Journal of Bionic Engineering (2024) 21:1055-1091
https://doi.org/10.1007/s42235-023-00476-1

RESEARCH ARTICLE q

Check for
updates

Gaussian Backbone-Based Spherical Evolutionary Algorithm
with Cross-search for Engineering Problems

Yupeng Li' - Dong Zhao' - Ali Asghar Heidari? - Shuihua Wang?* - Huiling Chen® - Yudong Zhang>*

Received: 19 July 2023 / Revised: 19 December 2023 / Accepted: 21 December 2023 / Published online: 13 March 2024
© The Author(s) 2024

Abstract

In recent years, with the increasing demand for social production, engineering design problems have gradually become more
and more complex. Many novel and well-performing meta-heuristic algorithms have been studied and developed to cope with
this problem. Among them, the Spherical Evolutionary Algorithm (SE) is one of the classical representative methods that
proposed in recent years with admirable optimization performance. However, it tends to stagnate prematurely to local optima
in solving some specific problems. Therefore, this paper proposes an SE variant integrating the Cross-search Mutation (CSM)
and Gaussian Backbone Strategy (GBS), called CGSE. In this study, the CSM can enhance its social learning ability, which
strengthens the utilization rate of SE on effective information; the GBS cooperates with the original rules of SE to further
improve the convergence effect of SE. To objectively demonstrate the core advantages of CGSE, this paper designs a series
of global optimization experiments based on IEEE CEC2017, and CGSE is used to solve six engineering design problems
with constraints. The final experimental results fully showcase that, compared with the existing well-known methods, CGSE
has a very significant competitive advantage in global tasks and has certain practical value in real applications. Therefore,
the proposed CGSE is a promising and first-rate algorithm with good potential strength in the field of engineering design.

Keywords Meta-heuristic algorithms - Engineering optimization - Spherical evolution algorithm - Global optimization

1 Introduction is an urgent need for more efficient and robust methods

to solve the problems in real production [3]. Optimiza-

In the context of today's modern technologies and indus-
tries, not only do numerous optimization challenges
develop in many disciplines but also the scope and com-
plexity of these difficulties, like engineering design prob-
lems [1, 2], are progressively expanding. Therefore, there
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tion methods have established themselves as practical
tools for navigating complex feature spaces, offering
efficient solutions within a reasonable timeframe [4,
5]. However, their performance can be uncertain when
addressing a broad spectrum of scenarios, ranging from
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single-objective problems to multi-objective challenges [6,
7]. Moreover, they face the complexity of many objective
cost functions, which require achieving a delicate equi-
librium among numerous conflicting objectives and con-
straints [8]. Recognizing the limitations of conventional
approaches, researchers have pioneered a new genera-
tion of single-objective evolutionary and meta-heuristic
methods designed to tackle even more difficult problem
domains [9]. Researchers have respected meta-heuristic
algorithms in recent years and have become one of the
most essential methods widely used to solve real-world
problems [10]. Compared to traditional optimization meth-
ods, it is a probability-based global search method, which
focuses on optimal solutions by simulating natural and
human wisdom, etc. It is characterized by simple structure,
small computational effort, and comprehensibility but also
enables one to explore the search space faster and thus
solve the optimal problem efficiently. Nowadays, many
researchers, inspired by social, natural, and physical phe-
nomena, have proposed many meta-heuristic algorithms
based on different merit-seeking rules. There are the Dif-
ferential Evolution (DE) [11], Harris Hawks Optimizer
(HHO) [12], particle swarm optimizer (PSO) [13], Grey
Wolf Optimizer (GWO) [14], Slime Mould Algorithm
(SMA) [15], Whale Optimizer (WOA) [14], Runge—Kutta
Optimizer (RUN) [16], Bat-inspired Algorithm (BA) [17],
Multi-verse Optimizer (MVO) [14], Moth-flame Optimizer
(MFO) [14], Ant Colony Optimizer (ACO) [18], Sine
Cosine Algorithm (SCA) [14], and Hunger Games Search
(HGS) [19].

However, the algorithms have general drawbacks, includ-
ing the second-rate convergence effect and difficulty getting
away from the local optimum [20, 21]. Among them, the
convergence effect is mainly reflected in the speed and accu-
racy. This is one of the main reasons some algorithms, such
as the basic genetic algorithm (GA), have difficulty solv-
ing different optimization problems [22]. Therefore, many
researchers have investigated the existing meta-heuristic
algorithms to alleviate these deficiencies further. For exam-
ple, chaotic BA (CBA) [23], improved ACO (RCACO) [24],
chaotic SCA [25], improved WOA (EWOA) [26], improved
GWO (GWOCMALOL) [27], random learning gradient-
based optimizer (RLGBO) [28], MFO with sine cosine
mechanisms (SMFO) [29], A-C parametric WOA (ACWOA)
[30], and so on. In addition, to satisfy the requirements of
the engineering design field, many same-class variant algo-
rithms have been proposed in recent years. For example,
Mohamed et al. [31] introduced the triangular mutation rule
into DE to propose an enhanced algorithm known as NDE,
which was used to tackle five frequently used constrained
engineering design issues and five constrained mechanical
design challenges. Khalilpourazari et al. [32] created an
efficient method known as WCMFO to address numerical
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and restricted engineering problems using MFO and Water
Circulation strategy traits. Wang et al. [33] introduced a
gravitational search into the Rider Optimization Algorithm
to propose an improved variant known as GSSROA with
good effectiveness in optimizing the front axle weight of a
car under nonlinear constraints.

Han et al. [34] proposed an improved Crow Search Algo-
rithm (ISCSA) using weight coefficients, optimal bootstrap,
and spiral search to solve four classical engineering design
problems. Han et al. [35] developed an efficient variant,
MSFWA, to tackle numerical and restricted engineering
designs. Kamboj et al. [36] proposed an efficient hybrid
algorithm (hHHO-SCA) for 11 constrained multidiscipli-
nary engineering design problems by introducing the SCA
into the exploration phase of the HHO. Abualigah et al. [37]
proposed an efficient global optimization method (AOASC)
using the SCA to improve the exploitation of the Arithmetic
Optimization Algorithm (AOA) for optimizing five engi-
neering problems. Qi et al. [38] proposed a new WOA ver-
sion, LXMWOA, by Lévy initialization, directed crossover,
and mutation strategies in synergy with the original WOA
mechanism, and validated it on three engineering challenges.
Zhao et al. [39] proposed a modified ACO version, called
ADNOLACO, and demonstrated its practical value in real
applications on four engineering problems. Su et al. [40] pro-
posed a more powerful Cuckoo Search Algorithm (CCFCS)
using the cross-optimizer and dispersed foraging strategy
and successfully experimented on five classical engineering
cases. According to the above, it is clear that engineering
optimization approaches based on meta-heuristic algorithms
are popular among researchers, and associated applications
have been relatively mature.

The Spherical Evolution Algorithm (SE) was proposed by
Tang et al. in 2019 as a new strong performance algorithm
based on the spherical search style [41], but it equally does
not circumvent the common drawbacks of meta-heuristic
algorithms. Therefore, many researchers have proposed opti-
mization schemes to alleviate these drawbacks for the needs
of SE problems and practical problems with different charac-
teristics and complexity. For example, Yang et al. [42] made
the wingsuit flying search (WFS) and SE work together to
propose an effective and robust hybrid algorithm (CCWEFE-
SSE). Cai et al. [43] introduced the SCA into SE and pro-
posed an enhanced variant of SE that can utilize the search
space more efficiently. Weng et al. [44] combined Laplace's
cross search and the Nelder—-Mead simplex method with
SE to propose an efficient improved method (LCNMSE),
which was used to solve the parameter extraction problem
for solar cell and photovoltaic models. Li et al. [45] pro-
posed a stronger hybrid algorithm for global optimization
experiments using SE and the salp swarm algorithm (SSA)
characteristics. Zhang et al. [46] first integrated PSO and SE
to propose a hybrid algorithm with significant advantages.
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Yang et al. [47] proposed a novel ladder descent strategy to
optimize the update rule of SE, which further proposed a
ladder spherical evolutionary search algorithm named LSE.
Yang et al. [48] successfully proposed an enhanced version
of SE (CSE) by adding chaotic local search (CLS) to SE.
Zhao et al. [49] proposed an enhanced adaptive spherical
search algorithm (SSDE) with differential evolution based
on the opposition learning strategy, phased search mecha-
nism, nonlinear adaptive parameters, and variational cross-
over methods. Zhou et al. [50] proposed an enhanced SE
(DSCSE) based on a novel dynamic sine cosine mechanism
for estimating key parameters of PV cells and modules under
fixed and varying temperature and light conditions. Li et al.
[51] innovatively designed a new lottery-based elite reten-
tion strategy to improve the optimization capability of SE,
and thus proposed a lottery elite SE (LESE).

The SE has been widely utilized in various real-world
issues because of its excellent convergence speed and
accuracy. However, there is still space to enhance its con-
vergence, exploitability, and ability to eliminate the local
optima for many challenges. As a result, this paper first pro-
poses the CGSE, a better structure of SE. For the first time
in CGSE, the Cross-search Mutation (CSM) is incorporated
into SE to balance the search for and use processes, hence
enhancing SE convergence. Then, the Gaussian Backbone
Strategy (GBS) is included in SE to raise population vari-
ety in the vicinity of the existing near-optimal solution,
which considerably improves its exploitation ability and
strengthens SE's potential for getting away from the local
optimum. In this study, a set of comparative validation tests
are performed on 30 benchmark functions of the IEEE CEC
2017 to demonstrate the supremacy of CGSE in the field
of global optimization. Among them, the results analysis
of the ablation experiment, qualitative analysis experiment,
and stability test experiment not only prove that the CGSE
proposed in this paper achieves a better balance between
exploration and exploitation than the original SE with the
synergy of two optimization components but also verifies
that the CGSE is the best-improved version proposed in this
study. In addition, the results of CGSE are compared to nine
basic algorithms and nine peer variants, proving that CGSE
also has a very significant performance advantage compared
to some other algorithms. Finally, CGSE addresses six real-
world engineering challenges, proving that CGSE also has
good practical value and excellent competitiveness in solv-
ing these practical problems.

The following are the key works and contributions of this

paper:

e An enhanced SE algorithm is proposed by introducing
the CSM and the GBS into SE, called CGSE.

e The CGSE is applied to a series of experiments on the
IEEE CEC 2017, in which it is proved to have strong

convergence, robustness, and competitiveness in global
optimization.

e The CGSE is used to address six real-world engineer-
ing design challenges and is well-competitive with other
approaches.

¢ In conclusion, the CGSE proposed in this paper has good
potential and excellent optimization results for address-
ing real-world optimization problems.

The rest of this paper is organized as follows: Sect. 2
introduces the basic principles of this paper to propose
CGSE; Sect. 3 describes the details of the proposed CGSE,;
Sect. 4 designs a series of benchmark function experiments
and engineering experiments for verifying the performance
and competitiveness of CGSE; Sect. 5 discusses the research
and experimental results of this paper; Sect. 6 concludes the
research of this paper as well as gives an overview of future
related work.

2 Basic Theories

To provide theoretical support for the research work of this
paper, this section introduces the core fundamental theories
involved in this paper, mainly including the SE, CSM, and
GBS, and proposes a variant of SE that incorporates the
above three strategies.

2.1 Spherical Evolution (SE) Algorithm

In 2019, inspired by various meta-heuristic algorithms, Tang
et al. [41] innovatively proposed the SE with a spherical
search style and outstanding performance. It differs from
the hypercube search style of the traditional meta-heuristic
algorithms, which traverses the solution space by spheri-
cal search style to explore and exploit the global optimal
solution.

2.1.1 Search Styles

Figures 1 and 2 depict the search trajectories of the meta-
heuristic algorithms in two dimensions space using the
hypercube and sphere search styles, respectively. Comparing
the two figures makes it easy to notice the difference between
the two search styles. Figure 1 shows that the hypercube
style's search range is a rectangle and that its search process
is very uncertain. In this case, how are the algorithms with
hypercube search style updated? Specifically, the blue vector
indicates the presence of a scale factor in only one of the two
dimensions X and Y; the red vector indicates the presence
of a scale factor with discrepancy in both dimensions X and
Y. In particular, DC denotes the only update unit in this rec-
tangular space when the scale factors on dimensions X and
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Fig. 1 The two-dimensional hypercube search style

Y are one. When compared to Fig. 2, it is clear that there are
major differences between the two strategies, most notably
the search method and the search space. The spherical search
process adjusts the rotation angle and search radius DC’ to
search the targets and has a larger search area, because it is
a circle with D as the center, and DC as the radius. This also
means that the spherical search has more search and local
exploitation advantages than the hypercube search.

2.1.2 Principle of SE

According to the description in Sect. 2.1.1, it is known that

Fig.2 The two-dimensional spherical search style

where || X, — Xj .||, is the Euclidean distance representing
the vector X, , and the vector Xj . And it is the radius of a
high-dimensional sphere. w is a scale factor that may be used
to change the search radius. dim is the size of the dimension.
¢ represents the angle between X, , and X .

Based on Egs. (1) ~ (3), SE carries out the search task
by combining the random selection method (RSM) and
the designated individual selection method (DISM). And
seven search processes are developed, as shown in Egs. (4)
~ (10).

SEO1/current-to-best/1:

the essential difference between SE and the meta-heuristic in/e =X+ Sa (XiJ’XgJ) +Sq (Xr.J’szJ ) 4)
algorithms with hypercube search style is the difference
. . SEO02/best/1:
in search rules. Then, how does the SE specifically search
the solution space? Next, this subsection will go over the  ymew _ x| S, (X X ) )
evolutionary principle of SE through the specific math- a 8 R
ematical model. SE03/best/2:
According to the literature [41, 50], the mathematical
model of the spherical search in different dimensional ~ X[} =X, ; + Sa(X, X, 5) +Sa(X, X, ;) (6)
spaces is shown in Egs. (1)~ (3)
SEO4/rand /1:

S X, Xp:) =X |X,; —X4:| Xcosb,d =1

d( ayj ﬂJ) J ﬂJ| ey X;l;w =X, ;+ Sd(sz,,"X@,j)- %

o X || X, — Xp.ll, Xsin0
SaXajoXpy) = { wXx|IX,, —XZ*“;XCOSH’d_ 2@
O X X, = Xp,ll, % TTG2 ' sind)
Sa(Xa Xp;) = @ X X, — X1l X c088,_, x [155 'sind, »3 < d < dim, 3)
w X ”Xa,* - Xﬂ,* ”2 X Cosadim—l
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SEQ05/rand/2:

X=X, 1+ 84X, 5 X )+ Sa(X, 0 X, ) 8)
SEO6/current/1:

X' =X+ 8, (X,2 ]’Xr3,/‘)' )
SEQ7/current/2:

XP = X5+ Sa(X, 50X, ) +Sa(X, 0 X, 5)s (10)

where X, . X, X, X, , and X, are randomly selected
1nd1v1dua1s from the populatlon X, is the current optimal
individual. i and j are the 1nd1v1dua1 index and the dimen-
sion index, respectively. The 'current' refers to the 'cur-
rent individual', the 'best' refers to the 'current global best
individual', and the 'rand' refers to the 'random individual'.
1 or 2 refers to the number of spherical units made up of
random individuals.

During the SE search, to produce a new search agent,
there are first three search agents randomly selected from
the population to be optimized, including: X, , X, , and X, .
Next, Xr| is used as the initial vector, and the radius of the
search region is also generated in terms of the modulus or
Euclidean distance of the X, and X,.. Then, there are two
steps for SE to select the dlmensmns to be updated, which
are (1) updating the parameter DSF € [1, dim], (2) select-
ing p dimensions in [1, DSF] for the search task. Finally,
the radius and rotation angle of the search are constantly
adjusted based on the spherical search principle to effi-
ciently search the space near the initial vector and generate
a new solution vector X"*". To further analyze the search
process of SE, the next part of this subsection will intro-
duce the search principle of SE in detail by the SE04, as
shown in Algorithm 1.

2.2 Cross-search Mutation (CSM)

CSM is an optimization operator that has been hot in
recent years and is often used to enhance the convergence
ability of meta-heuristic algorithms. It originated from a
swarm intelligence optimizer (CSO) proposed by Meng
et al. [52] and was constructed based on two search opera-
tors. These two operators greatly enhance the information
interaction capability of CSO on both search agent and
dimensional aspects, ensuring not just population variety
but also good convergence ability. Based on the inspira-
tion given above, this study introduces CSM to SE in an
attempt to overcome the convergence defects of SE by uti-
lizing CMS's search property, including prompting SE to
go out of the local optimum and improving its convergence

speed and accuracy. The CMS is detailed in two aspects
below.

Horizontal crossover search (HCS): This operation
enables a kind of arithmetic crossover between the same
dimensions of two different agents in the population. Thus,
it can make different agents learn from each other in the
same dimension, effectively improving the population's
exploration ability. Assuming that the jth dimensions of
the parent agents X, and X, are crossed horizontally, they
generate kids with Eq. (11) and Eq. (12)

Xog' = e x X+ (1= &) XX+ 00 X (Xoy = Xpg) (1)

X' = ey %Xy + (1 - 6) XX, 5+ ¢ % (X, = X,). (12)

where XZZ.W and XZfIW are the jth dimensional generations of

X, and X,, generated by HCS, respectively. And X, ; and X, ;
are the jth dimensions of X, and X,, respectively, and
€, €,,¢; and ¢, are the contraction factors, €,¢, € [0, 1],
¢,y €[-1,11

Vertical crossover search (VCS): The agent carries out
this action between two of its independent dimensions.
When performing the optimization task, it helps the dimen-
sion that is trapped locally and stalled to get away from the
local optimum without affecting the information of the other
dimensions. Assuming a longitudinal crossover between the
mth and nth dimensions of the parent agent X;, it can be
achieved by Eq. (13)

X' =ex X, +(1—¢e)xX;,, (13)

where € €[0,1] is a contraction factor and Xl”fn” is the gener-
ated offspring using the VCS.

2.3 Gaussian Barebone Strategy (GBS)

The Gaussian function is a very popular operator in meta-
heuristic algorithms [53, 54]. In recent years, it has often
been used by many peer researchers to design various opti-
mization strategies for approving the performance of the
algorithms. For example, Wei et al. [55] introduced the
Gaussian barebone strategy in HHO to improve the search
capability of the original HHO. They further enabled the
improved algorithm (GBHHO) combined with KLEM to
propose an effective intelligent model for entrepreneurial
intention prediction. Wu et al. [56] proposed the Gauss-
ian barebone mutation-enhanced SMA (GBSMA) to alle-
viate the convergence defects of the original SMA using
the Gaussian barebone strategy in concert with the greedy
selection mechanism. Xu et al. [57] effectively modified the
exploration and exploitation process of GOA by the elite
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Algorithm 1 The pseudo-code of SE04

Input: The fitness function F(x), maximum evaluation number (MaxFESs), evaluation number (FESs),

population size (IN), dimension (diz)

Output: the best agent (X,)

Initialize populations: X = X1, X5, ... Xy

Calculate the fitness of each agent in the population.

FEs = FEs+ N

If there exist better agents, update the global optimal agent: X, g

While FEs < MaxFEs
Fori = 1:size(X, 1)

Select three random agents: X, , Xy, and X5

Update parameters: DSF and w
Select an integer d from [1, DSF]

Select d dimensions from X, , X, and X3 respectively for spherical evolution

Forj = 1:d
Ifd ==1
X" = Xy j + S1(Xrp o X )

]
Elseifd == 2
X" = Xpyj + S2(Xr, o X )

Elsed > 3
Xij"" = Xpyj + Sa (X o Xry )

T1J

End
End

Control the search boundary and calculate the fitness of X;"*"

FEs =FEs+1

If X;™" is better, update the current agent X; and the global optimal agent Xy

End
End

Return X

opposition-based learning and Gaussian barebone strategy,
thus improving the GOA's merit-seeking ability.

According to the preceding studies, it is known that the
distributional characteristics of Gaussian functions can help
search agents more fully utilize the data of the approximate
optimal solution, which has the chance to speed up the
exploitation process and thus strengthen the algorithm's con-
vergence ability. Inspired by the above, this paper improves
the second stage of the SE search process by utilizing the
GBS in combination with the search characteristics of SE.
The specific details of GBS are shown in Eq. (14)

@ Springer
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where Xl”jw represents a new generation generated using
GBS, and i and j denote the position index and dimension
index of the search agent, respectively. r,, r,, ry are the posi-
tion indexes of three randomly selected agents. n(u, o) is the
Gaussian distribution function, where y denotes the mean of
two positions, and o is used as the standard deviation.

3 Proposed CGSE

The SE is a recently proposed meta-heuristic algorithm
whose special search method has proven to be significantly
effective in traversing solution spaces and has shown a
very powerful search capability in global optimization.
However, it also has some defects in practical applica-
tions. For example, the randomness of its search is vicious
in some cases, which may cause it to be over-exploratory
and has a high chance of causing excellent resources to be
wasted, which is not conducive to escape from the local
optimum, thus affecting its exploitation capability. There-
fore, SE still has great room for optimization. To make SE
better applied to global optimization tasks and engineering
problems, this subsection integrates CSM and GBS intro-
duced in Sect. 2 with SE, and innovatively proposes a new
variant of SE with stronger performance, called CGSE.

First, CSM is introduced in the first half of the SE work
for incrementally enhancing the learning ability among
search agents and between dimensions to provide a high-
quality population and an excellent approximate global
optimal solution for the optimization task in the second
half. Then, GBS is used in the second half of the SE work
to explore and exploit a more optimal global solution in
collaboration with the original strategy of SE. More specif-
ically, the implementation details of CGSE are described
by Algorithm 2, and Fig. 3 also shows the improvement
process of CGSE by the flowchart.

According to the above description, the complexity of
CGSE itself is mainly affected by the initializing popu-
lation, the original SE mechanism, the CSM, the GBS,
and the fitness value calculation. It is assumed that N
denotes the population size, D denotes the dimension,
and T denotes the maximum number of iterations. When
considering only one iteration process, the complexity of
initializing the population is O(N X D), the complexity of
the original SE mechanism is O(N X logN + N X D), the
complexity of the CSM is OV X D + N?), the complexity
of the GBS is O(N x D), and the complexity of calculation
of the fitness value is O(N X logN). Therefore, when the
program terminates after T iterations, the complexity of
CGSE is O(T x (3N x D + N* + 4N X logN)/2).

4 Experiments and Results

To provide objective evidence for the proposed CGSE,
this section sets up a series of global optimization experi-
ments to synthesize the advantages of CGSE. Since CGSE
is a new SE variant built by fusing CSM, GBS, and SE,
this subsection first discusses CSM and GBS's effects on
SE and proves that CGSE is the best-improved version by
the ablation experiment. Next, the search characteristics
of CGSE are explored by the qualitative analysis experi-
ments, and the advantages of CCGSE over SE are elabo-
rated based on the experimental results. Then, the robust
stability of CGSE is proved by the stability test. Impor-
tantly, this section further proves that CGSE still has sig-
nificant advantages among high-performance algorithms
by comparing CGSE with 18 excellent algorithms, includ-
ing nine well-known original algorithms and nine recently
proposed peer variants. Finally, the CGSE is effectively
applied to six engineering problems, demonstrating that
the algorithm has a good effect in practical applications.

4.1 Global Optimization Experiments of CGSE
4.1.1 Experiment Setup

This subsection mainly describes the basic setup of the
global optimization experiments on the IEEE CEC2017
benchmark function set [S8]. To ensure fairness, the number
and dimensions of agents are fixed at a uniform 30, and each
algorithm is evaluated 300,000 times. Since the algorithms
are somewhat stochastic, this subsection uniformly runs each
algorithm 30 times independently to obtain their average
optimization results. Specifically, the qualitative analysis and
stability test set their experimental parameters, which will
be described in the corresponding experiments. In addition,
to avoid external factors interfering with the experiments,
all benchmark function experiments are carried out in the
same computer environment and MATLAB 2021. The core
parameters of the computer are 11th Gen Intel(R) Core (TM)
i7-11,700 @ 2.50 GHz and 32 GB RAM.

To better analyze and show the results of each algorithm
more easily, this paper uses the average value (AVG) to
reflect the superiority or inferiority of the algorithms' per-
formance and measures its stability by the standard variance
(STD). Moreover, the comparison results are shown visually
by two nonparametric tests, the Wilcoxon signed-rank test
(WSRT) [59] and the Freidman test (FT) [60].

Notably, the experiments' optimal results are indicated
through boldface characters. The smaller "AVG" means
that the algorithm obtains better fitness, i.e., better con-
vergence accuracy. The smaller "STD" indicates that the
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( Start

\ 4

Initialize the parameters and population: MaxFEs, N, dim..X etc.

A

Calculate the fitness of each agent and get the current global optimal agent

A

If FEs < MaxFEs/2?
Yes No

A

Select the three random agents: 72,72 and Y73 Update the current population by the CSM

A 4 4

Calculate the fitness of each agent and update

| dld )ASv , () d , .
Update the parameters DSF, @ and « il bl

A 4 4

Update the population by spherical evolution rules Update the population by the GBS

| |
v

Calculate the fitness of each agent and update the current global optimal agent

A

Check if stopping condition is satisfied?

Yes

A

Return the global optimal agent

End

Fig.3 The flowchart of CGSE

algorithm's stability is more robust. In WSRT, "+/="isa  the P value of WSRT is also a very important reference
vital evaluation metric, which indicates that CGSE is "bet- indicator. The P values less than 0.05 are marked in bold
ter/worse/equal” in terms of optimization results than the  in this paper, which means that the optimization effects
other algorithms in this paper. "Mean " reflects the com-  of CGSE and other algorithms are significantly different.
prehensive results of the WSRT; "Rank" is the compre-  In other words, the experimental results are reliable and
hensive ranking of the algorithms compared. In addition,  statistically significant.
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Algorithm 2 The pseudo-code of CGSE

Input: The fitness function F(x), maximum evaluation number (MaxFESs), evaluation number (FES),
population size (IN), dimension (dim)

Output: the best agent (Xg)

Initialize populations: X = Xy, X5, ... Xy
Calculate the fitness of each agent in the population.
FEs = FEs+ N
If there exist better agents, update the global optimal agent: X,
While FEs < MaxFEs
If FEs < MaFEs/2
Update the population to obtain X™" by the CSM
Fori = 1:size(X,1)
Control the search boundary and calculate the fitness of X;"™¢"
FEs=FEs+1
If X;"®" is better, update the current agent X; and the global optimal agent X,
End
Else
Fori = 1:size(X,1)
Select three random agents: X, , X, and X3
Update parameters: DSF and w
Select an integer d from [1, DSF]
Select d dimensions from X, , X, and X3 respectively for spherical evolution
Forj=1:d
Ifd ==
X" = Xryj + S1(Xey 10 X )
Elseifd == 2

X" = Xryj + 2 (X o X )
Elsed > 3

X" = Xpyj + Sa(Xry j Xy j)

End
End
Control the search boundary and calculate the fitness of X;"¢"
FEs=FEs+1

If X;™®" is better, update the current agent X; and the global optimal agent X g
End
Fori = 1:size(X, 1)
Update the X; to obtain X;"®" by the GBS
Control the search boundary and calculate the fitness of X;"¢"
FEs=FEs+1
If X;"*" is better, update the current agent X; and the global optimal agent X
End
End
End

Return X

@ Springer



1064

Y.Lietal

Table 1 The SE variants for the

i N Algorithms CSM GBS
ablation experiment
CGSE 1 1
CSE 1 0
GSE 0 1
SE 0 0

4.1.2 Ablation Experiment

It is described in Sect. 3 that CGSE is an enhanced SE vari-
ant proposed by the synergy of CSM, GBS, and the original
SE. According to the literature, it is known that the relation-
ship between the core of the SE and optimization compo-
nents can reflect the adaptability of the proposed CGSE to
handle different types of tasks. Therefore, this subsection
tries to show more visually the effect of CSM and GBS on
CGSE by the ablation experiment.

Table 1 shows the combination details of CSM and GBS
with SE, where 1 indicates that the corresponding strategy is
used, and 0 indicates that it is not. The results of the ablation
experiment based on the 30 benchmark functions in IEEE
CEC 2017 are shown in Table 2. It can be seen from ana-
lyzing the distribution of AVG over the four algorithms in
this experiment that CGSE can obtain the best performance
on the relatively most functions. In addition, it can also be
determined by the distribution of STD that the performance
of CGSE is more stable than that of CSE, GSE, and SE.

Table 3 shows the results of analyzing this experiment
using WSRT. It is observed from the table that the overall
ranking of CGSE in this experiment is the first, which means
that it has the best overall performance. It is worth noting
that the "Mean" of CGSE is 2.07, which still has a significant
advantage compared with the second-ranked GSE (2.23). In
addition, according to "+/=", it can be found that CGSE
outperforms GSE on 12 functions, is similar to GSE on 11
functions, and is worse only on seven functions.

More importantly, CGSE performs better than SE on most
functions. Table Al in the Appendix shows the P values
obtained from this experiment based on WSRT. The table
shows that the P values of the other three SE methods are
less than 0.05 on most functions compared to CGSE, which
indicates that CGSE has a significant difference in perfor-
mance with them in most cases, fully proving the reliability
of the results for comparison. Figure 4 shows this ablation
experiment's FT results and visually shows that CGSE has
the best score on FT, and the rest are GSE, CSE, and SE in
that order. Therefore, combining the above analysis results,
it can be demonstrated that the CSM and GBS can contribute
positively to the SE alone. The CGSE proposed is the best-
improved variant in this study.

To further analyze the effect of CSM and GBS on the SE,
this subsection gives the convergence images of CGSE and
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the other three methods on the nine benchmark functions, as
shown in Fig. 5. These convergence images show that CGSE
has the relatively best convergence performance and that
CSM and GBS can help CGSE exploit the global optimal
solution in most cases. On the functions F1, F3, F12, F18,
F21, and F30, the convergence curves of GSE have obvious
inflection points, which indicate that GBS helps SE success-
fully escape from the local optimum, not only significantly
accelerates the convergence speed of SE but also dramati-
cally improves its convergence accuracy. It is most notewor-
thy that the inflection point of GSE is significantly earlier,
and the convergence accuracy is improved after introducing
CSM into GSE. This indicates that CSM enhances the con-
vergence ability of GSE and further proves that the CGSE
with both together is the best-improved version in this study.

4.1.3 Qualitative Analysis for CGSE

To further explore the search characteristics of CGSE, this
subsection designs the qualitative analysis experiments
on CGSE from four aspects based on the IEEE CEC2017,
including the historical distribution of search agents, the tra-
jectory of dimensional particles, the variation of the aver-
age fitness value and the iterative curve. In particular, this
experiment uses the iterative process to analyze the results
conveniently. The iteration number is 2000 times, and the
remaining settings are the same as in Sect. 4.1.1's experi-
mental configuration. As shown in Fig. 6, the experimen-
tal results of this experiment are given. To better study and
comprehend the CGSE search process, Fig. 6(a) gives the
three-dimensional model of the five functions, which repre-
sent the search space of CGSE.

Figure 6(b) depicts the distribution of the best CGSE
search agents over the whole optimization task, with the red
marker indicating the best global position and the black dots
indicating the best historical positions. Analyzing the picture
reveals that in most situations, the historical optimum solu-
tions cluster around the global optimal solution, and only a
very tiny percentage of the historical solutions are discrete.
This suggests that CGSE can search the solution space as
much as feasible and locate the approximate optimal solu-
tion as rapidly as possible, reflecting its exploration power
and excellent exploitation capability. At the same time, these
results further explain the reasons for the faster convergence
and better convergence accuracy obtained by CGSE.

Figure 6(c) records the fluctuation curves of the first-
dimensional vector of the search agents of CGSE during
the iteration. Based on the variation of the mid- and early
period curves on each function, it can be seen that the search
vectors have significant variability. This implies that CSM
allows search agents to learn socially, which is particularly
useful for the CGSE to traverse the solution space, assisting
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e e ety E E
AVG STD AVG STD AVG STD
CGSE 1.00000E+02 2.04240E-09  2.00000E + 02 3.14558E-05  3.00000E + 02 9.67160E-12
CSE  2.24153E+03 2.87942E+03 2.03576E+10 8.44408E+10 5.21587E+03 1.26387E+03
GSE 1.00000E+02 6.15481E-09  2.00000E+02 1.39874E-04  3.00000E+02 4.70316E-10
SE 1.30454E+03 1.48634E+03 4.27033E+15 8.46186E+15 2.19704E+04 5.86256E+03
F4 F5 F6
AVG STD AVG STD AVG STD
CGSE 4.58244E +02 2.98037E+01 5.47442E+02 9.20608E+00 6.00000E+02 9.04655E-06
CSE  4.90920E+02 2.48929E+01 5.43816E+02 8.43557E+00 6.00000E+02 1.30288E-06
GSE  4.82851E+02 6.41411E+00 5.38228E+02 7.00823E+00 6.00000E+02 2.78365E-07
SE 4.89138E+02 8.20630E+00 5.43312E+02 6.13131E+00 6.00000E +02 2.49896E-08
F7 F8 F9
AVG STD AVG STD AVG STD
CGSE 7.69356E+02 1.17226E+01 8.63811E+02 1.90519E+01 9.00160E+02 4.14685E-01
CSE  7.69501E+02 6.25037E+00 8.55067E+02 6.89396E +00 9.00220E+02 5.82423E-01
GSE  7.69296E+02 6.71483E+00 8.46404E+02 9.56032E+00 9.01663E+02 2.78716E+00
SE 7.76781E4+02 6.91646E+00 8.49108E+02 7.95310E+00 9.00151E+02 4.95339E-01
F10 F11 F12
AVG STD AVG STD AVG STD
CGSE 3.51644E+03 4.95783E+02 1.12119E+03 2.14214E+01 2.21135E+04 1.05887E + 04
CSE  3.72841E+03 2.61273E+02 1.12793E+03 2.83117E+01 3.61491E+05 2.60011E+05
GSE  3.34272E+03 4.49514E+02 1.12914E+03 2.32690E+01 2.65536E+04 1.38848E+04
SE 3.58330E+03 3.35857E+02 1.15244E+03 2.64169E+01 1.01810E+06 6.59430E+ 05
F13 F14 F15
AVG STD AVG STD AVG STD
CGSE 8.28334E+03 6.14438E+03 1.49595E+03 3.37593E+01 1.53717E+03 2.95250E+01
CSE  6.66473E+03 4.49605E+03 1.51400E+04 1.56572E+04 2.31544E+03 1.18104E+03
GSE  2.27775E+03 2.07204E+03 1.47586E+03 4.45737E+01 1.52236E+03 1.12601E + 01
SE 7.77444E+03 6.79934E+03 6.17776E+04 4.42246E+04 4.50440E+03 2.43302E+03
Fl6 F17 F18
AVG STD AVG STD AVG STD
CGSE 2.01047E+03 1.88914E+02 1.78220E+03 4.20798E+01 6.95787E+03 5.93487E +03
CSE  1.98614E+03 1.60732E+02 1.76701E+03 1.73554E+01 1.43290E+05 9.21171E+04
GSE  2.07653E+03 1.52724E+02 1.82254E+03 7.65873E+01 1.03969E+04 9.36735E+03
SE 2.07497E+03 1.23789E+02 1.81738E+03 7.08439E+01 2.11351E+05 9.97107E+04
F19 F20 F21
AVG STD AVG STD AVG STD
CGSE 1.93084E+03 1.38903E+01 2.17103E+03 6.66809E+01 2.34140E+03 1.10510E+01
CSE  3.838814E+03 2.18293E+03 2.11127E+03 6.04658E +01 2.34256E+03 6.43602E + 00
GSE 1.92033E+03 4.56143E+00 2.14491E+03 9.10045E+01 2.34770E+03 6.99824E+00
SE 5.74728E+03 2.61926E+03 2.15610E+03 8.30039E+01 2.35038E+03 9.13457E+00
F22 F23 F24
AVG STD AVG STD AVG STD
CGSE 2.30000E +03 0.00000E +00 2.68911E+03 1.29554E+01 2.85735E+03 1.42867E+01
CSE  2.30000E+03 0.00000E+00 2.68269E+03 7.09680E +00 2.85283E+03 7.70208E + 00
GSE  2.59356E+03 7.75516E+02 2.69762E+03 9.54116E+00 2.89064E+03 1.36846E+01
SE 3.10248E+03 1.27159E+03 2.70349E+03 7.67953E+00 2.88418E+03 5.15197E+01
F25 F26 F27
AVG STD AVG STD AVG STD
CGSE 2.88629E+03 3.03903E+00 3.87578E+03 3.79688E+02 3.21385E+03 5.09968E+00
CSE  2.88756E+03 6.60791E+00 3.76040E+03 2.99963E+02 3.21215E+03 8.25494E+00
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Table 2 (continued)

GSE  2.88764E+03 5.60007E-01  4.00920E+03 3.87297E+02 3.20569E +03 3.80927E + 00
SE 2.88779E+4+03 5.56156E-01 4.14131E4+03 2.50307E+02 3.20680E+03 3.90157E+00
F28 F29 F30
AVG STD AVG STD AVG STD
CGSE 3.12819E+03 4.76223E+01 3.48924E+03 7.05946E+01 6.09068E +03 4.61784E + 02
CSE  3.13325E+403 4.89472E+01 3.37365E+03 2.84299E+01 6.77335E+03 1.14564E+03
GSE  3.16372E4+03 5.22523E+401 3.45787E+03 7.10845E+01 6.72465E+03 1.63998E+03

SE 3.21622E+03

8.46348E +00 3.44619E+03

5.80926E+01 8.36308E+03 1.84834E+03

Table 3 The results of this ablation experiment by WSRT

Algorithms +/= Mean Rank
CGSE ~ 2.07 1
CSE 10/5/15 2.40 3
GSE 12/7/11 223 2
SE 20/4/6 3.27 4

search agents to get away from the local area and hunt for
the global optimal solution. It is noted that the GBS operates
in conjunction with the original SE's search rules in mid-
and later iterations of CGSE, which plays a critical role in
increasing CGSE's exploitation and helps to accelerate the
convergence rate.

Figure 6(d) depicts the average fitness of all CGSE
search agents during iterations. It can be observed that
the curves all converge immediately after the start of the
iteration, indicating that CGSE can search the solution
space fast and correctly identify the approximate optimal
solution. Figure 6(e) also shows the convergence curves
of CGSE and SE to demonstrate the convergence effect of
CGSE. It is clear that the convergence speed and accuracy
of CGSE are substantially greater than those of SE, and
the convergences also show that CGSE can leave the local
area better.

4.1.4 Scalability Test for CGSE

As we all know, the stability of an algorithm is crucial to
its performance. In other words, the algorithm's stability
can considerably represent its performance. Therefore, to
further verify that CGSE has strong comprehensive perfor-
mance, two different dimensions (50 and 100) are used to
test the stability of CGSE on the IEEE CEC2017 in this
subsection. According to the comparison results of CGSE
and SE in Table 4, it can be observed that CGSE has the
relatively best AVG and STD on most functions, whether at
50 dimensions or 100 dimensions, and then combined with
the experimental results of 30 dimensions in Sect. 4.1.2, it
can be concluded that the CGSE proposed in this paper is
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Fig.4 The results of this ablation experiment by FT

stronger than SE in terms of stability and convergence abil-
ity; thus, CGSE is more robust.

Table 5 analyzes the results of this stability experiment by
WSRT. The WSRT ranking of CGSE is best in both dimen-
sions, as shown in the table. Specifically, CGSE is superior
or similar to SE on most functions and slightly inferior to SE
on only two or three functions. This indicates that CGSE is
superior to SE and has robust stability. The p values derived
from the WSRT are shown in Appendix A,. They are almost
less than 0.05 in both dimensions, indicating statistically
significant differences and reliability between CGSE and SE.

It is further stated that CGSE has undeniable advantages
compared to SE. Next, the results in Fig. 7 show that CGSE
achieves the minimum FT score in both dimensions, proving
that the stability of CGSE is robust and reliable. Meanwhile,
Figs. 8 and 9 show the partial convergence images of CGSE
and SE at 50 and 100 dimensions, respectively. It is clear
that CGSE is much better than SE in the speed and accuracy
of convergence. As a result, it can be concluded that the
CGSE proposed is an enhanced algorithm with better overall
performance than SE.
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Fig.5 The partial convergence images of the ablation experiment

4.1.5 Comparison with Basic Algorithms

To certify that CGSE has significant competitiveness,
this subsection compares CGSE with nine well-known
basic algorithms on IEEE CEC2017, including DE [11],
HHO[12], ACOR [18], GWOI[61], SMA[15], WOA[62],
RUN[16], BA [17], and MVO[63]. Table 6 compares the
results of this experiment, showing that CGSE has the best
AVG and the smallest STD for most functions. This dem-
onstrates that CGSE captures the optimal optimization and
has superior flexibility and strong stability for problems

with different complexities. In particular, CGSE shows
stronger performance on unimodal, hybrid, and combina-
tion functions than the other nine basic algorithms.
WSRT analyzes the experimental results of CGSE with
nine basic algorithms. As shown in Table 7, CGSE ranks
first overall in the WSRT. Notably, CGSE outperforms DE
(second overall ranking) on 25 functions and is slightly
worse or similar on only five functions. Also, it outper-
forms MVO (third in the overall ranking) on 28 functions
and performs similarly on only two functions. Table 16 in
the Appendix shows the P values obtained for this WSRT,
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Fig.6 The partial results of qualitative analysis for CGSE

almost all of which are less than 0.05. This indicates that
there is a significant difference in performance between
CGSE and the other nine algorithms. In addition, it further
indicates that the results of this experiment are reliable.
As shown in Fig. 10, the results of evaluating CGSE and

the nine basic algorithms by FT show that CGSE has the

best FT score and has a significant advantage over DE,

which has the second-highest score. To visually show the

comparison results, some of the convergence images are
shown in Fig. 11. On the images listed, it can be seen that
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4.1.6 Comparison with Peer Variants

(e)

CGSE has the best convergence accuracy. Furthermore,
CGSE has quicker convergence on the F1, F12, F15, F22,
and F30. The above results reveal that CGSE has consider-
able benefits and is highly competitive when compared to
the basic algorithms.

In Sect. 4.1.5, the proposed CGSE has been proven to have
the best comprehensive performance in comparison with
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Table 4 The comparison results of CGSE and SE on the stability test

F1 F2 F3

AVG STD AVG STD AVG STD
CGSE-50dim 6.00840E + 02 6.10358E + 02 3.04876E + 07 1.18647E + 08 6.35203E + 02 2.29288E + 02
SE-50dim 4.60594E + 03 4.67235E+03 1.94177E+35 6.55031E+35 1.33946E + 05 2.18067E + 04
CGSE-100dim 4.33650E + 03 5.13728E + 03 1.38286E +99 5.45288E+99 1.52129E + 05 2.14078E + 04
SE-100dim 3.63648E + 04 5.44350E + 04 5.33705E + 93 2.46487E + 94 5.66613E+05 5.42168E+ 04

F4 F5 F6

AVG STD AVG STD AVG STD
CGSE-50dim 4.79945E + 02 5.58451E+01 6.21393E + 02 2.27433E+01 6.00000E + 02 1.13105E-04
SE-50dim 5.33311E+02 3.21435E + 01 6.30993E + 02 1.17972E + 01 6.00000E + 02 7.42280E-06
CGSE-100dim 6.45573E + 02 2.96019E+01 8.23873E + 02 5.18606E +01 6.00023E+02 2.05561E-02
SE-100dim 6.59794E + 02 2.74246E + 01 9.98748E+02 4.22673E + 01 6.00000E + 02 3.52207E-08

F7 F8 F9

AVG STD AVG STD AVG STD
CGSE-50dim 8.18173E + 02 1.44191E+01 9.22811E + 02 2.24520E+01 9.01870E + 02 1.70819E + 00
SE-50dim 8.86327E+02 1.33381E + 01 9.24523E+02 1.53843E + 01 1.10932E +03 1.12000E + 02
CGSE-100dim 1.06084E + 03 6.09715E+01 1.08606E + 03 4.06683E+01 1.03281E + 03 2.57504E + 02
SE-100dim 1.30946E + 03 3.54122E + 01 1.29539E +03 3.15271E + 01 1.77684E + 04 3.13548E+03

F10 F11 F12

AVG STD AVG STD AVG STD
CGSE-50dim 6.16578E + 03 1.20605E + 03 1.14641E + 03 1.30825E + 01 5.64860E + 05 3.01308E + 05
SE-50dim 6.76161E+03 3.97841E + 02 1.30256E + 03 1.06605E + 02 1.20904E +07 4.22937E+06
CGSE-100dim 2.09730E + 04 1.11629E+03 5.16642E + 03 1.10432E + 03 1.38244E + 07 6.26438E + 06
SE-100dim 1.74847E + 04 6.43553E + 02 3.31766E + 04 8.51671E+03 9.57963E+07 2.54613E+07

F13 F14 F15

AVG STD AVG STD AVG STD
CGSE-50dim 3.49866E + 03 2.53631E + 03 1.08867E + 04 1.26957E + 04 7.74708E + 03 6.50478E+03
SE-50dim 1.11624E+ 04 7.63279E+03 1.01582E+06 4.85432E +05 1.09161E+ 04 5.68329E + 03
CGSE-100dim 4.71988E + 03 2.57831E + 03 1.23693E + 06 6.20164E + 05 2.73932E + 03 9.87136E + 02
SE-100dim 2.89618E+04 1.86599E + 04 8.46838E +06 2.66020E + 06 1.89276E+04 1.15271E+04

Fl16 F17 F18

AVG STD AVG STD AVG STD
CGSE-50dim 2.66373E +03 3.40944E+02 2.40573E+03 2.15823E+02 241119E + 04 2.00261E + 04
SE-50dim 2.77019E+03 1.86089E + 02 2.50608E + 03 1.80048E + 02 2.27494E+06 1.23560E + 06
CGSE-100dim 4.73067E + 03 5.71921E+02 3.85406E + 03 3.81571E+02 1.37319E + 06 5.02615E + 05
SE-100dim 5.21043E+03 3.28381E + 02 4.31656E + 03 3.09384E + 02 9.75363E + 06 3.85897E+06

F19 F20 F21

AVG STD AVG STD AVG STD
CGSE-50dim 1.33709E + 04 9.97964E + 03 2.52647E + 03 1.71946E + 02 2.38838E + 03 2.11704E+01
SE-50dim 1.44964E + 04 8.50872E + 03 2.60486E + 03 1.46770E + 02 2.44010E+03 1.64915E + 01
CGSE-100dim 3.39004E + 03 1.65643E + 03 4.09029E + 03 4.02879E +02 2.58163E + 03 3.25743E+01
SE-100dim 5.24656E+ 04 2.89955E+ 04 4.41795E+03 2.97853E + 02 2.85174E+03 3.15256E + 01

F22 F23 F24

AVG STD AVG STD AVG STD
CGSE-50dim 6.85056E + 03 2.92647E+03 2.80299E + 03 1.77697E+ 01 2.97330E + 03 1.74216E + 01
SE-50dim 8.06230E+03 1.52041E + 03 2.87404E+03 1.44548E + 01 3.10654E+03 1.89423E+01
CGSE-100dim 2.25198E+04 3.42795E+03 3.06617E + 03 4.71674E+01 3.55173E+ 03 4.26205E+01
SE-100dim 1.97611E + 04 5.55155E + 02 3.06802E+03 2.00307E + 01 3.72632E+03 3.34754E + 01

F25 F26 F27

AVG STD AVG STD AVG STD
CGSE-50dim 3.06607E+03 3.45225E+01 4.49290E + 03 1.70993E + 02 3.29249E + 03 3.42093E+01
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Table 4 (continued)
SE-50dim 3.03386E + 03 9.17264E + 00 5.25711E+03 1.53906E + 02 3.29878E+03 2.41943E+01
CGSE-100dim 3.33112E+ 03 4.62897E+01 8.83566E + 03 4.71183E+02 3.40280E + 03 3.61026E+01
SE-100dim 3.37011E+03 2.70300E + 01 1.08077E + 04 2.88917E + 02 3.44802E+03 2.23188E + 01
F28 F29 F30
AVG STD AVG STD AVG STD
CGSE-50dim 3.29389E + 03 1.94055E+01 3.62081E + 03 1.98580E + 02 6.31806E + 05 6.25497E + 04
SE-50dim 3.30636E+03 1.00365E + 01 3.70378E+03 1.34998E + 02 7.34118E+05 7.27399E+ 04
CGSE-100dim 3.44498E + 03 3.84980E +01 5.64896E + 03 4.10141E+02 1.38802E + 04 4.38859E + 03
SE-100dim 3.44731E+03 3.74170E + 01 5.67680E+03 3.14288E + 02 2.48557E+04 6.91596E+03
Tabl.e.5 The r(.esults of this Algorithms +/= Mean Rank Algorithms +/= Mean Rank
stability experiment by WSRT
CGSE-50dim ~ 1.067 1 CGSE-100dim ~ 1.133 1
SE-50dim 217217 1.933 2 SE-100dim 22/3/5 1.867 2
2.000 1.790 in the WSRT) on 27 functions and is only slightly worse
50 1 1.787 or similar in performance on three functions. Table A4 in
;E 1.500 ] 1.210 Appendix A shows the P values obtained by WSRT; almost
§ 1.213 all P values are less than 0.05. This proves the reliability of
; 1.000 CGSE is superior to the other nine peer variants.
§ 1 Figure 12 shows that CGSE gets the best FT score, indi-
"S 0.500 cating that it is also relatively the best in FT. To better show
EN p the performance of CGSE, Fig. 13 gives some convergence
- 0000 curves of this experiment. It can be noticed from this figure
Sgé\\‘\ o - that the CGSE has the relatively best convergence accuracy.
C@%@’ %@,50 \Qgé\‘\ Qé\\’(\ Combining the above conclusions, we concluded that CGSE
CC’% i %%,\Q has a better comprehensive performance than nine peer vari-
ants. More importantly, the results of this comparison reaf-
ATeorithons firm the core advantage of CGSE and prove that CGSE is

Fig. 7 The results of this stability experiment by FT

nine basic algorithms. To verify the advantages of CGSE
again, this subsection compares the CGSE and nine recently
proposed peer variants on the IEEE CEC2017, including
LCNMSE [44], CLACO [64], LXMWOA [38], GCHHO
[65], SWEGWO [66], LGCMFO [67], RLGBO [28], ASMA
[68] and ASCA_PSO [69]. Table 8 gives the results of the
comparison between CGSE and nine peer variants. The dis-
tribution of AVG and STD in the table demonstrates that
CGSE has better performance advantages and more robust
stability than the other nine variants on most functions.

As shown in Table 9, the results of this experiment are
analyzed by WSRT and show that CGSE has the best overall
performance. CGSE outperforms ASMA (ranked second in
WSRT) on 22 functions, performs similarly on five func-
tions, and is only slightly worse on three functions. Notably,
CGSE outperforms LCNMSE (a new SE variant, ranked 8th

@ Springer

an SE variant with outstanding performance proposed in
this paper.

4.2 Engineering Applications of CGSE

Section 4.1 has proved that CGSE has an excellent perfor-
mance in the field of global optimization. However, this
cannot be used to corroborate that the CGSE has a strong
ability to tackle real-world challenges. Therefore, this sub-
section applies CGSE to six real engineering problems to
prove its application advantages. Notably, the objective solu-
tions obtained must satisfy some constraints. Notably, the
experiments’ optimal results are indicated through boldface
characters.

4.2.1 Tension/Compression Spring Design (TCSD)
The TCSD's goal is to decrease the spring f(x) mass while

meeting certain limitations. The problem has four inequal-
ity constraints: minimum deflection, shear stress, oscillation
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Fig.8 The partial convergence curves of CGSE and SE at 50 dimensions
frequency, and outer di?meterllim.it, as well as threie design Consider : % = [xl x2x3] = [dDN]. (17)
variables: average spring coil diameter (D), spring wire
diameter (d), and effective spring coil number (N). The o ) . )
design model is expressed mathematically as shown in ~ Objective function : £,,;,(X) = x7x,(x3 +2) (18)

Egs. (17)~Eq. (19)
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Fig.9 The partial convergence curves of CGSE and SE at 100 dimensions

Subjecttos

where variablerange : 0.05 < X, <2,025<x,<1.3,2<x; <150.
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gz(

-

X

- 4x;x3
si(¥)=1- Tirssd = 0
_ 4x§—x1x2 1
) T 12566001 —x) | 5108+ < 0, (19)
(3)=1- o4sx, 0
83 - x§x3 -

gi(¥) =22 -1<0

To explore better design rules for the TSCD, CGSE
is applied to the TCSD along with the other 12 methods.
Table 10 gives the results of the CGSE and the other 12
methods on this problem. It can be observed that the
CGSE has the best result for the TCSD, which means that
the CGSE can obtain the relatively smallest spring mass
among the 13 methods without violating the conditional
constraints. Therefore, the proposed CGSE can better
solve the TSCD.
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-rreas!alllet: olzr gz}g%maiilrls?r?e basic Fl F2 F3
algorithms AVG STD AVG STD AVG STD
CGSE 1.00000E+02 1.22218E-08  2.00000E +02 1.05163E-05  3.00000E+02 1.39681E-11
DE 2.19994E+03 2.68780E+03 1.71246E+22 6.96531E+22 2.13697E+04 5.06399E +03
HHO 1.07418E+07 2.28833E+06 7.84052E+12 2.76000E+13 4.59356E+03 1.36213E+03
ACOR 2.23698E+08 9.67459E+08 2.10013E+24 8.05537E+24 1.25024E+04 2.11181E+04
GWO 2.34581E+09 1.49081E+09 1.86684E+32 9.47485E+32 3.27408E+04 1.05855E+04
SMA  7.18418E+03 6.85798E+03 2.00002E+02 2.63374E-03  3.00006E+02 3.03117E-03
WOA 2.83072E+06 2.13323E+06 1.23629E+21 3.71047E+21 1.41977E+05 6.56308E+ 04
RUN  5.00212E+403 4.78297E+03 2.00003E+02 2.19019E-03  3.00221E+02 1.50859E-01
BA 5.29732E+4+05 2.25169E+05 2.00000E+02 1.02173E-04 3.00108E+02 8.30453E-02
MVO 1.22809E+04 6.79293E+03 1.06507E+03 1.49487E+03 3.00366E+02 1.58877E-01
F4 F5 F6
AVG STD AVG STD AVG STD
CGSE 4.57996E +02 3.10586E+01 5.52533E+02 1.18607E+01 6.00000E+02 2.81603E-06
DE 4.89383E+02 6.26331E+00 6.07469E+02 7.03633E+00 6.00000E+02 2.11111E-14
HHO 5.21380E+02 2.48714E+01 7.40382E+02 3.14921E+01 6.62805E+02 5.50664E + 00
ACOR 5.08056E+02 6.85127E+01 6.25471E+02 6.13331E+01 6.03655E+02 4.32296E + 00
GWO 5.80052E+02 5.93527E+01 5.93494E+02 1.95926E+01 6.08955E+02 5.27994E+ 00
SMA  4.93899E+02 1.14263E+01 5.88852E+02 2.33358E+01 6.00716E+02 4.29085E-01
WOA 5.46888E+02 4.04378E+01 7.83214E+02 7.75707E+01 6.71395E+02 1.26620E+01
RUN  5.01642E+02 1.81326E+01 6.88713E+02 3.60152E+01 6.41197E+02 9.67243E+00
BA 4.79826E+02 2.98224E+01 8.28304E+02 5.93719E+01 6.71502E+02 1.05088E+01
MVO 4.87502E+02 1.69798E+00 5.87783E+02 2.65354E+01 6.11291E+02 9.96599E + 00
F7 F8 F9
AVG STD AVG STD AVG STD
CGSE 7.69729E +02 9.13188E+00 8.63346E+02 1.66043E+01 9.00348E+02 5.29589E-01
DE 8.43283E+02 8.55942E +00 9.09859E+02 8.83074E+00 9.00000E +02 9.67433E-14
HHO 1.20713E+4+03 4.90463E+01 9.51898E+02 2.35626E+01 6.73924E+03 7.39010E+02
ACOR 9.12542E+02 4.76015E+01 9.16259E+02 6.49737E+01 1.85805E+03 1.58103E+03
GWO 8.56897TE+02 4.75326E+01 8.86473E+02 1.48398E+01 1.78318E+03 4.73998E+02
SMA  8.34003E+02 3.06164E+01 8.85868E+02 1.87406E+01 2.40714E+03 1.53537E+03
WOA 1.21702E+03 8.72188E+01 1.01031E+03 4.57492E+01 8.41192E+03 2.44399E+03
RUN  1.02652E+03 5.70955E+01 9.41417E+02 2.25683E+01 3.39324E+03 7.02901E+02
BA 1.60204E+03 1.80594E+02 1.05932E+03 6.37228E+01 1.34962E+04 4.23402E+03
MVO 8.30684E+02 3.09169E+01 8.89789E+02 3.42020E+01 2.20456E+03 1.74866E+03
F10 F11 F12
AVG STD AVG STD AVG STD
CGSE 3.43805E+03 4.82874E+02 1.12132E+03 2.04705E+01 1.69100E+04 7.07572E +03
DE 5.74557E+03 3.12655E+02 1.16007E+03 2.22343E+01 1.60290E+06 9.02648E+ 05
HHO 5.56015E+03 7.94005E+02 1.25114E+03 5.13891E+01 8.46141E+06 4.87724E+06
ACOR 4.97355E+03 1.87185E+03 1.30393E+03 8.19160E+01 9.61956E+05 1.64876E+06
GWO 4.02199E+03 7.35738E+02 1.86321E+03 8.38914E+02 4.43904E+07 5.30795E+07
SMA  4.20492E+03 5.21681E+02 1.23036E+03 3.74364E+01 7.40764E+05 7.79260E+05
WOA 6.08473E+03 8.36743E+02 1.59101E+03 5.39713E+02 5.75339E+07 3.69503E+07
RUN  4.46178E+03 6.66903E+02 1.19546E+03 2.85941E+01 1.40360E+06 6.44146E+ 05
BA 5.71347E4+03 6.41747E+02 1.32252E+403 7.14047E+01 2.17001E+06 1.67682E+06
MVO 4.01253E+03 6.86388E+02 1.25755E+03 6.06994E+01 3.47867E+06 2.12279E+06
F13 F14 F15
AVG STD AVG STD AVG STD
CGSE 7.50822E+03 9.10079E +03 1.51041E+03 3.73313E+01 1.60551E+03 3.65349E + 02
DE 3.73811E+04 2.43102E+04 5.48011E+04 2.96773E+04 7.11047E+03 3.60696E + 03
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HHO
ACOR
GWO
SMA
WOA
RUN
BA
MVO

CGSE
DE
HHO
ACOR
GWO
SMA
WOA
RUN
BA
MVO

CGSE
DE
HHO
ACOR
GWO
SMA
WOA
RUN
BA
MVO

CGSE
DE
HHO
ACOR
GWO
SMA
WOA
RUN
BA
MVO

CGSE
DE
HHO
ACOR
GWO
SMA

3.15295E+05
1.99922E + 04
9.00802E + 06
2.90152E+04
1.50501E+05
3.08107E+04
3.04955E 405
8.70059E + 04
F16

AVG
2.02010E +03
2.06630E+03
3.18314E+03
2.35125E+03
2.36172E+03
2.54921E+03
3.38913E+03
2.69416E+03
3.46495E+03
2.37201E+03
F19

AVG
1.92627E + 03
7.75699E +03
2.80774E+05
3.32618E+04
1.40981E+06
2.61908E+ 04
2.74768E+ 06
7.19674E+03
6.93905E+05
3.40434E +04
F22

AVG
2.30000E + 03
3.53482E+03
6.51795E+03
5.37087E+03
4.38220E+03
5.35898E+03
7.20901E+03
3.47011E+03
7.23568E+03
4.92906E + 03
F25

AVG
2.88600E + 03
2.88739E+03
2.90768E+03
2.90106E+03
2.97267E+03
2.89014E+03

1.42116E+05
2.09169E + 04
3.13868E+07
2.69134E+04
6.99357E+04
1.56474E + 04
1.32001E 405
6.25503E+04

STD

1.79041E +02
1.57192E + 02
3.07729E +02
3.97588E+02
2.55366E+02
2.42544E+402
3.84552E+402
3.16504E+02
5.10255E+02
2.35754E+02

STD

1.35506E + 01
5.01228E+03
1.59138E+05
2.30677E+04
5.90042E+06
1.90577E+ 04
1.73635E+06
1.77696E+ 03
2.55629E+05
4.87489E + 04

STD

0.00000E + 00
1.56261E+03
1.83903E+03
2.13090E+03
1.54667E+03
1.01814E+03
1.47098E+03
1.99944E + 03
1.19970E+03
1.40519E+03

STD
1.97890E + 00
2.48015E-01
1.83681E+01
2.70429E+ 01
2.63242E+01
1.16949E +01

2.97568E + 04
8.69576E + 04
2.18712E+05
3.15486E + 04
9.11182E+05
2.35899E+03
7.54365E+03
6.89147E+03
F17

AVG
1.79023E + 03
1.83552E+403
2.56633E+03
1.99364E + 03
2.00314E+03
2.24869E+03
2.46909E+03
2.16649E+03
2.78912E+03
2.02480E+03
F20

AVG
2.17601E+03
2.14380E + 03
2.63042E+03
2.34237E+03
2.44541E+03
2.44403E+03
2.71204E+03
2.39652E+03
2.99548E+03
2.37441E+03
F23

AVG
2.68600E + 03
2.75634E+03
3.15552E+03
2.73381E+03
2.75337E+03
2.73661E+03
3.04577E+03
2.77956E+03
3.31230E+03
2.73245E+03
F26

AVG
3.98055E + 03
4.64676E+03
6.92050E+03
4.41708E+03
4.60217E+03
4.62394E+03

2.65575E+04
3.03300E+05
3.03707E+05
1.55125E+04
1.10984E + 06
8.67011E+02
5.71837E+03
4.91233E+03

STD

4.47732E + 01
5.17837E+01
2.80270E+02
1.34100E+02
1.48744E +02
2.44466E +02
2.71606E +02
1.66112E+402
3.89162E+02
1.87343E+02

STD

7.22232E+01
6.18177E + 01
2.54417E402
2.44146E+02
1.37928E+02
1.86076E +02
2.14658E+02
1.61106E+02
1.99438E+02
1.69829E + 02

STD

1.10962E+01
1.04914E + 01
1.25874E+02
3.09469E+01
3.72566E+01
1.86768E+01
1.22395E+02
4.35415E+01
1.53686E +02
2.31893E+01

STD

2.71885E+02
9.81442E + 01
1.48747E+03
2.34824E+02
3.02077E+02
2.45226E+02

4.89633E + 04
1.99256E + 04
2.49480E 405
2.43556E + 04
6.75826E + 04
1.54843E+04
1.26256E+05
1.53523E+04
F18

AVG
4.38486E + 03
3.03042E+05
7.07108E+05
5.34470E + 05
1.15460E 406
3.25602E + 05
2.17573E+06
4.30774E + 04
1.82357E+05
2.04256E+05
F21

AVG
2.33644E + 03
2.40888E+03
2.56394E+03
2.41086E+03
2.39194E+03
2.39086E+03
2.57368E+03
2.42833E+03
2.64699E+03
2.38439E+03
F24

AVG
2.85516E + 03
2.95735E+03
3.42468E+03
2.93835E+03
2.91152E+03
2.93292E+03
3.19807E+03
2.90808E +03
3.39390E +03
2.89943E+03
F27

AVG
3.21124E+03
3.20531E + 03
3.34312E+03
3.23618E+03
3.24843E+03
3.21751E+03

2.00837E+04
1.45057E+04
6.37211E+05
1.51381E+04
4.60962E + 04
1.59638E+03
8.82666E + 04
1.33588E + 04

STD

3.46458E + 03
1.56592E + 05
8.21426E +05
6.98816E+05
2.13349E+06
3.34121E+05
2.84729E+06
1.43942E + 04
9.87428E + 04
1.67912E+05

STD

2.80837E+01
7.87367E + 00
4.38744E+01
6.30343E+01
2.78910E+01
2.66652E+01
6.02311E+01
5.44078E+01
8.14139E +01
2.32999E + 01

STD

1.11281E + 01
1.34065E+01
1.43624E+02
6.03617E+01
3.00575E+01
3.12450E+01
9.54456E+ 01
2.71578E+01
1.16610E +02
1.98551E+01

STD

3.97982E+00
2.70879E + 00
1.09432E +02
2.79065E + 01
1.81997E+01
1.18998E+01
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Table 6 (continued)

WOA 2.95393E+03 2.45992E+01
RUN  2.90320E+03 1.55896E+01
BA 2.90867E+03 2.64235E+01
MVO 2.88666E+03 8.70405E-01

F28

AVG STD
CGSE 3.10709E +03 2.69835E+01
DE 3.17650E+03 5.28317E+01
HHO 3.24991E+403 2.42782E+01
ACOR 3.28272E+03 8.92764E+01
GWO 3.42216E+03 6.47371E+01
SMA  3.20483E+03 5.04318E+01
WOA 3.29526E+03 3.18040E+01
RUN  3.13026E+03 4.57578E+01
BA 3.14459E+03 6.54685E+01
MVO 3.20628E+03 3.07333E+01

7.53322E+03
4.79515E+03
9.11752E+03
4.51784E+03
F29

AVG
3.44310E + 03
3.52173E+03
4.31180E+03
3.76282E+03
3.72542E+03
3.77798E+03
4.83178E+03
4.02928E + 03
4.97239E+03
3.77004E+03

1.14938E+03
1.62231E+03
2.09508E +03
2.02513E+402

STD

4.58692E + 01
5.78505E+01
2.90723E+02
1.97135E+02
1.36554E+02
1.86807E+02
4.22375E+02
2.29240E+02
4.27827E+02
2.01088E+02

3.37727E+03
3.25140E+03
3.46520E+03
3.21036E+03
F30

AVG
6.02686E + 03
1.15250E+04
1.61659E + 06
1.28500E + 04
5.49932E+06
1.66693E+ 04
9.55244E 406
7.12626E + 04
1.24290E 406
5.31923E+05

1.06973E+02
1.66984E+01
1.23170E+02
1.13190E+01

STD

5.44102E + 02
2.10541E+03
6.95033E+05
4.98342E+03
3.57337E406
4.39962E + 03
8.30745E +06
3.54821E+04
9.40040E + 05
3.22383E+05

4.2.2 Welded Beam Design (WBD)

The WBD is a minimization problem that seeks to lower
the cost of fabricating welded beams. As we all know, weld
thickness (%), the length (I), thickness (b), and height (¢) of
the beam stem are the keys to affect its quality. Therefore,
it is necessary to optimize them. As a note, while solving
the problem, these variables must satisfy the constraints of
bending stress (0), deflection (6), buckling load (P,), and

shear stress (7). The WBD model is expressed mathemati-
cally, as shown in Eq. (20) ~Eq. (22).

Consider : X = [xl,xz,x3,x4] = [hltb]. (20)

Objectivefunction : f(X) = 1.10471x7 + 0.04811x3x, (14.0+x,)
@n

Table 7 The results of CGSE and nine basic algorithms by WSRT g

Algorithms +/= Mean Rank S
I

CGSE ~ 1.17 1 §

DE 25/3/2 4.00 2 S

HHO 30/0/0 7.67 8 o

ACOR 30/0/0 5.30 6

GWO 30/0/0 6.73 7

SMA 30/0/0 4.37 4

WOA 30/0/0 8.90 10

RUN 30/0/0 4.97 5

BA 30/0/0 7.80 9

MVO 28/0/2 4.10 3

Algorithms

Fig. 10 The results of CGSE and nine basic algorithms by FT
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Fig. 11 The partial convergence curves of CGSE and nine basic algorithms
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Table 8 The comparison results of CGSE and nine peer variants

F1 F2 F3

AVG STD AVG STD AVG STD
CGSE 1.00000E + 02 5.95567E-09 2.00000E + 02 7.45231E-06 3.00000E + 02 1.14064E-11
LCNMSE 5.48399E 402 1.87583E 403 2.00000E 402 2.02212E-05 3.00002E + 02 8.83917E-04
CLACO 9.95356E 403 1.30349E 4 04 1.66134E+08 7.36128E+08 5.73982E + 02 3.51907E+02
LXMWOA 4.15848E+03 5.21224E+03 2.01624E+02 7.44560E 400 3.00002E + 02 4.46427E-03
GCHHO 2.59125E403 3.43261E+03 1.32914E+06 2.51538E+06 5.42359E 402 2.01679E+02
SWEGWO 1.20574E + 04 5.89963E+ 03 7.81900E 403 3.39365E+ 04 3.00667E + 02 3.52432E-01
LGCMFO 8.11423E+03 7.58083E+03 1.69030E+ 12 3.45197E+12 6.56683E+ 03 3.38331E+03
RLGBO 4.98560E + 02 1.09809E + 03 2.00001E+02 6.99855E-04 3.00000E + 02 2.39471E-05
ASMA 4.76071E+02 3.42832E+02 3.61311E+02 4.23026E + 02 3.29950E+ 02 1.85532E+01
ASCA_PSO 4.57599E + 08 9.40793E+08 2.87357E+33 1.57123E+34 1.33321E+03 8.00600E + 02

F4 F5 F6

AVG STD AVG STD AVG STD
CGSE 4.55272E+02 3.05768E +01 5.52799E + 02 1.52869E + 01 6.00000E + 02 6.53922E-06
LCNMSE 4.09456E + 02 2.02502E+01 8.20884E +02 7.76729E+01 6.59398E+02 9.88004E + 00
CLACO 4.57711E+02 4.17656E+01 6.03605E + 02 3.27303E+01 6.00022E + 02 7.76595E-02
LXMWOA 4.67777TE+02 2.25072E+01 6.53521E+02 3.10756E+01 6.09982E + 02 7.02111E+00
GCHHO 4.98628E + 02 1.86744E+01 7.12010E+02 4.09478E+01 6.51376E + 02 6.05184E+ 00
SWEGWO 5.05260E + 02 1.44514E + 01 5.52683E + 02 1.53689E+01 6.00623E + 02 2.89163E-01
LGCMFO 4.87268E + 02 2.82785E+01 6.41573E+02 2.89787E+01 6.17351E+02 9.19091E+00
RLGBO 4.79597E + 02 2.71493E+01 7.14777E+02 4.28417E+01 6.48688E + 02 7.61968E + 00
ASMA 4.40351E+02 3.19011E+01 5.89757E+02 1.70117E+01 6.00000E + 02 9.67433E-14
ASCA_PSO 5.57938E+02 1.11713E+02 7.27067E+02 3.46102E+01 6.33787E+02 7.60967E + 00

F7 F8 F9

AVG STD AVG STD AVG STD
CGSE 7.70977E + 02 1.06284E + 01 8.62815E+02 1.07628E + 01 9.00227E + 02 3.03470E-01
LCNMSE 1.17592E+03 2.13505E+02 1.09719E+03 6.04100E+01 9.93537E+03 2.45787E+03
CLACO 8.73415E+02 3.23876E+01 9.10061E+02 3.78038E+01 9.19444E+02 6.37985E+01
LXMWOA 8.77015E+02 2.98699E+01 9.13318E+02 1.78015E+01 2.98961E+03 9.48228E+02
GCHHO 1.09338E+03 9.17478E+01 9.59525E+02 2.53658E+01 4.84579E+03 7.33796E + 02
SWEGWO 7.81432E+02 1.56918E+01 8.50273E + 02 1.56767E+01 9.05170E+02 5.58541E+00
LGCMFO 8.80506E + 02 4.39011E+01 9.20753E+02 3.26589E+01 3.09750E+03 1.14516E+03
RLGBO 1.12865E+03 7.95539E+01 9.60484E + 02 2.63308E+01 4.50906E + 03 8.87142E+02
ASMA 8.04024E +02 1.12664E + 01 9.06105E+02 1.39361E+01 1.77454E+03 5.91569E + 02
ASCA_PSO 9.78834E+02 3.30093E+01 9.92721E+02 2.99723E+01 4.97603E+ 03 2.04512E+03

F10 F11 F12

AVG STD AVG STD AVG STD
CGSE 3.45577TE+03 4.92377TE+02 1.11629E + 03 1.58606E + 01 1.75589E + 04 8.58752E + 03
LCNMSE 5.41943E+03 6.79334E+02 1.28023E+03 7.83031E+01 1.36383E + 04 1.27478E+ 04
CLACO 4.04736E+ 03 5.32574E+02 1.17735E+03 3.91254E+01 2.94720E+ 05 9.11284E+05
LXMWOA 4.67215E+03 6.50792E+02 1.20525E+03 4.68050E + 01 1.59233E+05 1.47917E+05
GCHHO 5.01697E+03 5.89469E + 02 1.23591E+03 5.19127E+01 9.25548E+05 7.93443E+05
SWEGWO 3.96949E+ 03 6.36442E+ 02 1.18979E+03 3.13529E+01 3.70168E+06 2.51340E+06
LGCMFO 4.81679E+03 3.91134E+02 1.22465E+03 6.45070E+01 6.16517E+05 6.57818E+05
RLGBO 5.43138E+03 7.21802E+02 1.25757E+03 6.15395E+01 3.43912E+04 2.06855E + 04
ASMA 3.31692E + 03 2.80548E + 02 1.18889E + 03 3.74580E+01 4.36575E+05 2.68671E+05
ASCA_PSO 5.95018E+03 7.80984E + 02 1.31018E+03 4.98065E+01 5.90105E+07 6.49835E+07

F13 F14 F15

AVG STD AVG STD AVG STD
CGSE 8.76873E+03 8.35245E+03 1.50996E + 03 4.46579E + 01 1.54269E + 03 3.49183E + 01
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Table 8 (continued)

F1

F2

F3

LCNMSE
CLACO
LXMWOA
GCHHO
SWEGWO
LGCMFO
RLGBO
ASMA
ASCA_PSO

CGSE
LCNMSE
CLACO
LXMWOA
GCHHO
SWEGWO
LGCMFO
RLGBO
ASMA
ASCA_PSO

CGSE
LCNMSE
CLACO
LXMWOA
GCHHO
SWEGWO
LGCMFO
RLGBO
ASMA
ASCA_PSO

CGSE
LCNMSE
CLACO
LXMWOA
GCHHO
SWEGWO
LGCMFO
RLGBO
ASMA
ASCA_PSO

CGSE
LCNMSE
CLACO

1.39323E+04
2.13373E+04
1.84514E+04
1.45595E+04
2.94737E+04
4.79013E+ 04
1.79670E + 04
6.38222E + 03
8.75223E+06
F16

AVG
2.05985E + 03
3.06131E+03
2.15881E+03
2.77008E+03
2.79308E+03
2.12007E+03
2.64008E+03
2.76938E+03
2.31323E+03
3.00760E +03
F19

AVG
1.93262E + 03
1.90742E + 04
1.92762E + 04
6.74135E+03
6.68753E+403
5.17793E+03
6.09014E+03
3.98901E+03
2.60304E +03
3.60589E + 06
F22

AVG
2.30000E + 03
6.63466E+ 03
5.45120E+03
3.24452E+03
3.70586E+03
2.30096E+03
2.30045E+03
5.41375E+03
3.09310E+03
5.36665E+03
F25

AVG
2.88747E+03
2.88676E+03
2.88023E + 03

1.46543E+04
2.14429E+ 04
2.05477E+04
1.77464E 4+ 04
2.15767E+04
3.68466E + 04
1.84445E 404
8.28065E + 03
2.27838E+06

STD

1.73722E+02
3.48981E+02
2.45729E+02
3.17684E + 02
2.80133E+02
2.16658E + 02
3.61350E+02
3.53454E+02
1.68187E + 02
2.91904E+02

STD

1.31200E + 01
1.56277E4 04
1.95323E+04
5.31594E+03
3.97558E+03
2.30064E +03
4.21058E+03
3.09933E+03
6.88279E+02
1.98020E + 06

STD
1.09778E-12
1.87504E +03
1.34312E+03
1.75006E + 03
2.04300E+03
9.09311E-01
1.22883E+00
2.28385E+03
1.33050E+03
2.41240E+03

STD

4.95642E+ 00
1.87650E+00
7.19521E+00

3.02715E+03
2.12149E+04
1.67747TE+ 04
3.72119E+04
6.72776E+03
3.56237E+04
1.83450E+03
2.95225E+04
4.03039E+ 04
F17

AVG
1.78881E + 03
2.63513E+03
1.93695E + 03
2.27800E+03
2.27041E+03
1.84587E+03
2.17054E+03
2.33790E+03
1.92456E 403
2.23599E+03
F20

AVG
2.17791E+03
2.97302E+03
2.22790E+03
2.56246E+03
2.55870E+03
2.17389E + 03
2.43666E+03
2.64326E+03
2.27860E +03
2.49731E+03
F23

AVG
2.68861E + 03
3.13394E+03
2.76162E+03
2.82675E+03
2.91480E+03
2.70597E+03
2.77773E+03
3.02089E +03
2.72598E+03
2.88182E+03
F26

AVG
3.88733E+03
7.74638E+03
4.70080E +03

2.62709E+03
1.14614E+ 04
1.26729E+ 04
2.53603E+ 04
3.04172E+03
3.17149E + 04
3.05267E+02
2.49495E+ 04
3.66938E + 04

STD

4.66913E + 01
2.98310E+02
1.56340E 402
2.05873E+02
2.14731E+02
8.12443E+01
1.97250E + 02
2.53470E+02
8.78949E + 01
1.75929E 402

STD

7.56791E+01
2.76803E+02
1.46640E+02
2.13151E+02
1.88372E+02
6.42663E + 01
1.75750E+02
1.92331E+02
9.89095E+01
1.24268E+02

STD

1.41559E + 01
1.25146E+02
3.68120E+01
4.78473E+01
7.33920E+01
1.46259E 401
3.70976E+01
1.30862E+02
3.07841E+01
4.30251E+01

STD

3.14340E + 02
1.31607E+03
3.81142E+02

9.63177E+03
1.81164E+04
4.75957TE+03
1.03074E+04
5.35200E+03
7.14981E+03
5.39179E+03
2.27254E+03
1.17867E+06
F18

AVG
6.09794E + 03
3.79431E+04
3.57320E+05
1.07809E 405
3.33363E+05
1.00871E+05
2.14935E+05
1.26768E +04
1.56441E + 05
6.01784E+05
F21

AVG
2.34476E + 03
2.60022E+03
2.39007E+03
2.46280E+03
2.50634E+03
2.35052E+03
2.41142E+03
2.47537E+03
2.36783E+03
2.48113E+03
F24

AVG
2.85089E + 03
3.19748E+03
2.93603E+03
3.08673E+03
3.09755E+03
2.86830E+03
2.93012E+03
3.19046E+03
2.98867E+03
3.02575E+03
F27

AVG
3.21244E+03
3.38884E+03
3.20001E + 03

9.84534E+03
1.37197E 4+ 04
4.66448E 403
1.03540E + 04
7.41583E+03
5.91108E+03
5.74660E 403
1.00690E 403
4.63474E+05

STD

5.11637E + 03
1.83401E+04
2.67062E+05
1.11051E+05
3.46966E + 05
5.32898E+04
1.70747E 405
1.25630E + 04
7.43514E+04
3.84492E 405

STD

9.74612E + 00
5.42169E+01
3.36029E +01
4.54648E+01
4.83989E+01
1.42093E+01
2.59870E+01
6.39997E+01
7.87074E+01
3.54634E+01

STD

9.13936E + 00
1.05592E +02
3.25534E+01
9.19192E+01
6.87241E+01
1.41051E+01
3.49519E+01
1.02243E+02
1.23736E+02
4.78717E+01

STD
5.39349E+00
1.77267E+02
2.76286E-04
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Table 8 (continued)

F1 F2 F3
LXMWOA 2.89585E+03 1.54929E+01 4.46929E 4+ 03 1.59403E+03 3.26356E+03 3.27506E+01
GCHHO 2.89692E+03 1.77405E+01 5.73181E+03 1.62074E+03 3.26562E+03 2.58030E+01
SWEGWO 2.88829E+03 9.21595E+00 3.07717E + 03 4.81928E+02 3.21487E+03 1.04887E+01
LGCMFO 2.88809E+03 6.63152E+00 3.33738E+03 9.44873E+02 3.28306E+03 3.63304E+01
RLGBO 2.90800E +03 2.47111E+01 5.88019E+03 1.57373E+03 3.32202E+03 8.77564E+01
ASMA 2.88451E+03 1.40124E + 00 3.33365E+03 8.37915E+02 3.21391E+03 5.32747E+00
ASCA_PSO 2.91993E+03 3.30451E+01 6.32999E+03 5.10581E+02 3.30948E+03 4.12893E+01

F28 F29 F30

AVG STD AVG STD AVG STD
CGSE 3.11797E + 03 4.04317E+01 3.45042E + 03 6.12189E + 01 6.13315E +03 5.41676E + 02
LCNMSE 3.13576E+03 5.72095E+01 4.38683E+03 2.95910E+02 1.07604E + 04 3.80351E+03
CLACO 3.29964E+03 2.00750E + 00 3.59360E+03 1.46703E+02 7.96266E +03 3.92958E+03
LXMWOA 3.16481E+03 5.28032E+01 3.94371E+03 2.16317E+02 9.30310E+03 3.70907E+03
GCHHO 3.22092E+03 2.12028E+01 3.96497E+03 2.477716E+02 1.12879E+ 04 4.24445E+03
SWEGWO 3.21628E+03 1.98565E+01 3.52862E+03 1.20115E+02 1.98243E+05 1.33293E 405
LGCMFO 3.22130E+03 2.68971E+01 3.86671E+03 2.26456E+02 4.79530E + 04 7.71209E + 04
RLGBO 3.14184E+03 6.21788E+01 4.29638E +03 2.76897E+02 8.94667E+03 3.18151E+03
ASMA 3.19420E+03 1.47599E + 01 3.56577E+03 9.96408E+01 9.04121E+03 2.36123E+03
ASCA_PSO 3.34925E+03 1.20516E 402 4.30208E+ 03 2.67548E+02 9.63600E + 06 5.86981E+06

Table 9 The results of CGSE and nine peer variants by WSRT
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Fig. 12 The results of CGSE and nine peer variants by FT

where P = 60001b,L =14 €,
G=12x10%si,

Algorithms +/= Mean Rank %
CGSE ~ 153 1 s
LCNMSE 27/1/2 7.13 8 E
CLACO 24/2/4 5.03 4 §
LXMWOA 27/0/3 5.43 5 E
GCHHO 29/0/1 7.27 9 =
SWEGWO 22/2/6 4.03 3
LGCMFO 28/1/1 6.07 6
RLGBO 29/0/1 6.27 7
ASMA 22/3/5 3.40 2
ASCA_PSO 30/0/0 8.83 10

&1(%) =7(%) = 70 <0

I (35) = o(%) —Cpax S0

23(%) = 6(F) = 6, <O

84(x) =x -x, <0
85(xX) =P-Pc(x) <0
g6(¥) =0.125-x, <0
27(%) = 1104712 + 0.04811x;x, (14.04x,) = 5.0 < 0

Subjectto

(%) = \/(@n? + 221z ;% +@ o= \/ii,xz = ?31{4 = P(L+

reaf i+ (2]}

=

)

max

max

= 13600psi ,

=0.25 €,E = 30 x 1%psi,
Opmax = 30000psi ,
Variablerange : 0.1 <x; £2,0.1 <x, £10,0.1 <x;3 <

10,0.1 <x, <2.

As shown in Table 11, CGSE and eight other peers are
applied to optimize the WBD. Considering the optimal cost,
the result obtained by CGSE is the best among all the meth-
ods in this experiment. This is proof that CGSE has had

considerable success in resolving the WBD.

(22)
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Fig. 13 The partial convergence curves of CGSE and nine peer variants
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4.2.3 Pressure Vessel Design (PVD)

PVD’s goal is to reduce the production cost f(x) as much
as possible while satisfying the demand and the condi-
tion constraints. In the PVD, the shell thickness (7), the
head thickness (7},), the inner radius (r), and the con-
tainer length (/, without the head) are critical to affect
f(x). Therefore, this subsection attempts to optimize the
problem using the CGSE proposed in this paper. The
PVD model is expressed mathematically, as shown in
Eq. (23) ~Eq. (29).

Consider : X = [x;x,x3x,| = [T, T,RL]. (23)

Objective function : f(X),,;, = 0.6224x,x,x, + 1.7781x3xf

+3.1661x,x7 + 19.84x;x7
(24)

min

1 (%) = —x; +0.0193x; <0
85 (%) = —x3 + 0.00954x; < 0
2 (%) = —mx,x — 370 + 1296000 < 0
84(X) =x,—240<0

Subject to (25)

where variableranges

<200, 10 < x, <200.
As shown in Table 12, CGSE has solved the PVD, and

it is easy to see that the optimization results of CGSE are

0<x,<99,0<x,<99,10 < x3

1081
Table 11 The comparison results on the WBD
Methods ~ Optimum variables Optimum
n ] . o cost
CGSE 0.214500 3.152500 8.852572 0.214500 1.727201
CDE[72]  0.203137 3.542998 9.033498 0.206179 1.733462
RO [80] 0.203687 3.528467  9.004233 0.207241 1.735344
GA3 [81] 0.205986 3.471328  9.020224 0.206480 1.728226
CPSO [82] 0.202369 3.544214  9.048210 0.205723 1.728024
GSA[77]  0.182129 3.856979 10.00000 0.202376 1.879950
Coello 0.208800 3.420500  8.997500 0.210000 1.748310
[83]
Coelloand 0.205986 3.471328  9.020224 0.206480 1.728220
Montes

(81]

4.2.4 Hydrostatic Thrust Bearing Design (HTBD)

When using hydrostatic thrust bearings, the power loss
is desired to be as low as possible. Therefore, the HTBD
problem is posed and involves four main design variables:
bearing step radius (R), flow rate (Q), oil viscosity (u),
and recess radius (R0). It is necessary to note that the fol-
lowing two conditions must be met when optimizing the
bearing parameters, including carrying a specific load and
providing axial support. The HTBD model is expressed

mathematically, as shown in Egs. (26) ~ (27).

quite satisfactory. This is because the result of CGSE on L . QP

the PVD is the best compared with the other methods, Objective function : f(x) = 0.7 +E (26)

for example, CPSO [75], WOA [62], CDE [72], and so

on. Therefore, it can be concluded that CGSE has good

potential for solving the PVD.

Table 10 The comparison Methods Optimum variables Optimum cost

results on the TSCD

d D N

CGSE 0.051761 0.358462 11.1874580 0.0126650
EWOA[70] 0.051961 0.363306 10.9129600 0.0126670
AGOA[71] 0.051206 0.345220 11.9962500 0.0126690
DE [72] 0.051609 0.354714 11.4108300 0.0126700
HS [73] 0.051154 0.349871 12.0764300 0.0126780
GA [74] 0.051480 0.351661 11.6322010 0.0127048
PSO [75] 0.015728 0.357644 11.2445430 0.0126747
ES[76] 0.051989 0.363965 10.8905220 0.0126810
GSA[77] 0.050276 0.323680 13.5254100 0.0127022
WOA [62] 0.051207 0.345215 12.0043032 0.0126763
Constraint correction [78] 0.050000 0.315900 14.250000 0.0128334
Math. optimization [79] 0.053396 0.399180 901,854,000 0.0127303
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Table 12 The comparison Methods Optimum variables Optimum cost
results on the PVD
T, T, R L
CGSE 0.812500 0.437500 42.098446 176.636596 6059.7143
CPSO [75] 0.812500 0.437500 42.091200 176.746500 6061.0777
WOA [62] 0.812500 0.437500 42.098300 176.639000 6059.7410
CDE [72] 0.812500 0.437500 42.098400 176.637600 6059.7340
GA3 [81] 0.812500 0.437500 42.097400 176.654000 6059.9463
G-QPSO [84] 0.812500 0.437500 42.098400 176.637200 6059.7208
Branch-bound [85] 1.125000 0.625000 47.700000 117.701000 8129.1036
GSA [77] 1.125000 0.625000 55.988659 84.4520250  8538.8359
Lagrangian multiplier [86] 1.125000 0.625000 58.291000 43.6900000  7198.0428
Table 13 The comparison Methods Optimum variables Optimum cost
results on the HTBD
R Ry Iz o
CGSE 5.955780 5.389013 5.36E-06 2.269656 19,504.2206
ADNOLACO [39] 5.955822 5.389059 5.36E-06 2.269683 19,504.3965
GASO [87] 6.271000 12. 90,100 5.6050E-6 2.938000 23,403.4320
PSO [88] 5.956868 5.389175 5.4021E-6 2.301546 19,586.5788
TLBO [89] 5.955781 5.389013 5.3586E-6 2.269656 19,505.3132
NDE [31] 5.955781 5.389013 5.3586E-6 2.269656 19,506.0090
SQP [90] 5.955800 5.389040 8.6332E-6 8.000010 26,114.5450
Table 14 The comparison Methods Optimum variables Optimum cost
results on the SRD
z, Z, Zy I, Zs Zg Zy
CGSE 3.50000 0.7 17 7.300000 7.715320 3.350215 5.286654 2994.4711
RIME[91] 3.50357 0.7 17 7.300000 7.800000 3.350230 5.287497  2997.6982
AGOA [71] 3.50000 0.7 17 7.310097 7.737602  3.350234  5.287056  2995.3092
GWO [19] 350669 0.7 17 7.380933  7.815726 3.357847 5.286768  3001.2880
PSO [13] 3.50001 0.7 17 8300000 7.800000 3.352412  5.286715  3005.7630
SCA [51] 3.50875 0.7 17 7.300000 7.800000 3.461020 5.289213  3030.5630
GSA [59] 3.60000 0.7 17 8300000 7.800000 3.369658  5.289224  3051.1200
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Table 15 The P value of this CGSE CSE GSE SE
ablation experiment by WSRT
Fl1 N/A 0.0000017344 0.8554482270 0.0000017344
F2 N/A 0.0000017344 0.4652825819 0.0000017344
F3 N/A 0.0000017344 0.0024497263 0.0000017344
F4 N/A 0.0001359477 0.0001604638 0.0000123808
F5 N/A 0.1020106952 0.0003064999 0.0786466603
F6 N/A 0.4906005859 0.0957031250 0.0097656250
F7 N/A 0.9753871642 0.7655192919 0.0165655270
F8 N/A 0.0316033816 0.0007154702 0.0005706437
F9 N/A 0.4932322393 0.0002219706 0.6702467767
F10 N/A 0.0626828125 0.2711551977 0.5170478910
F11 N/A 0.7970983030 0.0206711136 0.0002051529
F12 N/A 0.0000017344 0.1305916349 0.0000017344
F13 N/A 0.1470395786 0.0001250568 0.6435165948
F14 N/A 0.0000017344 0.0104444006 0.0000017344
F15 N/A 0.0000031817 0.0147954242 0.0000017344
F16 N/A 0.5440062076 0.1359077855 0.0936755965
F17 N/A 0.1588554993 0.0544625040 0.0165655270
F18 N/A 0.0000017344 0.0897178378 0.0000017344
F19 N/A 0.0000026033 0.0009626589 0.0000017344
F20 N/A 0.0072710497 0.1915221066 0.7035636999
F21 N/A 0.3709353078 0.0165655270 0.0021052603
F22 N/A 1.0000000000 0.0000017360 0.0000017344
F23 N/A 0.0332688971 0.0049915540 0.0001742281
F24 N/A 0.1305916349 0.0000031817 0.0005287248
F25 N/A 0.6583305241 0.0031617649 0.0019645814
F26 N/A 0.0332688971 0.0087296678 0.0000631976
F27 N/A 0.1713763888 0.0000019209 0.0000163945
F28 N/A 0.1588114301 0.0006600573 0.0000017344
F29 N/A 0.0000031817 0.1359077855 0.0218267216
F30 N/A 0.0031617649 0.0243075416 0.0000028786
2P, R—R Variableranges : 5 <D, D; <15, 001<t<6,
s =X oo~ W, 20 0.05<h <0.5.
&x)=P, . —Py=>0 Table 13 gives the results of CGSE with other methods
gx)=AT, . —AT >0 for solving the HTBD. It can be seen that the optimal solu-
g=h-h,, >0 tion obtained by CGSE is 19,504.2206, which is smaller

g5 =R—Ry >0
_ 0
ge(0) = 0.001 — y/gPO(ZERh> >0

Subjecttoy  g,(x) = 5000 — ”(R—W_R) >0 27
6 R
Py = %2in( 1)
E; = 93360yCAT
AT =2(10" - 560)
p= log(log(8.122x10°+0.8))—-C,
2 " "
= (22N 2 (R _ K
h_(60>Ef(4 40>
where C;=1004, n=-355 P,,=1000, W,
=101,000, AT,,,. = 50, h,,;, = 0.001, g =386.4, N =750,

than other methods, for example, ADNOLACO [39], GASO
[87], PSO [88], and so on. This indicates that CGSE can
further improve HTBD.

4.2.5 Speed Reducer Design (SRD)

It is well known that the gearbox is one of the key compo-
nents in the gearbox, and its weight is an important factor
affecting the performance and aesthetics of the gearbox.
Therefore, to reduce the weight of gearboxes as much as
possible, the SRD has been proposed and has become a
relatively popular topic in current mechanical research. It
involves seven key variables, including the tooth breadth
(b), the gear module (m), the number of teeth in the pinion
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Table 16 The P value of this
stability experiment by WSRT

CGSE-50dim SE-50dim CGSE-100dim SE-100dim
Fl1 N/A 0.0000042857 N/A 0.0000197295
F2 N/A 0.0000017344 N/A 0.8450804242
F3 N/A 0.0000017344 N/A 0.0000017344
F4 N/A 0.0003588845 N/A 0.0858958259
F5 N/A 0.0195692152 N/A 0.0000019209
F6 N/A 0.0000259671 N/A 0.0000017344
F7 N/A 0.0000017344 N/A 0.0000017344
F8 N/A 0.7188875621 N/A 0.0000017344
F9 N/A 0.0000017344 N/A 0.0000017344
F10 N/A 0.0165655270 N/A 0.0000017344
FI1 N/A 0.0000017344 N/A 0.0000017344
F12 N/A 0.0000017344 N/A 0.0000017344
F13 N/A 0.0000102463 N/A 0.0000019209
F14 N/A 0.0000017344 N/A 0.0000017344
FI5 N/A 0.0427666880 N/A 0.0000017344
Fl16 N/A 0.1204447279 N/A 0.0002830789
F17 N/A 0.0656411434 N/A 0.0000340526
FI18 N/A 0.0000017344 N/A 0.0000017344
F19 N/A 0.6583305241 N/A 0.0000017344
F20 N/A 0.0626828125 N/A 0.0033788544
F21 N/A 0.0000023534 N/A 0.0000017344
F22 N/A 0.1915221066 N/A 0.0003588845
F23 N/A 0.0000017344 N/A 0.7035636999
F24 N/A 0.0000017344 N/A 0.0000017344
F25 N/A 0.0002613431 N/A 0.0003881114
F26 N/A 0.0000017344 N/A 0.0000017344
F27 N/A 0.3388561552 N/A 0.0000689229
F28 N/A 0.0012866311 N/A 0.5857115693
F29 N/A 0.0449189038 N/A 0.8774027284
F30 N/A 0.0000579245 N/A 0.0000093157

(p), the length of the first shaft between the bearings (/,), 11 constraints, such as the shaft's surface stress and the gear
the length of the second shaft between the bearings (/,), teeth' bending stress. The SRD model is expressed math-
the diameter of the first shaft (d,), and the diameter of the ematically, as shown in Eq. (28) ~Eq. (30).

second shaft (d,). At the same time, it must also satisfy the

Consider : 7 = [2)2y232425%627| = [bmpl,1,d,d, (28)

@ Springer

Objective function

FE) =£E) +£(E) +40)

i1 (3) = 0.78542,22(3.333322 + 149334z, — 43.0934) — 1.508z, (2 + 22)

£H(E) =74777(2 +2) (29)
f3(Z) = 0.7854(z,2; + 2522)
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91(7) =75 -1<0
2(3) = 39:§ -1<0
6(7) = 2 - 10
o lj9§z§
g4(z) = m -1<0
1
2 3
gs(3) = [(745(}3 )) +16.9 x 106] /11022 =1 <0
233
Subject to- ] ) . ! . , (30)
86(2) = | (745( ) ) + 1575 10°| /8553 1<0
<243
g5(7) =2 -1<0
2(2) =5 -1<0
- 1.5z¢+1.9
glo(Z) = Z: 1<0
211 (3) LY o

where variableranges : 2.6 <z, £3.6,0.7 <z, £0.8,
17 <2, <28,73 <274 <28,73<25<83,29<27, <39,
50<z; £55.

Table 14 shows the optimization results of CGSE and
the other six methods, such as RIME[91], AGOA[71], and
GWOI19] for the SRD. Considering the minimum optimal
cost, the CGSE’s result is the most desirable in this compari-
son, which proves that the CGSE can further optimize the
weight of the reducer while maintaining the quality.

4.2.6 I-beam Design (IBD)

In the IBD, the design goal is to find the optimal variables that
minimize the vertical deflection of the I-beam. Among them,
length, thickness, and two heights are the key structural param-
eters of this problem, and the detailed mathematical model of
this problem is shown in Egs. (31)~ (33)

Consider : % = [xx,x3x,| = [bht, ;] 31
Objective function : f(X),,;, = - 5(300
1, (h=21;)° bi bt (h;,f)z
m ot T
(32)
Subjectto : g(xX) = 2bt,, + t,(h — 2t) <0, (33)

where variablerange
09<x;<509<x <5
Based on this problem, this subsection compares CGSE
with RIME [91], AGOA [71], IARSM [92], ARSM [92],
SOS [93], and CS [94]. The comparison results show that
CGSE optimizes relatively best, which indicates that CGSE
outperforms the other solvers in this experiment. Therefore,
it can be concluded that the CGSE proposed in this paper
can potentially be an effective tool for solving IBD Table 15.

10 < x, 50,10 < x, < 80,

5 Discussion

In this study, the goal of the proposed CGSE is to over-
come the shortcomings of the original SE in terms of search
and convergence, which are presented in Sect. 4.1. In this
algorithm, the Cross-search Mutation (CSM) is applied to
the middle and early stages of the CGSE iterative process,
enhancing social learning ability. This operation improves
the diversity of the population to some extent and enhances
the convergence effect of CGSE. Meanwhile, the Gaussian
Backbone Strategy (GBS) acts in the middle and late stages
of the CGSE iterative process to enhance the diversity within
the local range of the near-optimal solution, which not only
significantly enhances the exploitation ability but also helps
CGSE to move away from the local optimal solution. Under
the synergy of these two optimization components, CGSE
achieves the balance between exploration and exploitation
more perfectly than the original SE.

To demonstrate the above study, this paper carries out a
series of global optimization experiments and engineering
application experiments for the proposed CGSE. First, this
paper designs the ablation experiments based on the IEEE
CEC 2017 benchmark function, which shows that the con-
tribution of CSM and GBS to improve the performance of
SE is very significant and effectively mitigates the problems
of SE's tendency to fall into local optimums and premature
convergence. At the same time, it also proves that CGSE is
the best-performing improved version proposed in this study.

Next, we carry out a history search experiment for CGSE
by combining the characteristics of different benchmark
functions in the paper. The experiment analyzes the search
characteristics of CGSE from four perspectives: the distri-
bution of historical solutions in the two-dimensional space,
the trajectory of the first agent in the first dimension, the
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average fitness value of the population, and the convergence
curve, respectively. Then, CGSE and SE are compared in
50 and 100 dimensions. In combination with the results of
ablation experiments based on 30 dimensions, we conclude
that CGSE can obtain excellent results and good robustness
when dealing with different dimensional problems.

Moreover, we compare CGSE with nine well-known
basic algorithms and nine new peer variants in 30 dimen-
sions, demonstrating that CGSE has more outstanding com-
prehensive performance and competitiveness than the exist-
ing well-known methods. Finally, the optimization effect
of the proposed CGSE is further explored through six real
engineering design experiments, including TCSD, WBD,
PVD, HTBD, SRD, and IBD. By analyzing the comparison
results with well-known methods under these six problems,
it is easy to realize that the CGSE is relatively capable of
obtaining the least-cost solution, which is of high practical
significance for solving engineering problems.

In summary, this paper validates the successfulness of
the proposed CGSE as comprehensively as possible, and the
multiple categories of results together confirm the research
significance and referable value of CGSE in the field of
searching for optimal solutions.

6 Conclusions and Future Directions
This paper proposes a quite constructive variant of SE called

CGSE. After conducting an in-depth analysis and study of
the CGSE's search behavior, the mathematical model of

@ Springer

it is given. To prove the success and effectiveness of the
proposed CGSE, we compare the convergence effect of the
CGSE, the intermediate variant, and the original SE using
the IEEE CEC2017 benchmark function and carries out a
quality and stability analysis of the CGSE. To illustrate the
competitiveness and robustness of CGSE, it is made to be
compared in detail with nine well-known basic algorithms,
and nine other peer variants. Furthermore, six classical engi-
neering design problems are used to demonstrate that CGSE
is also of good practical value and superior competitiveness
in solving real-world problems.

In conclusion, it is shown that CGSE is significantly more
successful in producing optimal solutions. However, it still
has some shortcomings. CGSE may suffer from premature
convergence and poor robustness in certain global tasks. In
addition, since CGSE is an excellent variant of SE built by
incorporating CMS and GBS, this inevitably leads to it pos-
sessing a relatively higher complexity. Therefore, we hope
to further optimize the parameters and design structure of
CGSE in future work. In addition, it can be extended to other
application areas, such as feature selection and machine
learning.

Appendix A

See Tables 16, 17, and 18.
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