposed a VDR-type 
dynamic relaxation method for the SPH method by 
introducing an efficient momentum-conservative 
damping. Specifically, an artificial viscous force is 
first introduced into the momentum conservation 
equation which is rewritten as 
 

Od
= +

dt
v

f f                                                             (92) 

 

where Of  is the original term and f  denotes the 
added damping term. This viscous damping term can 
be discretized as 
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where   is the dynamic viscosity. 

    Note that along with the acoustic and body-force 
time-step size criteria, the time-step size during the 

simulation would be also constrained by 
 

2
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h

t
D

                                                               (94) 

 
where = {1,2,3}D  for one-, two- or three-dimen- 
sional cases, respectively. This limitation may lead 
excessive computational efforts especially when large 
damping ratio and high resolution ratio are applied. To 
release this limitation, an operator splitting  
scheme[23, 174] is first applied to decouple the momen- 
tum conservation equation Eq. (92) into the original 
momentum part and the damping part. Then, two 
operators mS  and dS , which yield 
 

mS : O( + ) = ( ) +t t t t v v f                                     (95) 

 
and 
 

dS : ( + ) = ( ) + t t t tv v f                                      (96) 
 
are introduced as forward Euler scheme is adopted for 
time integration. Subsequently, the first order Lie- 
Trotter splitting scheme[175] is applied to approximate 
the solution from time t  to +t t  by 
 

( ) ( )( + ) = ( )  t t
d mt t S S tv v                                           (97) 

 
where the symbol   denotes the separation of each 
operator and indicates that ( )t

dS   is applied after 
( )t
mS  . As demonstrated in Refs. [176-177], a larger 

time-step size is allowed when suitable implicit 
formulations are constructed to solve the viscous term. 
    To avoid large scale matrix operations for 
traditional implicit formulations, the entire-domain- 
related damping step is sequentially split into particle- 
by-particle operators, e.g., by 2nd-order Strang 
splitting[23, 178], as 
 

( ) ( /2) ( /2) ( /2) ( /2) ( /2) ( /2)
1 2 2 1=            

t t

t t t t t t t
d N NS D D D D D D   

                                                                                     (98) 
 
where tN  denotes the total number of particles and 

aD  the split damping operator corresponding to 

particle a . Two efficient schemes, the particle-by- 
particle splitting scheme and the pairwise splitting 
scheme, are then proposed for the local damping 
operator[173]. The new time-step velocity updating for 
the entire field can be thus achieved by carrying out 
the local split operator to all particles for half a time 
step and then performing the operator to these par- 
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ticles in a reverse sequence for another half time 
step[179] as shown in Eq. (98). 
 
3.4.1 Particle-by-particle splitting scheme 
    In an implicit formulation, the local damping 
term in Eq. (93) can be rewritten as 
 

+1d 2

d
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n
a ab ab

a b
ba ab ab

W
V V
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   

   
 vv

f                      (99) 

 

where +1 = + d dn n
ij ij i jv v v v  with d iv  and d jv  

representing the incremental change of velocity for 
particle a  and its neighboring particles b  induced 
by viscous acceleration. After denoting 
 

1
= 2 dab

b a b
ab ab

W
B V V t

r r





                                          (100) 

 
and 
 

= 2 d =
n

nab ab
a a b b ab

b bab ab

W
V V t B

r r



 

 v
E v              (101) 

 
the implicit formulation Eq. (99) can be simplified to 
 

d d=a b a a b b
b b

B m B
   
 
 E v v                          (102) 

 
With the gradient descent method[180], d av  and d bv  
can be thus evaluated. In Ref. [173], the local update 
of velocities includes two steps as follows. The first 
step calculates the incremental change for velocity by 
gradient descent method, i.e. 
 

+1 + d += =n n n
a a a a b a

b

B m
  
 
v v v v k , 

 

1 1 1 1 1+ d ==p n n Bv v v v k , 
 

2 2 2 2 2= + d =p n n Bv v v v k , 
 

+ d ==p n n
N N N N NBv v v v k                                      (103) 

 
where the superscript p  denotes the predicted value 
and 
 

12

2+ ( )= b a b a
b b

B m B


  

  
   
 k E                      (104) 

 

is the learning rate. The second step ensures momen- 
tum conservation, which yields 
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1 1 1
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N

B
m
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

v v
v v                                          (105) 

 
For more details about the formulation, the readers 
can refer to the literature[173]. 

As the velocities are updated implicitly, much 
larger time-step size is allowed and the following vis- 
cous criterion 
 

2

50
h

t
D

                                                                (106) 

 
which is about 100 times larger than the corres- 
ponding explicit method as presented in Eq. (94), is 
adopted. 
 
3.4.2 Pairwise splitting scheme 

The pairwise splitting scheme is inspired by the 
work of Ref. [176], where particle velocity is updated 
implicitly and locally in a pairwise fashion. By adop- 
ting the 2nd-order Strang splitting[178], the damping 
operator corresponding to each particle i  as given in 
Eq. (98) is further split based on its neighbors, i.e. 
 

( ) ( /2) ( /2) ( /2) ( /2) ( /2) ( / 2)
,1 ,2 , , ,2 ,1=t t t t t t t

a a a a N a N a aD D D D D D D               

                                                                                   (107) 
 

where ( /2)
,

t
a bD   denotes the interaction between par- 

ticle a  and its neighbors. Specifically, the incremen- 
tal changes for velocity of a specific particle pair 
induced by viscosity can be written in implicit form as 
 

=d +( )d da a b ab a bm B v v v v ,  

 
=d +( )d db b b ab a bm B v v v v                                (108) 

 
Here, bB  is defined in Eq. (100) and it is obvious 

that this process does not change the conservation of 
momentum. Then, d av  and d bv  can be obtained 

straightforwardly by solving Eq. (108), which yields 
 

d
( +

=
)

b ab
a b

a b a b b

B
m

m m m m B
v

v , 

 
 



 

 
 

787

 

d
(

=
)+

b ab
b a

a b a b b

B
m

m m m m B



v

v                              (109) 

 
By sweeping over all neighboring particle pairs for 
half a time step and then over these particles in a 
reverse sequence for another half time step, the 
incremental changes for velocity of particle a  and 
all its neighbors can be thus achieved. Compared to 
the particle-by-particle splitting method, this scheme 
leads more errors in solving viscosity due to the 
further splitting in pairwise fashion. However, it is 
unconditional stable and thus more suitable for 
problems with high spatial resolution and high 
damping ratio. 
 
3.4.3 Random-choice strategy 
    It is worth noting that the added viscous force 
would hinder the system achieving correct steady state 
especially when the damping radio is large, which 
may lead to the different solutions of the nonlinear 
problems with different damping ratio[168]. Thus, a 
suitable damping ratio has to be selected[168, 181] for 
faster reaching to final state of the system with the 
aforementioned viscous damping methods. 
    To avoid this damping-ratio-related problem and 
relax the limitation on the choice of large damping 
ratio, a random-choice strategy where the viscosity 
term is imposed randomly rather than at every time 
step is presented by Zhu et al.[173]. To achieve this, the 
artificial dynamic viscosity   is modified as 
 

=



  if >                                                     (110a) 

 
= 0  otherwise                                                    (110b) 

 
where   is a random number uniformly distributed 

between 0 to 1, and = 0.2  a parameter determining 
the probability. Therefore, the resistance on displace- 
ment induced by the large artificial viscosity can be 
released randomly, which eliminates the damping- 
ratio-related issue and accelerates the achievement to 
the final state. Note that this strategy also helps to 
save much computational cost since the computation 
of damping is only carried out at a small fraction of 
time steps. 

The performance of the VDR-type dynamics 
relaxation scheme is validated by considering an 
elastic block sliding along a smooth slope accelerated 
by the gravity[173]. Figure 11 presents the time 
histories of the distance between the block center and 
the slope, and the displacements of the block center in 

-x  and -y direction. With the dynamics relaxation 

scheme, the steady state is quickly achieved by sur- 

passing oscillations. Note that this dynamics relaxa- 
tion scheme can also be applied to fluid dynamics to 
achieved hydrostatic solution as shown in Ref. [173]. 
 

3.5 Hourglass control scheme 
    In FEM method, hourglass modes represent zero- 
energy modes in the sense that the element deforms 
without an associated increase of the elastic energy 
when reduced-integration elements are employed. 
Insufficient integral points lead to rank deficiency of 
FEM stiffness matrix, which further causes the 
non-uniqueness of governing equations. Similarly, 
SPH method is also susceptible to hourglass modes as 
all field variables and their derivatives are evaluated at 
the same position[147, 182]. These modes cannot be 
detected and can be developing over time[183] if the 
number of integration points is reduced, and therefore 
the solution is polluted with arbitrary amounts of 
strain energy and entirely dominated by these 
modes[145]. 

To address the hourglass modes in SPH method, 
Swegle et al.[184] proposed to replace the strain mea- 
sure by a non-local approximation based on gradient 
approach and Beissel and Belytschko[185] introduced a 
stabilization term to the potential energy function. 
However, the empirical parameter, introduced by 
these two methods, should be modified 
dependingly[186]. A more straightforward idea is to 
introduce additional integral points to calculate 
derivatives away from particles with zero derivatives 
of the kernel function[159, 187]. Two sets of points, 
velocity points and stress points[159], are applied to 
discretize the calculation domain, one carrying the 
velocity and the other carrying the stress. While the 
velocity gradient and stress are computed on stress 
points, the divergence of stress is calculated using 
stress points as neighbor particles and then sampled at 
velocity points[188]. The enhanced stability of addi- 
tional stress points was confirmed in the following 
studies[189-190]. However, estimating the stresses of 
stress points induces extra computational efforts and 
how to place the stress points is till not fully 
addressed. 

When the FEM using the one-point reduced finite 
element, a mean deformation gradient is obtained, 
resulting mean strain and stress over a single element. 
The SPH method also evaluates a mean strain and 
stress at the center of a particle through the weighted 
averaging over the neighboring particles. Recently, 
Ganzenmüller[145] recognized the analogy between 
SPH collocation and FEM using the one-point reduced 
element. Inspired by Flanagan and Belytschko[191], 
Ganzenmüller pointed out that the mean stress-strain 
description can only represent a fully linear velocity 
field, which implies node or particle displacement 
should be exactly described by the deformation gra- 
dient, and node or particle displacement incompatible  



 

 
 

788

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
with the linear deformation field are identified as the 
hourglass modes. The distance of particle a  and b  
can be estimated by the deformation gradient a  as 
 

0=
a

ab a abr r                                                            (111) 
 

When the hourglass mode exists, the estimated 
distance between the two particles is inconsistent with 
the actual distance. This difference defines the error 
vector 
 

=
aa

ab ab ab r r                                                       (112) 
 

Subsequently, its straightforward to address this error 
by introducing a correction force which is propor- 
tional to the error vector. To this end, an artificial 
stiffness is added to counteract hourglass modes. Then, 

the scalar a
ab  can be defined as 

 

=
a

a ab ab
ab

ab




r

r
                                                             (113) 

 
which represents the projection of error vector onto 
current particle distance vector. With this in hand, the 
hourglass correction force per unit volume is given by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0
ˆ =

a
a ab ab

ab
abab ab

E 


r
f

rr r
                                                (114) 

 

In this case, the stiffness is linear in a
ab  and 

described using the Young’s modulus E . A norma- 
lized smoothing kernel is used to be consistent with 
SPH collocation, and an explicit systematization via 
the arithmetic mean is applied as the hourglass forces, 
ˆ a

abf  and ˆ b
baf , are unsymmetrical. Therefore, the 

smoothed and symmetric correction force between 
particle a  and b  can be expressed as 
 

1ˆ ˆ ˆ= ( +
2

)HG a b
ab ab ab baWf f f                                      (115) 

 

where   is a dimensionless constant which deter- 
mines the amplitude of the hourglass control. Finally, 
the total hourglass correction force of particle a  
over all neighboring particles is 
 

=ˆ=HG HG
ab a b ab ab

b

V V W f f  

 

 
 
Fig. 11 (Color online) Numerical investigation of the block sliding along slope. The configuration (upper panel) and the time 

histories of the distance between the block center and the slope (a) and displacement of the block center in  and 
directions (b) 
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a ab b ba
b abab
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E E   r

rr
                     (116) 

 

This hourglass control algorithm has successfully 
applied in geomaterials[192], FSI with GPU accelera- 
tion[186, 193], etc. 
 
 

4. Fluid-structure interaction 
Fluid-structure interaction, where the structure 

represents either movable rigid or flexible structures is 
ubiquitous in natural phenomena, e.g., aerial animal 
flying, aquatic animal swimming and blood circula- 
tion, and also plays a crucial role in the design of 
many engineering systems, e.g. automobile, aircraft, 
spacecraft, engines and energy harvesting device. This 
phenomenon is characterized by multi-physics coup- 
ling between the laws that describe fluid dynamics 
and structural mechanics. Due to the intrinsic 
complexity of the interaction between a movable or 
flexible structure and a surrounding or internal fluid 
flow, computational study of this type multi-physics 
problems is highly challenging. 
    The conventional FSI algorithms are based on 
mesh-based methods, i.e., the finite difference method 
(FDM)[194], the FEM[195] and the finite volume method 
(FVM)[196], by implementing monolithic or partitioned 
approach. The monolithic approach treats the coupled 
problem as a whole with proper combination of the 
sub-system, applying a single solver to simultaneously 
solve the governing equations of the fluid and solid 
dynamics. One typical example is the arbitrary 
Lagrangian-Eulerian (ALE) description of the FEM 
method[197] where moving mesh is introduced to fluid 
discretization for addressing the issues of unacceptable 
mesh distortion near the structure undergoing large 
deformations. This approach encounters difficulties of 
the convective terms treatment and the challenging of 
complex mesh regeneration, in particular when large 
structure deformation is evolved[198]. The partitioned 
approach strives to solve each sub-problem separately, 
applying computational fluid and solid solvers for the 
fluid and solid, respectively, with the communication 
of FSI interface data. Typical example is the 
immersed boundary method (IBM)[199] which utilizes 
two overlapped Lagrangian and Eulerian meshes. In 
the IBM method, the fluid equation is solved on the 
Eulerian mesh and the effects of solid structure are 
taken into account by distributing the forces computed 
on the deformed Lagrangian mesh to the Eulerian 
counterpart using proper kernel function. Compared 
with the monolithic one, the partitioned approach 
suffers from Lagrangian-Eulerian mismatches on the 
kinematics and the distribution of solid structure 
forces due to the fairly weak coupling formulation. 

As an alternative for tackling FSI problems, the 

meshless methods, i.e., the SPH[1, 2, 74], the moving 
particle semi-implicit (MPS)[200] and the discrete 
element method (DEM)[201] provide unified mono- 
lithic approach with pure Lagrangian discretization of 
both the fluid and solid equations. In recent years, the 
meshless methods have attracted significant attention 
in studying FSI problems, owing to their peculiar 
advantages in handling material interfaces[18, 143] and 
the capability of capturing violent events such as wave 
impact and breaking[48, 202]. Promising results have 
been obtained by the weakly-compressible SPH 
method[13, 150, 203-205], incompressible SPH 
method[206-207], MPS method[208-209], SPH-DEM or 
MPS-DEM methods[210-211] and their combinations 
with FEM by using partition approach[212-215]. 

In this part, we focus on the recent developments 
of unified SPH method for FSI problems and special 
attention are devoted to the FSI interface treatment, 
multi-resolution discretization and time stepping 
schemes, which are key components of the accurate 
and efficient FSI algorithm. Concerning the applica- 
tions of FSI algorithm in engineering, comprehensive 
reviews can be found in Refs. [9, 14-15, 27, 29, 216]. 
 
4.1 Treatments of FSI interface 
    In unified SPH-FSI computation, the fluid- 
structure coupling is resolved by treating the 
surrounding movable or flexible structure as moving 
solid boundary for fluid with imposing free- or no-slip 
boundary condition at the fluid-structure interface. 

Concerning the treatment of movable or flexible 
boundary, several methods have been proposed and 
they are generally categorized into three schemes, i.e., 
boundary force particle, dummy particle and one- 
sided Riemann scheme. In the first scheme, the 
structure particle is behaving as the moving boundary 
force particle[217] and a repulsive force is introduced to 
prevent particle penetration. This scheme was first 
proposed by Monaghan and Kajtar[217], where one 
layer boundary particles provide Lennard-Jones po- 
tential repulsive force for fluid particle, and was 
improved by Liu et al.[218] and further by Zhang et 
al.[219] with introducing a new numerical approxima- 
tion scheme for estimating field functions of boundary 
particles. In the second scheme, the structure is 
presented by the dummy particle whose velocity and 
pressure are interpolated from fluid particles[61, 90] to 
solve governing equations. Notwithstanding its wide 
application, this approach exhibits excessive computa- 
tional efforts which are inherently expensive in three- 
dimensional simulations due to the data interpolation. 
In the third scheme, the one-sided Riemann problem is 
constructed along the structure norm and solved to 
determine the FSI coupling[74]. This scheme has de- 
monstrated its robustness, accuracy and effi-  
ciency[19, 74, 152]. 
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    Note that there are other schemes, for example 
ghost particles[5] and semi-analytical approach[220-222], 
have been applied for handing the FSI interface in the 
coupling of particle-based method and FEM[212, 214], 
which is not included in this survey. 
 

4.1.1 Boundary force particle 
The boundary force particle scheme is firstly 

proposed by Monaghan and Kajtar[217] for approxi- 
mating arbitrarily shaped boundaries. The movable 
boundary is modeled by one layer boundary particles 
with particle spacing as a factor of 3 less than the fluid 
particle spacing, as shown in the upper panel of Fig. 
12, and these particles interact with the fluid particles 
by forces depending on the separation of the particles 

and pre-determined parameters. Then, the force s
if  

in Eq. (22) acting on a fluid particle i , due to the 
presence of the neighboring solid particle a , is given 
by[217, 223] 
 

=
( )

s ia
i ia

a ia iar r
 

  r
f                                          (117) 

 

where 
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q

h
                                     (118b) 

 

Here 2
max 0 0= / ( )dp    with = 1 / 8 hc   and 

0= / 3dp  is the separation of boundary particles. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12 (Color online) Sketch of FSI treatments with boundary 

force particle and CD-SBT scheme 

    This solid boundary treatment is widely applied 
in SPH simulations for dealing with FSI interface 
treatment involving complex solid shape in single- 
and multi-phase flows[217-224], and also extended for 
SPH-FEM coupling scheme[212]. However, using the 
artificial repulsive forces violates the kernel truncation 
in the immediate vicinity of the solid boundaries as 
only a single layer of particles are required to mimic 
the boundaries. To address this issue, Liu et al.[218] 
developed a coupled dynamic solid boundary 
treatment scheme, termed as CD-SBT, by introducing 
ghost particles along with the repulsive force particles, 
as shown in the botttom panel of Fig. 12. In the 
CD-SBT scheme, the repulsive particles are similar to 
that of Ref. [217] with identical particle spacing of 
fluid particle. Ghost particles are located outside the 
repulsive ones and initially generated in a regular or 
irregular distribution[218]. An improved repulsive force 
in the form of 
 

2
2
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ia

a ia

c f
r

  r
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with 
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2= (2 1.5 )f   , 
2

< < 1
3

                               (120c) 

 
2= 0.5(2 )f  , 1 < < 2                                   (120d) 

 
= 0f  otherwise                                                  (120e) 

 
is proposed. Also, both the repulsive particles and 
ghost particles are dynamically evolved in the SPH 
approximation of the governing equations, and their 
density and velocity can be interpolated from the fluid 
particles by 
 

new=a i ai
i

mW  , new=a i ai i
i

W V vv                      (121) 

 

where newW  represents the corrected kernel function 
with Shepard filter or MLS method. It is straight 
forward to note that the repulsive force particle 
provides a penetration force and its combination with 
ghost particle restores consistency by extending the 
full support domain of fluid particles. The CD-SBT 



 

 
 

791

has shown its accuracy and robustness in the simula- 
tion of multi-phase flow[225], free-surface flows interac- 
ting with movable rigid objects[226] and hydro-elastic 
FSI[204]. 
 

4.1.2 Dummy particle 
In dummy particle scheme, the solid is discre- 

tized with dummy particles in a layer of width cr , the 

cutoff radius of the kernel function, along the interface 
or the particles of the flexible structure to represent 
dummy particles when interacting with fluid particles. 
As shown in the upper panel of Fig. 13, the fluid 
particles (in blue) near the wall interact with the 
dummy particles (in black) which lie within the 
support radius of the smoothing kernel function. Then, 

the force sf  acting on the fluid is decomposed into 

the pressure force :s p
if  and viscous force :s

i
f  

which are defined as 
 

: 2
 =s p

i i a ia i ia
ai

VV p W
m
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 2s i a ia

i i a
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m r r
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v v
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where the density-weighted inter-particle averaged 
pressure iap  is defined as 
 

+
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+
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and the dummy particle velocity a
v  is extrapolated 

from the fluid phase as 
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i ai

i
a a

ai
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W
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
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v
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                                                   (124) 

 
to impose the no-slip boundary condition. Note that 
the av  of Eq. (124) represents the velocity of the 
movable solid or flexible structure. And the dummy 
particle pressure ap  of Eq. (123) can be calculated 
with a summation over all contribution of the 
neighboring fluid particles by[61] 
 

MLS= d +) 2( da i i i a
i

p p W V   r n g                         (125) 

 
or[90] 
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                        (126) 

Here aa  is the acceleration of solid particle. With the 

interpolated pressure ap , the dummy particle density 

a  can be derived from the EoS of Eq. (23). 
Compared with the interpolation of Eqs. (125), (126) 
is written in the more general formulation with 
moving solid present, making it a suitable choice for 
FSI involving the moving or flexible structure. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 (Color online) Sketch of FSI treatments with dummy 

particle and one-sided Riemann scheme 
 

With the dummy particle, the kernel truncation of 
fluid particles close to the structure is avoided, 
ensuring approximation accuracy and consistency. 
The dummy particle has been widely applied in the 
simulation of free-surface flow[18-19], multi-phase 
flow[18, 55] or multi-phase FSI[151]. Notwithstanding its 
wide application, the dummy particle results excessive 
computational efforts which are inherently expensive 
in three-dimensional simulations due to the intro- 
duction of physical variable interpolation. 
 

4.1.3 One-sided Riemann-based scheme 
    Similar to the dummy particle scheme, the one- 
sided Riemann scheme also represents the movable or 
flexible structure with dummy particles, while a 
one-sided Riemann problem is constructed along the 
solid normal and solved to realize the FSI coupling[19, 

74] as shown in the bottom panel of Fig. 13. 
In the one-sided Riemann scheme[74], the pre- 

ssure forces :s p
if  is rewritten as 

 

: 2
=s p

i i a i ia
ai

VV p W
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 f                                      (127) 

 

where p  is the Riemann solution of the one-sided 
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Riemann problem whose left and right states are 
defined as: 
 
( , , = () , ),L L L f a i iU p p   n v , 

 

)( , , = ( , ( )2 , )R R R a a i a aU p p    n v v                  (128) 

 
Here an  is the local normal vector pointing from 

solid to fluid, and the pressure = +a i i iap p  g r . 

With the dummy particle pressure, its density ap  is 
also calculated through the EoS presented in Eq. (23). 
Compared with the aforementioned dummy particle 
scheme, the present one is more simple and efficient 
due to the fact that the one-sided Riemann problem is 
solved in a particle-by-particle fashion and no interpo- 
lation of states for the solid particles is required. 
    For each solid particles, the normal vector in the 
reference configuration can be calculated by[4, 74] 
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V W
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where the summation is over wall particles only. For 
static solid structure, the normal vector is not altered 
during the computation. For flexible structure, the 
normal vector should be updated accordingly when 
deformation occurs. To void of frequent summation 
computation in Eq. (129), the updated normal vector 
for flexible structure can be obtained by 
 

0=a an n                                                                  (130) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where   is the orthogonal matrix of the deformation 
tensor   and can be calculated with polar decom- 
position. The one-sides Riemann scheme has shown 
its accuracy, robustness and efficiency in the simu- 
lation of single- and multi-phase FSI[19, 56, 152]. 

Figure 14 presents the numerical investigation of 
wave interaction with an oscillating wave surge 
converter (OWSC)[227] with SPHinXsys library[12] by 
using Riemann-based WCSPH method with one-sided 
Riemann-based fluid-solid interface treatment. It is 
observed that smooth velocity fields are produced 
even when complex interactions between the wave 
and the flap are involved. Also, wave-structure interac- 
tion and wave loading are well predicted in com- 
parison with the experimental data[228], numerical 
results obtained with commercial software 
FLUENT[228] and SPH results in the literature[229-230]. 
 
4.2 Multi-resolution scheme 

When applying the particle-based solver for 
modeling FSI problems, single spatial-temporal 
resolution, where a uniform particle spacing is used 
for discretizing the entire computational domain and a 
single time step being the smallest one of these 
required by the fluid and solid is used for time 
integration[13], is commonly employed. In such a case, 
the single-resolution approach is computationally 
expensive and high memory consumption in applica- 
tions where the structure requires locally refined 
resolution or the global computational domain is quite 
larger with respect to the critical sub-domain. There- 
fore, developing a multi-resolution scheme for particle-  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Fig. 14 (Color online) Wave interaction with an OWSC investigated by SPHinXsys library: (a) Free surface and flap motion with 

fluid particles colored by the velocity magnitude (upper panel), (b) Validations of the flap rotation (bottom left panel) 
and wave load on the flap (bottom right panel) 
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based FSI solver is desirable in the computational 
efficiency point of view. 

For particle-based simulation, different accurate, 
stable and consistent multi-resolution schemes have 
been developed for discretizing the fluid equations 
and they are generally classified into four classes: 
adaptive particle refinement (APR) with or without 
particle splitting/merging[123, 231-234], non-spherical 
particle scheme[235-236], domain-decomposition based 
scheme[237-238] or hybrid scheme[239-241]. Notwith- 
standing these progresses, the development of 
multi-resolution scheme for particle-base FSI solver 
has emerged in the very recent years. The pioneering 
work is due to Khayyer et al.[208] where a multi- 
resolution scheme is developed for MPS-FSI solver. 
Then, Sun et al.[151] extended the multi-resolution 
scheme developed by Barcarolo et al.[239] to the 
simulation of multi-phase hydroelastic FSI problems. 
More recently, Zhang et al.[24] proposed a multi- 
resolution SPH method for fluid-flexible structure 
interaction with special attention in dealing with 
enforcing the momentum conservation and force 
matching at the fluid-structure interface. Then, this 
multi-resolution framework was extended to multi- 
phase FSI[56]. It is worth noting that consistent particle 
resolution is applied through FSI interface in Ref. 
[151] where the APR scheme is applied in predefined 
area interface located in the fluid domain, with proper 
particle splitting/merging[239]. On the other hand, 
different particle resolution is adopted in the FSI 
interface of Refs. [24, 208, 242] with proper handling 
of momentum conservation and force matching.  

In this work, we focus on the second approach as 
the first one involves splitting/merging scheme which 
is not the main objective of the survey. 
 
4.2.1 Multi-resolution discretization 
    In the multi-resolution framework of Refs.    
[24, 56], the fluid and solid equations are discretized 
by different spatial-temporal resolutions. In this case, 
the solid structure can be resolved at a higher spatial 
resolution, and the computational efficiency is 
enhanced when a lower resolution discretization for 
the fluid is sufficient. This strategy is suitable for 
applications where the structure is relatively thin, i.e. 
the structure has a considerable small spatial scale 
compared with fluid, or when the structure has a high 
Poisson ratio which results smaller time step size than 
that required by the fluid. 
    With different spatial resolutions are applied 
across the FSI interface, the interaction pressure force 

:s p
if  and viscous force :s

i
f  are rewritten as: 
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where fh  denotes the smoothing length used for 

fluid with the assumption of f sh h , ensuring that a 
fluid particle i  can be searched and tagged as a 
neighboring particle of a solid particle a  which is 
located in the neighborhood of particle i . Having Eq. 
(131) in hand, the fluid forces exerting on the solid 
structure can be derived straightforwardly. 
 
4.2.2 Multi-time stepping with position-based Verlet 

scheme 
    Following Refs. [23, 152], the time-step criterion 
for the solid integration is given as 
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With the advection criterion F

adt  of Eq. (73) and the 

acoustic criterion F
act  of Eq. (74) in hand, three 

different time step sizes are introduced. Generally, 
<S F

act t  , due to the fact that >S Fc c . Other than 

choosing St  as the single time step for both fluid 
and structure, one can carry out the structure time 
integration /= ( +1)F S

act t    times, where [ ]  
represents the integer operation, during one acoustic 
time step of fluid integration. As different time steps 
are applied in the integration of fluid and solid 
equations, the issue of force mismatch in the fluid- 
structure interaction may be encountered. That is, in 
the imaginary pressure and velocity calculation, the 
velocity and acceleration of solid particles in Eq. (131) 
may present several different values updated after 
each St . Another issue is that the momentum 
conservation in the fluid and structure coupling may 
be violated. To address the force-calculation mismatch, 
Zhang et al.[24] proposed to calculate the imaginary 
pressure d

ap  and velocity d
av  as: 
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where a

v  and d d/a tv  represents the single 

averaged velocity and acceleration of solid particles 
during a fluid acoustic time step. 

Also, to address the momentum conservation 
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issue, Zhang et al.[24] developed a position-based 
Verlet scheme. Instead of starting with a half step for 
velocity followed by a full step for position and 
another half step for velocity as in the velocity-based 
Verlet scheme[90], the position-based Verlet does the 
opposite: A half step for position followed by a full 
step for velocity and another half step for position. 
Figure 15 depicts the velocity- and position-based 
Verlet schemes assuming that = 4  for the integra- 
tion of fluid and solid equations. Note that since the 
position is updated twice and the velocity once with 
the acceleration at the half step, using the Taylor 
expansion one can find that the position-based scheme 
has the same 2nd-order accuracy as the original one. 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 15 (Color online) Sketch of velocity- and position-based 

Verlet schemes with assumption that = 4  
 

In the position-based Verlet scheme, as the 
velocity field is updated only once in the current fluid 
acoustic time step criterion, time marching of the 
momentum equations for fluid and solid are exactly 
consistent as the velocity marching interval ( ) =F

ac nt
1

=0

( )St
 

 


, as shown Fig. 15. Therefore, the position- 

based Verlet algorithm achieves strict momentum 
conservation in fluid-structure coupling, when multi- 
ple time steps are employed.  In contrast, the 
velocity-based Verlet scheme does not guarantee 

momentum conservation as 11 / 2[( ) + ]( )F F
ac n ac nt t  

1

1
=0

1 / 2 )[( ) ]+ (S St t
 


   
 
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

, as also shown in Fig. 

15. 
    Figure 16 reports the validation of the multi- 
resolution scheme implemented in the open-source 
library SPHinXsys[12, 153] by simulating two FSI 
benchmark tests, i.e., flow-induced vibration of a 
beam attached to a cylinder and dam-break flow with 
elastic gate[152]. For both tests, the deformation of the 
flexible structure induced by the fluid-structure 
interaction is accurately captured in comparison with 
experimental data[13] and numerical data in the 
literature[13, 150, 206, 243-244]. Concerning the 

computational efficiency, approximated speedup in 
the order of 102 is achieved compared with the 
simulation in single-resolution scenario as reported in 
Ref. [24]. 
 
 
5. Particle and mesh generation 

Generating high-quality unstructured mesh or 
particle distributions is essentially important to mesh- 
based or particle-based methods in scientific com- 
puting[5, 246]. However, complex geometries are always 
involved in industrial applications, bringing a critical 
challenge for generating high-quality particle distri- 
butions or mesh for arbitrarily complex geometry. 

For particle-based methods, there are generally 
two approaches to generate the initial particle 
distributions, i.e., (1) initiating particles on a lattice 
structure and (2) generating particles on a volume 
element mesh. The first approach, positioning 
particles on a cubic lattice structure, is widely used in 
particle-based methods community. For example, 
Dominguez et al.[247] proposed a pre-processing tool 
for the DualSPHysics library where particles are 
generated on lattice structure and three-dimensional 
object is represented by particle model with excluding 
the outside particles. In this approach, the particles are 
equally distributed, however, a very fine spatial 
resolution is required to correctly portray the complex 
geometry. The second approach generating particles at 
the center of tetra- or hexahedron volume elements 
has been widely used in the application of bird 
strike[248-249] and provided by state-of-art commercial 
pre-processing tools. This approach can accurately 
portray the complex surface, however, comprise draw- 
backs of non-uniform particle spacing and volume 
which may reduce the interpolation accuracy. 
Recently, the weighted Voronoi tessellation (WVT) 
method has been applied for generating initial particle 
distribution by Diehl et al.[250] for SPH astrophysical 
simulation and by Siemann and Ritt[251] for SPH 
modeling of bird-strike. Also, Vela et al.[252] proposed 
an algorithm for constructing complex initial density 
distributions with low noise. 

Concerning high-quality mesh generation, va- 
rious mesh generation techniques have also been 
developed, e.g., advancing front/layer methods[253-254] 
initiating meshing from the boundary to domain 
interior, refinement based Delaunay triangulation[255-256] 
inserting new Steiner points into a Delaunay mesh, 
centroidal Voronoi tessellations (CVT)[257-260] and 
particle-based method[261-265] in which a relaxation 
strategy based on the physical analogy between a 
simple mesh and a truss structure is applied. Among 
them, the particle-based mesh generation method has 
been widely studied due to the efficiency and 
versatility feature. 



 

 
 

795

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More recently, Fu et al.[126] and Zhu et al.[266] 
presented a novel application of the particle-relaxation 
in SPH methodology for high-quality unstructured 
mesh and body-fitted particle distribution, respec- 
tively, for arbitrarily complex geometry. Ji et al.[267-268] 
further improved the particle-relaxation for mesh 
generation by exploiting multi-phase algorithm and 
introducing feature boundary correction term. The 
general procedure consists of three steps. First, the 
geometry surface is represented by zero level-set 
function by parsing corresponding computer-aided 
design (CAD) file[266]. Second, several steps of 
particle-relaxation is conducted by solving a set of 
physically-motivated model equations in the SPH 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
methodology[126]. In this step, proper surface bonding 
techniques were developed for achieving body-fitted 
feature of particle distribution. Third, a set of neigh- 
boring particles generates a locally valid Voronoi 
diagram at the interior of the domain by using 
Delaunay triangulation method[126]. Note that the third 
step is only for mesh generation. 
 
5.1 Surface representation 
    By parsing a CAD file, the geometry surface can 
be constructed and represented by the zero level-set of 
the signed-distance function 
 

= {( , , ) | ( , , , ) = 0}x y z x y z t                                 (134) 

 

 
 
Fig. 16 (Color online) Numerical investigation of FSI problems with SPHinXsys library in multi-resolution scenario. (a) 

Flow-induced vibration of an elastic beam attached to a cylinder: Snapshots of vorticity field and deformed beam 
configuration with von Mises contour (upper panel) and the comparisons of the amplitude and the frequency of the 
beam oscillation with data in the literature (bottom panel), (b) Dam-break flow through an elastic gate: Snapshots 
compared against experimental frames[13] (upper panel), vertical (bottom left panel) and horizontal (bottom right panel) 
displacements of the free end of the plate and their comparisons with experimental[13] and numerical[206] data 
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Then, the normal direction T= ( , ),x y zn n nN  of the 

surface can be evaluated from 
 

=






N                                                                  (135) 

 
To discretize the level-set function, a Cartesian 
background mesh is generated in the whole computa- 
tional domain. The level-set value   is equal to the 
distance from the cell center to the geometry surface. 
Besides, the negative phase with < 0  is defined if 
the cell center is inside the geometry and positive 
phase with > 0  otherwise. 
 
5.2 Particle relaxation 
    Starting from a preconditioned Lattice or random 
particle distribution generated inside the domain of the 
geometry, a physics-driven relaxation process is 
introduced to define the particles evolution. The 
relaxation is governed by the momentum conservation 
equation 
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                                                                                   (136) 
 
where v  is the advection velocity and = 0.2h  v . 

In Fu et al. [126], = 1 / 2( + )ij i jp p p  and the particle 

pressure is defined by an equation of state 
 

2

0 2
=

t

p p



                                                                (137) 

 
which incorporates a target density field t  and 0p  
is the reference pressure[126]. In Zhu et al.[266], a 
constant pressure 0=ijp p  is applied as a homo- 

geneous particle distribution can be obtained by 
applying the transport-velocity formulation[115, 133, 143] 
with a constant density and background pressure. 
Then, the particle evolution is defined by 
 

+1 2d1
= + d = +

2 d

n
n n n i t

t


v
r r r r                               (138) 

 
Note that only the instant acceleration is considered 
for the evolution and particle velocity is set to zero at 
the beginning of each time step to achieve a fully 
stationary state following Refs. [126, 132, 143]. For 
numerical stability, the time-step size t  is con- 
strained by the body force criterion. 
 

 

0.25
d /d
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t

t
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5.3 Surface bounding scheme 
To achieve the body-fitted feature, a suitable 

boundary condition treatment is required. In Ref. 
[126], a dynamic ghost-particle method enforcing 
symmetry conditions at all domain boundaries is 
adopted. However, it is challenge to construct ghost 
particles for complex geometries. Zhu et al.[266] 
proposed a simple surface particle bounding scheme. 
Specifically, the level-set value i  and normal direc- 

tion iN  of each particle are first interpolated from 
the background mesh using bilinear or trilinear 
interpolation. Then, particles position is updated 
according to 
 

1
= +

2i i i ix   
 

r r N , 
1

2i x                       (140a) 

 
=i ir r , otherwise                                                    (140b) 

  
where x  denotes the initial particle spacing. Figure 
17 presents the illustration of surface particles 
bounding. When the particle locates outside of the 
geometry, it will be enforced back on the surface 
following the normal direction, implying a body-fitted 
particle distribution can be achieved accordingly. Note 
that, the surface particles are relocated at 

2= 1 / x    instead of = 0  indicating that the 

material interface assumed to be located at = 0 . 
 
 
 
 
 
 
 
 
 

Fig. 17 (Color online) An illustration of surface particles boun- 
ding 

 

    Figure 18 portrays the generated unstructure 
mesh for tyra and gear body, and particle model for 
anatomy heart and propeller. It is obvious that the 
particle-relaxation generates high-quality globally 
optimized adaptive isotropic meshes and well- 
regularized particle distribution for three-dimensional 
body with high geometric complexity. 
 
 
6. Conclusion 

We present a concise review of SPH method on 
methodology development and recent achievement  
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with highlights of aspects including numerical 
algorithms for fluid dynamics, solid mechanics and 
FSI, and novel applications in mesh and particle 
generations. Fundamentals and theory of the SPH 
method are first summarized. Recent developments of 
Riemann-based SPH method are presented with key 
aspects of Riemann-solver with dissipation limiter and 
high-order data reconstructions of MUSCL, WENO 
and MOOD schemes. Techniques for particle 
neighbor searching and efficient update of particle 
configuration are then recalled. Concerning the total 
Lagrangian formulations, stabilized schemes, steady 
state solution and hourglass control algorithm are 
reported. For FSI coupling, treatments of FSI interface 
and discretization schemes in multi-resolution 
scenario are surveyed. Last but not least, recent novel 
SPH applications in mesh and particle generations are 
reviewed. Abundant validations and benchmark tests 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
with highlights of aspects including numerical 
algorithms for fluid dynamics, solid mechanics and 
FSI, and novel applications in mesh and particle 
generations. Fundamentals and theory of the SPH 
method are first summarized. Recent developments of 
Riemann-based SPH method are presented with key 
aspects of Riemann solver with the dissipation limiter 
and high-order data reconstructions of MUSCL, for 
demonstrating the computational accuracy, con- 
vergence, efficiency and stability are also supplied 
accordingly in this survey. 
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Fig. 18 (Color online) Mesh and particle generations for three-dimensional body with complex geometry 
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