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Abstract
This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with 
Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding, called RSA-SSA. The proposed 
method introduces a better search space to find the optimal solution at each iteration. However, we proposed RSA-SSA to 
avoid the searching problem in the same area and determine the optimal multi-level thresholds. The obtained solutions by 
the proposed method are represented using the image histogram. The proposed RSA-SSA employed Otsu’s variance class 
function to get the best threshold values at each level. The performance measure for the proposed method is valid by detect-
ing fitness function, structural similarity index, peak signal-to-noise ratio, and Friedman ranking test. Several benchmark 
images of COVID-19 validate the performance of the proposed RSA-SSA. The results showed that the proposed RSA-SSA 
outperformed other metaheuristics optimization algorithms published in the literature.
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1  Introduction

Image segmentation is the base of processing actions in 
each image and machine vision [1]. The segmentation 
system is becoming more favored and has been used in 
domains such as bio-medical, urban vehicles, farming pro-
duction, etc. Image segmentation is required when com-
ponent selection or tracking image details is needed [2]. 
In the meantime, the rate of succeeding image processing 
stages, such as recognition, is involved in the image seg-
mentation outcome [3]. Thus, the segmentation of images 
has evolved into an intimate rapprochement with our stam-
ina, accuracy, and efficiency directly impacting the result 
of the practical application, so the segmentation of images 
is significantly essential [4, 5].

Over the past decades, multiple segmentation tech-
niques have been suggested. Since the per image contains 
additional typical facts, its category is various. There 
are mainly four segmentation approaches: thresholding, 
boundary-based, and hybrid approaches [6, 7]. Among 
image segmentation approaches, the thresholding approach 
has obtained wide alert because of its clarity, storage 
space, fast time processing, and ease of manipulation. 
The histogram is necessary for the threshold approach's 
outcomes. It is frequently used to categorize the pixels in a 
scene. There are two options for choosing an image thresh-
old: bi-level and multi-level thresholding [8, 9]. First, the 
image is divided into two classes based on a threshold 
weight. It divides pixels into two categories based on how 
far they deviate from a threshold weight: most prevalent 
pixels and less thick pixels. They are frequently used to 
separate the images' foreground and backdrop. The process 
of dividing images into two classes is unacceptable, espe-
cially when the image is more complex and contains mul-
tiple entities with the same range of gray-scale [10, 11].

Thus, it is essential to boost the threshold statuses from 
bi-level to multi-level [12]. The multi-level threshold 
(MTH) divides an image into multi categories belong-
ing to multiple entities in the image [13, 14]. This way, 
it is feasible to indicate more details and entities from 
the segmented image. Thresholding techniques affect 
the selection of many thresholds utilizing some features 
illustrated in images. Among the thresholding techniques, 
Tsallis, Kapur, and Otsu are the most popular ones [15]. 
Otsu technique maximizes the variance between classes. 
Kapur techniques maximize the rear entropy of the split 
categories to see the best thresholds [16, 17].

Beneath the possibility of segmenting intricate images, 
the multi-level thresholding image segmentation technique 
can split the prey territory accurately [18–21]. Regardless, 
as the numeral of thresholds grows, the added dose of tech-
nology increases and the processing duration will be slow. 

It is a vital and challenging duty for classic comprehensive 
techniques due to the high computational outlay [22, 23]. 
Accordingly, the image threshold technique is sometimes 
mixed with an intelligent optimization technique to fix the 
technique’s weaknesses—for example, genetic, simulated 
annealing, and so on [24, 25]. Also, many unused methods 
can be used to solve the segmentation problem, such as 
African Vultures Optimization Algorithm [26], Farmland 
Fertility [27], Artificial Gorilla Troops Optimizer [28], 
Prairie Dog Optimization Algorithm [29], Differential 
Evolution [30], Butterfly Optimization Algorithm [31, 
32], Gazelle Optimization Algorithm [33], and Mountain 
Gazelle Optimizer [34].

In this paper, we improved the performance of the Reptile 
Search Algorithm (RSA) with Salp Swarm Algorithm (SSA) 
to determine the optimal thresholds in multi-level image seg-
mentation. The proposed method aims to tackle the main 
problems raised by the original methods, like premature con-
vergence and unbalance between the search process. Several 
benchmark images are used to assess the efficiency of the 
proposed method (RSA-SSA), and the results are compared 
with other well-known optimization techniques in the litera-
ture. The fitness function, square root error, signal-to-noise 
ratio, and Friedman ranking test are a few commonly used 
measures to evaluate the effectiveness of the proposed seg-
mentation method.

The goal of multi-level thresholding is to find the ideal 
threshold values that divide an image's pixels into many 
groups; these values can be found using meta-heuristic 
algorithm optimization techniques. Optimizing meta-heu-
ristic algorithms is challenging as it requires the model 
to reach the optimal thresholds to segment images more 
accurately. The conventional methods work when there are 
fewer thresholds, but there is an issue when there are more 
thresholds. The suggested RSA optimized by SSA avoids 
becoming trapped in a local optimum and can discover the 
best solution for the image to address this issue and improve 
segmentation accuracy. In RSA, there is a problem with the 
exploitation phase. It is the possibility of repetition in gen-
erating or stopping at the exact solutions. So, when we get 
to that state, we'll boost that stage with the SSA. The SSA 
algorithm has the advantage of efficient area exploitation and 
speed in area exploitation.

The main objective of image segmentation is to segment 
the image more efficiently and highlight the importance of 
the items in images that are getting from datasets. The seg-
mentation process is significant and crucial in many func-
tions, including image processing. An image is divided into 
classes pertaining to various objects using a multi-level 
threshold. Consequently, extracting more data and objects 
from the segmented image is feasible. An optimization 
challenge is determining the best thresholding for image 
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segmentation in a multi-level thresholding condition. The 
reptile search approach (RSA), a unique algorithm, is uti-
lized in our work to handle this problem with the SSA tech-
nique. In our study, we try to improve the RSA to identify 
the best threshold for image segmentation, which is done 
by boosting the SSA. The proposal seeks to identify the 
best threshold value to maximize Otsu’s worth. This study 
aids anyone interested in image segmentation and optimiza-
tion methods by providing theoretical and practical value to 
researchers when achieving goals.

The remaining sections are structured as follows: Sect. 2 
summarizes previous and ongoing studies on image seg-
mentation using multi-level thresholding and meta-heuristic 
algorithms. Section 3 presents the study approach for image 
segmentation by multi-level thresholding with meta-heuris-
tic algorithms. Section 4 illustrates the testing and analysis 
of the suggested approach and compares the outcomes of the 
proposed method and another previous method. Section 5 
presents the paper’s conclusion, followed by ideas and inspi-
rations for additional research in algorithms.

2 � Related Work

The technique of grouping pixels into various groups is one 
of the most significant variables influencing image process-
ing. It enables us to recognize and distinguish the objects 
in the image [35]. The Threshold approach is the most 
straightforward of the several techniques used to segment the 
images. The image histogram and the number of thresholds 
have the most considerable effects on the threshold tech-
nique. To divide the graph into separate classes, thresholds 
are utilized. The pixels are split into two groups in the case 
of a unique threshold known as a bi-level threshold. It is 
referred to as a multi-level threshold if there are more than 
two classes and more than one threshold. Finding the opti-
mal thresholds in the image related to the number of classes 
is the key challenge with multi-level thresholds (or objects 
in the image) [36].

Several metrics, including variance and entropy, are uti-
lized to identify the best thresholds. Contrast is used in the 
Otsu technique [53], whereas the Kapur method employs 
entropy [37]. Meta-heuristic algorithms (MA) are required 

when the number of thresholds exceeds one; for the most 
part, they produce exact results [38].

Image Segmentation is a base of the critical pretreatment 
stages in computer science. In the present-day, image is a 
helpful manner of knowledge asset and contact for mortal 
beings. The application of the technique is evolving more 
favored, and it has been used in diverse fields. Image seg-
mentation is required when element selection or hunting of 
image knowledge is required [39]. Image segmentation is an 
algorithm that separates the image into some disjoint areas 
by characteristics such as gray, colored, spatial surface and 
geometric form. These characteristics indicate character 
or nearness in the same area but offer specific distinctions 
among various areas [40].

Multi-level thresholding is a segmentation technique 
called threshold that divides pixels into various classes 
based on their level of intensity and following one or more 
threshold values. Given that it is one of the most straight-
forward partitioning methods, this method’s simplicity is 
one of its most significant advantages. This is because the 
segmented images produced by the threshold have a tiny 
storage footprint, quick processing times, and are simple 
to process. The histogram and the thresholds specified are 
two significant aspects considered by segmentation using 
thresholds. There are two kinds of thresholds; the bi-level 
threshold is the first type. The second sort of threshold is a 
multi-level threshold, which is employed when more than 
one threshold value is used [41].

Meta-heuristic optimization algorithms are built around 
two fundamental tasks: (1) exploration, which refers to the 
algorithm’s capacity to examine non-local (global) loca-
tions. (2) Exploitation: this refers to the algorithm’s capac-
ity to discover superior optimization solutions within those 
overall solutions. A suitable balance between these tactics is 
required (exploration and exploitation) [42]. In addition to 
evolutionary algorithms, swarm intelligence algorithms and 
physics-based or human-based approaches are among the 
most significant classes on which meta-heuristics are built.

In this paper [43], a multi-threshold boosting of outline 
segment selection in the medical image is presented in this 
study. First, according to various grades of racket between 
other medical images, the gray approach is employed to 
study the span of correlation between a per pixel. Besides, 
multiple thresholds are a group to supply a limited band 

Table 1   Related studies References Methods Type of images

[44] Bloch quantum artificial bee colony Gray-level image thresholds
[50] CCACO + (HCS, VCS) Medical image segmentation
[51] Fiction CLACO-based, scilicet CLACO-MIS X-ray of COVID-19
[16] Marine Predator algorithm + (GA and PSO) Medical image segmentation
[36] MPA optimization + MFO Medical image segmentation
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restraint before image outline selection. The Otsu function 
is employed to explore the related space, and the target seg-
mentation threshold of the medical image outline compo-
nent is obtained after a majority of the restraint threshold 
of outline components in the medical image. These thresh-
olds are searched more quickly through genetic algorithms. 
Meanwhile, processes such as extract, crossover, modifica-
tion, etc., are employed to form inhabitants better adaptive 
to the new domain in randomly developed inhabitants. The 
golden quote technique is operated to translate various his-
tograms in medical images. Meanwhile, the mean technique 
is employed to get the last threshold of outline component 
selection in the medical image.

Therefore, outline components are selected by the multi-
threshold optimization in the medical image. Finally, testing 
outcomes indicate that the suggested technique decreases the 
attribute extent and the attribute selection time, which means 

that this method has immediate relevancy and supplies a 
specific theoretical base for future medical image studies. 
Although this research has reached acceptable outcomes, 
many points must be improved and in-depth. The real selec-
tion technique cannot ultimately be automated. Because of 
the complication of determining tissues and organs in (medi-
cal images), the technique must be finished manually.

In this paper [44], quantum encoding and the idea of the 
quantum web are combined into Bloch globe to create a 
boosting Bloch quantum artificial bee colony approach. The 
approach has the most extraordinary rapidity and accuracy 
by assuring heightened dimensional multi-modal standard 
procedures. The approach is devoted to various kinds of 
gray-level image thresholds, and various approaches affirm 
the significance of the enhanced approach. In the first posi-
tion, we utilize the Bloch spheroidal ordinary of IBQABC 
approach for encoding the initial conception, which can 
bypass the randomness of quantum stature in developing 
binary encoding. Lastly, the quantum entanglement concept 
is in the invention of unique nectar enhancement procedure, 
which can realize by the emotional modification of grade in 
enhancing the process and dynamically adjusting its stand-
ing on the externals of Bloch. The approach greatly enhances 
the capability to bounce out of the regional best and the 
general tracking effectively of the bee colony approach. 
Although this paper has reached suitable outcomes, other 
factual procedures could not be assessed using this tech-
nique, such as variance between classes (Otsu), crossover 
entropy, etc. This paper also did not have been involved in 
operating color images.

In this paper [45], an enhanced technique named CCACO 
is suggested depending on HCS, VCS, and enhanced choice 
means. Among them, HCS enhances the conjunction rate of 
the technique in decoding the continued optimization issue. 
VCS and the enhanced selecting mean enhanced the capabil-
ity to evade dropping into LO and conjunction accurateness. 
By approximating CCACO, actual ACOR, basic technique, 
and enhanced technique on 30 standard procedures, all test-
ing outcomes indicate briefer conjunction speed, high con-
fluence accuracy, and more muscular capability to evade 
dropping into LO are the heart benefits of CCACO. But the 
study, we report that the issue of the increased computa-
tional sophistication is still. So, they must consider orient-
ing high-performance computing techniques into CCACO 
to enhance computing effectively.

This paper [46] suggests a fiction CLACO-based, scilicet 
CLACO-MIS, and uses it to segment the X-ray of COVID-
19, enhance the diagnoses class of COVID-19, and obtain 
segmentation outcomes with an increased rate. The Cauchy 
transformation is involved in the end stage of ant foraging, 
which improves the search for ants. CLACO resembled ten 
of techniques. At last, they studied and resembled all the 
testing outcomes again employing WSRT and FT, which 

Fig. 1   The proposed method
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powerfully depict that CLACO includes sweetened search-
ing, further progress in conjunction with speed, and an 
enhanced capability to bounce out of the regional optimum. 
Regardless, due to the preface of this transformation and the 
ungenerous Levy transformation, the time complexness of 
CLACO MIS advances and the CPU calculation time needed 
for its segmentation has a companion attachment.

In Ref. [47], the researcher evaluated the performance of 
the Marine Predator algorithm on several tests at randomly 
generated landscapes, the real-world engineering design 
problem for ventilation fields and the premises energy per-
formance, several engineering standards, and CEC-BC-2017 
tests. The algorithm was compared to other optimization 
algorithms: the first is GA and PSO; the second is GSA, 
CS, and SSA, which are recent algorithms; and the third 
is CMA-ES, SHADE, and LSHADE-cnEpSin. The Marine 
Predator algorithm came in second place as the best perfor-
mance approach, outperforming LSHADE-cnEpSin regard-
ing outcomes. One of the winning algorithms in the CEC 
2017 competition is the Marine Predator algorithm. Several 
optimization techniques were compared to the algorithm. 
The first is GA and PSO, one of the algorithms undergoing 
extensive research. The second is the more contemporary 
algorithms, GSA, CS, and SSA. The third group consists 
of the performance optimizers CMA-ES, SHADE, and 
LSHADE-cnEpSin. The Marine Predator algorithm came 
in second place as the best performance approach and had 
results that were competitive with LSHADE-cnEpSin. The 
Marine Predator algorithm was one of the CEC 2017 com-
petition's winners.

This study compares the proposed algorithm to various 
optimization algorithms [40]. The first is GA and PSO, 
which are one of the algorithms that have been thoroughly 

investigated. The second is GSA, CS, and SSA, which are 
recent algorithms. The third is CMA-ES, SHADE, and 
LSHADE-cnEpSin, performance optimizers. They also 
took first place in the IEEE CEC contest. The Marine 
Predator algorithm came in second place as the best per-
formance approach and had results that were competitive 
with LSHADE-cnEpSin. The Marine Predator algorithm 
was one of the CEC 2017 competition's winners. The pro-
posed approach aids specialists in image segmentation by 
an intelligent platform to establish threshold values, accord-
ing to the findings of this study. Based on the suggested 
approach’s high performance, it may be used in subsequent 
studies for various applications, including (1) feature selec-
tion, (2) multi-objective method, (3) global optimization, 
and (4) cloud computing.

A successful multi-level threshold (MTH) method is 
reported for image segmentation, including COVID-19 CT 
scans and medical image segmentation [48]. The Marine 
Predatory Animal (MPA) algorithm is recommended. A new 
SI approach is MPA. The suggestion offers the first appli-
cation for usage in image segmentation, according to the 
researchers’ study. The MPA optimization procedure makes 
use of the (MFO) algorithm. The new plan is referred to 
as MPAMFO. The proposal was assessed using a range of 
photographs since it contained cross-sectional coronavirus 
images (COVID-19). All tests were performed well and con-
sistently, according to the results. Additionally, several com-
parisons were used to demonstrate how better the MPAMFO 
proposal was than many other algorithms, such as PSO, 
GWO, and CS, regarding SSIM, fitness value, and PSNR.

The authors introduced an efficient multi-level threshold 
(MTH) method for image segmentation, including segmen-
tation of COVID-19 CT images and medical images [49]. 

Fig. 2   Encircling the prey

Fig. 3   Attacking the prey
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The Marine Predator Animal (MPA) algorithm has been 
proposed. A new SI technique is MPA. The suggestion 
offers the first usage for image segmentation, according to 
a study by the researchers. The MPA optimization method 
employs the (MFO) algorithm. MPAMFO is the name of 
the new proposal. The inclusion of cross-sectional corona-
virus images in the proposal was examined using a range of 
images (COVID-19). The results indicated consistent and 
successful performance across all exams. Additionally, com-
parisons were used to demonstrate the MPAMFO proposal’s 
superiority over various algorithms, including PSO, GWO, 
and CS, regarding SSIM, fitness value, and PSNR.

An efficient multi-level threshold method for image seg-
mentation, including segmentation of COVID-19 CT images 
and medical images [6]. The Marine Predator Algorithm 
(MPA) algorithm has been proposed. A new SI technique 
is MPA. The suggestion offers the first usage for image 
segmentation, according to a study by the researchers. The 
MPA optimization method employed the MFO algorithm. 
MPAMFO is the name of the new proposal. Due to the inclu-
sion of cross-sectional Coronavirus images in the proposal, it 
was examined using a range of images (COVID-19). Results 
indicated consistent and successful performance across all 
exams. Additionally, numerous comparisons were used to 
demonstrate the MPAMFO proposal's superiority over vari-
ous algorithms, including PSO, GWO, and CS, in terms of 
SSIM, fitness value, and PSNR., as well as evaluating the 
fitness function. This means that hybridization of the SSA 
gives better results than it does separately. An overview of 
the related studies is given in Table 1.

The main objective of this study was to segment the 
image more efficiently and highlight the importance of the 
items in images obtained from datasets. In this work, we try 
to detect the optimal threshold to segment the image. We are 

expected to be able to identify the best threshold for image 
segmentation. In addition, we will also present a promis-
ing formulation using boosting algorithms that frame the 
problem of identifying the best threshold for segmentation.

3 � The Proposed Method

To address the issue raised in problem 1.2, it is essential to 
establish the best multi-level thresholds for image segmenta-
tion. The best threshold values are determined by maximiz-
ing a standard, such as the Otsu standard. The ideal thresh-
old value for the Otsu-based method maximizes the variance 
between classes.

Therefore, this section will outline the problem’s formula-
tion, RSA, and its key components. To find the best fitness, 
exploration and exploitation will be improved for each solu-
tion, starting with the initialized parameter. Additionally, 
as illustrated in Fig. 1, SSA will start with the initialized 
parameter and will be strengthened with each RSA less than 
the rand parameter solution.

3.1 � Formulation of the Problem

Thresholding is a useful method of image segmentation [38]. 
It classifies all pixels in an image (color or gray) into various 
classes. As we know, a bi-level threshold is not useful with a 
complex image [52]. It is used to segment images only into 
two objects. So, it can be extended to multi-level threshold-
ing as follows:

C1 ← p if 0 ≤ p < th1
C2 ← p if th1 ≤ p < th2
Ci ← p if thi ≤ p < thi + 1
Cn ← p if thn ≤ p < L − 1

Fig. 4   Flowchart of the reptile 
search algorithm (RSA)
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Bi-level/multi-level thresholding aims to determine the 
ith values which appropriately segment an image into vari-
ous classes. Where (1, …., n) are a number of threshold 
values, P is the value of the gray level. In our study, Otsu’s 
function is used.

3.1.1 � Between‑Class Variance Method (Otsu’s method)

Searching for optimal threshold values in Otsu's method is 
by maximizing the between-class variance. Assume an image 
consisting of N pixels represented in L gray levels, and the 
number of pixels with gray level i is presented by fi [53]. The 
probability of gray level i is defined as in Eq. (1).

where i is a gray level between 0 to L − 1, c represents the 
image component. RGB color images have three separate 
components: red, green, and blue [54].

Assume an image is divided into m classes and has m − 1 
thresholding values. Otsu's method extended the bi-level 
thresholding to multi-level thresholding. The extended 
between-class variance function can be described in Eq. (2):

The optimal thresholding values (t∗c
1
t∗c
2
t∗c
3
,… ., t∗c

m−1
) are 

calculated by maximizing �c
B
 as follow Eq. (3).

3.2 � Reptile Search Algorithm (RSA)

RSA draws inspiration from crocodiles’ natural surround-
ings, hunting, and social behavior. The two phases of 
crocodile behavior—exploration (global) and exploitation 
(local)—consist of encircling and hunting the victim. These 
mechanisms are mathematically represented to provide the 
suggested RSA and carry out the optimization procedures. 
Since RSA is a population-based and gradient-free method, 
it can be applied to simple and complex optimization prob-
lems subject to predetermined restrictions. Crocodiles ben-
efit from cohesive groups because they increase their hardi-
ness and allow for active cooperation [55].

Crocodiles’ sleek bodies increased their speed. They can 
move more swiftly because it makes moving easier. When 
they walk, they elevate their feet to the side, which causes 

(1)
pci =

f ci
N
, pci ≥ 0,

L−1
∑

i=0
pci = 1,

c =
{

1, 2, 3 if RGB image
1, 2, 3 if gray − scale image ,

(2)f c(t) =

m−1∑
i=0

�c
i
.

(3)

t∗c
1
t∗c
2
t∗c
3
,… ., t∗c

m−1
= arg

0≤tc
1
….≤tc

m−1
≤L−1

max
{
�c
B

(
tc
1
, tc

2
,… ., tc

m−1

)

them to move more quickly. Since animals typically travel 
from one area to another via walking, their feet constitute a 
distinguishing characteristic. The following are the primary 
descriptions of the Crocodile.

3.2.1 � Initialization Phase

In RSA, the optimization process begins with a collection of 
stochastically produced candidate solutions (X), as stated in 
Eq. (4), and the best-obtained solution is regarded as roughly 
the optimum in each iteration.

where N is the number of candidate solutions, X is a set of 
the candidate solutions that are produced at random using 
Eq. (5), xi,j signifies the jth location of the ith solution, and 
n denotes the dimension size of the given problem.

3.2.2 � Exploration Strategy (Encircling)

Crocodiles in this section have two movements during the 
encircling high walking and belly walking, following the 
encircling habit. Contrary to another search phase, these 
movements (high and belly walking) make it difficult for 
crocodiles to approach the intended prey due to their distur-
bance (hunting phase). As a result, the exploratory search 
uncovers a sizable search space, as illustrated in Fig. 2, 
and may eventually be able to locate the density area. In 
this figure, the search process is clearly going in a wide 

(4)X =

⎡
⎢⎢⎢⎢⎢⎣

x1,1
x2,1

⋯
x1,j x1,n
x2,j x2,n

⋮ ⋱ ⋮

xN−1,1
xN,1

⋯
xN−1,j xN−1,n−1

xN,j xN,n

⎤⎥⎥⎥⎥⎥⎦

(5)x(i,j) = rand + (UB − LB) + LB, J = 1, 2,… ., n,

Fig. 5   Behavior of Salp swarm algorithms
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area. Additionally, at this optimization level, the explora-
tion mechanisms are used to support the other phase of the 
search—hunting and exploration—through vast and dis-
persed research [56].

The RSA can switch between the encircling (exploration) 
and hunting (extraction) search phases, and it does so based 
on four different parameters. Based on two primary search 
algorithms, the RSA exploration mechanisms investigate the 
search regions and seek a better solution (high walking strat-
egy and belly walking strategy). There are two prerequisites 
for moving on to this stage of the search. The belly walking 
movement strategy depends on t 2(T/4) and t > T/4, whereas 
the high walking movement strategy depends on t ≤ T/4 as 
shown briefly in Sect. 3.2.3.

This indicates that this requirement will be met for almost 
half of the exploration iterations (high walking) and the other 
half (belly walking). These are two techniques for explora-
tion searches. Observe that utilizing Eq. (6), the stochastic 
scaling coefficient is investigated for the element to provide 
more diverse solutions and explore the diverse location.

3.2.3 � Exploitation Strategy (Hunting)

Crocodiles use coordination and collaboration as their pri-
mary hunting techniques, both indicated by their hunting 
(exploitation) behavior. These tactics all refer to various 
intensification methods that focus on the exploitation search 
(locally). Contrary to encircling processes, as depicted in 
Fig. 3, crocodile techniques (hunting coordination and coop-
eration) allow them to approach the target prey readily due 
to their intensity. This figure clearly shows that the search 
focuses on the targeted area and narrows to the main aim. 
As a result, the exploitation search eventually finds the ideal 
solution, possibly after numerous attempts. Additionally, at 
this optimization stage, the exploitation mechanisms are 

(6)

tx(i,j)(t + 1)

=

{

best j(t) × �(i,j)(t) × � − R(i,j)(t) × rand, t ≤ T
4

best j(t) × x(r1,j) × ES(t) × rand, t ≤ 2 T
4
and t > T

4

Fig. 6   Salp swarm algorithm 
flowchart
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used to perform an intensified search close to the ideal solu-
tion and highlight communication between them.

The RSA exploitation mechanisms use two primary 
search techniques (hunting coordination and cooperation), 
depicted in Eq. (7), to explore the search space and identify 
the best solution. When t ≤ 3 (T/4) and t > 2 (T/4), the hunt-
ing coordination method is used to search; otherwise, the 
hunting cooperation approach is used when t ≤ T and t > 3 
(T/4).

3.2.4 � Reptile Search Algorithm (RSA)

The optimization process starts by creating a random set of 
candidate solutions to investigate potential placements for 

(7)
x(i,j)(t + 1)

=

{

best j(t) × P(i,j)(t) × rand, t ≤ 3 T
4
and t > 2 T

4
best j(t) − �(i,j)(t) × � − R(i,j)(t) × rand, t ≤ T and t > 3 T

4

the nearly ideal solution. According to the procedures of the 
suggested RSA at each iteration, each solution swaps out its 
spots from the best-obtained solution (Fig. 4).

The search procedures are separated into two basic 
approaches (exploration and exploitation) with the follow-
ing four strategies to highlight exploration and exploitation.

3.2.4.1  High Walking  In the exploration phase, the reptile 
accepts the prey area and chooses the best hunting area 
by the high walking movement strategy performed when 
t ≤ T/4, using the following Eq. (8).

where x_((i,j)) (t + 1) represents the solution produced by the 
initial search strategy at iteration t. Where rand stands for a 
random number between 0 and 1, Bestj(t) stands for the jth 
location in the best solution so far, and η(i,j) stands for the 

(8)
x(i,j)(t + 1) = best j(t) × �(i,j)(t) × � − R(i,j)(t) × rand, t ≤

T

4

Fig. 7   The proposed hybrid algorithm (RSA-SSA)
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hunting operator for the jth place in the ith solution, which 
is derived using Eq. (8). β is a sensitive parameter that, with 
a fixed value of 0.1, determines the exploration accuracy 
(high walking) during the encircling phase over the course 
of iterations. The search region is reduced using the Reduce 
function (R(i,j)), derived using Eqs. (9–10). rand is the name 
for a random number. t and T are the current iteration and the 
maximum number of iterations, respectively.

Using Eq. (11) and as mentioned in approach 3, P(i,j) is 
the percentage difference between the jth position of the 
best-obtained solution and the jth position of the present 
solution.

3.2.4.2  Belly Walking Exploration  When the prey area is 
discovered and t ≤ T/4, the Reptile belly walking movement 
strategy is performed, prepares the area, and watches prey, 
using the following Eq. (11).

When r1 is a random number between [1N], x(r1,j) refers 
to the ith solution’s random position. The number of poten-
tial solutions is N. Equation (12) is used to calculate the 

(9)�(i,j)(t) = best j(t) × P(i,j),

(10)R(i,j)(t) =
best j(t) × x(r2,j)

best j(t) × �
.

(11)
x(i,j)(t + 1) = best j(t) × x(r1,j) × ES(t) × rand, t ≤ 2

T

4
andt >

T

4

probability ratio known as evolutionary sense (ES(t)), which 
randomly decreases in value from 2 throughout the course 
of the repetitions.

These two search methods uncover a large search region; 
they may locate the density area after multiple attempts. 
Additionally, during this optimization level, the high and 
belly walking exploration mechanisms help the other phase 
of the search process (hunting/exploration) through thorough 
and dispersed investigation.

3.2.4.3  Hunting of Coordination Exploitation  When t ≤ T/2, 
candidate solutions try to widen the search space, and when 
t > T/2, they try to converge on the nearly ideal solution. The 
Reptile is prepared to attack when the prey region is pre-
cisely specified, and Eq. (13) hunting coordination approach 
is used when t ≤ 3 (T/4) and t > 2 (T/4).

where Bestj(t) is the jth position in the best-obtained solu-
tion so far, P(i,j) is the percentage difference between the jth 
position of the best-obtained solution and the jth position 
of the current solution, which is calculated using Eq. (14).

(12)ES(t) = 2 × r3 ×
(
1 −

1

T

)
,

(13)
x(i,j)(t + 1) = best j(t) × P(i,j)(t) × rand, t ≤ 3

T

4
andt > 2

T

4

NORMAL1 NORMAL2                      NORMAL3

COVID1                              COVID2                                 COVID3

Fig. 8   Source images
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where M(xi), as in Eq. (14), is the average positions of the 
ith solution, which is calculated using Eq. (15). UB(j) and 
LB(j) are the jth position's upper and lower limits, respec-
tively. In this study, the sensitive parameter α, which is fixed 
at 0.1, governs the exploration accuracy (the difference 
between candidate solutions) for the hunting cooperation 
during iterations.

3.2.4.4  Hunting of  Cooperation Exploitation  The hunting 
cooperation strategy is performed when t ≤ T and t > 3 (T/4), 
as in Eq. (16). Finally, the RSA is stopped when it meets the 
end criterion.

Hunting coordination and collaboration are exploitation 
search systems' attempts to avoid becoming caught in the 
local optima. These processes help the exploration search 
retain diversity among the potential solutions while identi-
fying the best solution. To obtain a stochastic value at each 
iteration, they carefully defined two parameters (i.e., and) 
and continued research during the first and last iterations. 
This section is applicable when local optima become stag-
nant, especially in later iterations.

3.3 � Salp Swarm Algorithm (SSA)

Marine animals come in over a million species, often cat-
egorized by a central database [57]. Most of these creatures 
share similar traits and habits, including moving, looking 
for food, and communicating. The Salp, a member of the 
Salpidae family, is one of these creatures. The Salp resem-
bles a jellyfish in terms of shape. It has a cylindrical shape, 
a gelatinous body, and holes at the end that aid in pumping 
water. Figure 5a depicts the Salp’s form when it feeds via 

(14)P(t) = � +
x(i,j) −M(xi)

best j(t) ×
(
UBj − LBj

)
+ �

,

(15)M(xi)
=

1

n

n∑
j=1

x(i,j).

(16)x(i,j)(t + 1) = best j(t) − �(i,j)(t) × � − R(i,j)(t) × rand

internal filters. A Salps chain, as seen in Fig. 5b, is a Salp 
grouping. This habit aids the Salps in improved foraging and 
mobility. Swarming is one of the characteristics that marine 
animals share, as was previously established.

The Salp algorithm is one of the meta-heuristic algo-
rithms that has effectively resolved numerous optimization 
issues across numerous disciplines. Engineering design, 
image processing, wireless networks, machine learning, 
and other applications are some of the Salp algorithm’s 
most significant application fields.

Many optimization problems can be solved using the 
basic SSA procedure. The population is necessary for the 
operation of this method. It was recommended in [57]. As 
previously indicated, this algorithm's behavior in looking 
for food may be successful because it relies on the swarm 
during the search phase. The swarm's common objective 
is to find food sources inside the search region.

Mathematically, a leader and followers make up the 
swarm [58]. The leader directs the actions of his follow-
ers. Figure 6 depicts the Salp Swarm Algorithm's flow 
and the fundamental steps in its functioning. Where X is 
a two-dimensional matrix that depicts a swarm of n Salps 
according to Eq. (17). Each Salp's fitness is calculated to 
determine which is the best (meaning, defines the leader 
for the swarm). Using Eq. (18), the leader position will 
be updated.

where yi is the food site in the ith dimension and xi1 repre-
sents the position of the leader (first) Salp in that dimension 
ith. Equation (19) determines the coefficient r1, where lbi 
and ubi represent the dimensions' lower and upper bounds. 
Random values between [0, 1] make up r2 and r3.

l is the running iteration, and L is the upper iteration. 
Because the balance of exploration and exploitation 
depends on it during the search process, the coefficient r1 
is particularly important in SSA. Regarding the followers, 
Eq. (20) displays their updated positions:

In the case when j >  = 2, xi1 refers to the location of the nth 
Salp in the ith dimension, �0 denotes an initial speed, t denotes 

(17)xi =

⎡⎢⎢⎢⎣

X1

1
X1

1

X2

1
X2

2

⋯ X1

1,d

… X2

d

⋮ ⋱

Xn
1
Xn
d

⋱ ⋮

… Xn
d

⎤⎥⎥⎥⎦

(18)X1

i
=

{
yi +

((
ubi − lbi

)
r2 + lbi

)
r4 < 0.5

yi + (
(
ubi − lbi

)
r2 + lbi r4 ≥ 0.5

,

(19)r1 = e
−
(

4I

L

)
2

(20)x
j

i
=

1

2
�t2 + �0t.

Table 2   Parameters of the comparison algorithms

Algorithm Parameters setting

SSA c2 and c3 are random values [1, 0]
MPA FADS = 0.2, P = 0.5
PSO wMax = 0.9, wMin = 0.2, c1 = 2, c2 = 2
WOA a [2, 0], b = 1, t [− 1, 1]
AO alpha = 0.1, delta = 0.1;
RSA β = 0.1, α = 0.005
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Table 3   Comparison of PSNR 
for COVID, NORMAL cases 
images

K AO WOA SSA RSA-SSA RSA MPA PSO

COVID-1 2 MEAN 15.99636 13.3542 13.62139 15.14325 14.72392 14.52838 13.05388
STD 0.457807 2.879741 0.812893 0.749422 1.631453 1.673632 2.029729

3 MEAN 15.72325 14.98874 15.67748 15.71619 14.23023 13.94943 15.28932
STD 0.495808 0.921241 1.989558 1.363071 2.637373 1.214327 0.895679

4 MEAN 15.19492 16.37215 15.97784 15.04494 15.0158 15.72654 16.09853
STD 0.46831 0.722467 1.623999 1.678525 1.901651 1.567743 2.587032

5 MEAN 16.54481 15.90312 15.12889 16.76509 16.44464 15.85798 16.77462
STD 1.204432 0.038961 0.329087 1.181614 2.838713 2.173416 1.481966

6 MEAN 18.28938 19.67572 18.86296 19.66328 19.26783 19.64373 18.07998
STD 1.275444 0.94462 2.296606 0.666739 1.238636 1.033956 0.754216

COVID-2 2 MEAN 13.8528 10.73882 12.54894 13.69693 12.29714 13.4655 13.62295
STD 1.496287 1.366289 0.476997 0.242637 1.038113 1.055034 1.208031

3 MEAN 14.80407 14.23211 14.14794 14.98948 15.20345 13.91394 13.86499
STD 1.583597 0.634901 2.904722 1.510022 1.901503 1.308217 1.412318

4 MEAN 14.53891 16.79614 14.21837 16.70445 16.6797 16.73104 15.00825
STD 1.354547 1.131132 1.439741 0.90755 1.039551 1.303573 1.218771

5 MEAN 16.165 16.43886 14.73026 16.19848 16.3406 16.94531 16.38499
STD 2.742593 2.081787 0.719713 1.894364 1.553394 0.760369 0.378739

6 MEAN 17.21162 18.17566 17.41433 18.82411 18.58039 18.90498 16.0777
STD 1.564371 1.306123 1.135714 3.055779 1.001871 1.209981 3.618802

COVID-3 2 MEAN 11.16933 10.83157 13.62884 13.2988 13.44292 13.65758 13.38808
STD 2.423073 1.894036 1.82483 1.966076 0.399431 2.046013 2.060039

3 MEAN 14.51449 14.58047 15.36989 14.33983 9.564635 13.0029 14.58103
STD 2.245033 0.743261 2.143962 3.068949 1.48891 1.104968 1.434026

4 MEAN 12.26771 13.33694 14.83319 16.27265 15.88782 14.39665 16.21477
STD 5.378315 1.03325 1.313469 0.990431 0.49478 3.322576 2.463693

5 MEAN 16.92287 16.55397 15.69802 18.9417 17.38048 18.89579 16.25714
STD 2.17281 0.595055 4.706241 2.841534 3.999957 0.458308 1.322994

6 MEAN 19.66963 17.27966 17.61387 19.93219 16.1862 17.99446 16.34047
STD 0.207749 2.820685 3.020165 3.267133 2.373307 0.647447 3.535097

NORMAL-1 2 MEAN 12.41414 13.20414 13.3123 13.63814 12.82645 13.45965 12.31845
STD 1.680167 0.367283 0.446509 0.739487 1.176126 0.783467 0.975626

3 MEAN 12.8001 13.70984 13.49773 13.5575 12.57109 13.53202 13.6597
STD 0.488647 1.151328 1.183424 0.329 1.186902 0.254708 0.687869

4 MEAN 15.56469 16.81564 15.85846 16.73248 16.22043 16.70589 15.2646
STD 1.06833 0.572113 0.25025 1.715065 1.773017 0.641843 1.405736

5 MEAN 17.53325 16.5834 17.17805 17.52708 16.83676 15.74463 17.49363
STD 1.051604 0.62701 0.81215 1.218011 0.363412 2.034782 1.371984

6 MEAN 17.66664 17.96638 17.39476 17.93091 16.7057 17.83272 16.94448
STD 0.420154 0.821384 0.978986 0.209366 4.475576 1.238946 0.542374

NORMAL-2 2 MEAN 12.9072 10.79158 10.38172 12.13743 13.80757 12.8793 11.77823
STD 1.361359 1.587784 2.577119 2.73055 1.030454 2.083797 1.065328

3 MEAN 13.13795 14.5805 13.57049 15.49957 14.69812 15.50122 11.78228
STD 1.35674 0.882141 1.143955 1.740162 0.467485 1.854953 1.787442

4 MEAN 13.68826 15.74899 14.15722 14.53005 14.17531 13.91692 13.78059
STD 0.843746 0.798077 0.315345 1.40499 2.915623 3.24002 2.866384

5 MEAN 15.42665 15.33481 15.90974 16.49487 15.7174 14.87574 15.65947
STD 2.277014 0.440318 1.399815 1.471268 1.511312 0.533327 0.369938

6 MEAN 17.83979 17.92491 17.5945 17.69739 16.11937 13.98299 14.5756
STD 1.339437 0.432668 2.802622 0.455714 2.988868 3.624765 2.384023
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Table 3   (continued) K AO WOA SSA RSA-SSA RSA MPA PSO

NORMAL-3 2 MEAN 14.42355 12.84311 14.35452 14.14685 12.93748 12.12876 14.5101

STD 0.738135 0.794227 0.287968 0.672658 1.209149 2.750113 0.46632

3 MEAN 15.42658 12.89072 15.01992 15.64615 14.82943 15.18174 14.93892

STD 0.860717 0.887621 2.062571 1.24102 0.906443 0.800181 1.654095

4 MEAN 17.04607 17.28479 16.01375 16.50957 16.10153 16.86906 15.16286

STD 2.543886 0.364581 1.267257 1.242821 1.077229 1.999883 2.028429

5 MEAN 17.05958 17.4702 18.02356 18.8066 17.19482 18.76523 18.93854

STD 0.848082 0.970442 1.067506 1.323133 1.095208 1.032608 2.1991

6 MEAN 16.56732 18.3278 17.29078 18.43022 17.67516 18.47673 18.52612

STD 0.761405 1.595749 0.4339 0.695685 1.428555 0.030226 1.08701
Mean 15.02604 15.03353 15.16173 15.98876 15.09539 15.26292 15.09392
Ranking 7 6 3 1 4 2 5

the passage of time, and = �f inal

�0
 , where �0=

x−x0

t
 . The duration 

of optimization indicates iteration. As a result, there is a 1 in 
the difference between iterations. The following equation is 
used to solve this problem while keeping in mind the idea that 
�0 = 0.

in when j >  = 2. When the Salp departs from the search 
space, we can sometimes bring them back by applying 
Eq. (21).

In optimization algorithms, terms like exploration and 
exploitation, diversity and intensification, international 
and local searches, and a few word pairs are frequently 
used. One of those pairs is at least present in the optimiza-
tion algorithms. Exploration and exploitation will be cov-
ered in this section. In the search area, exploration seeks 
to find uncharted territory.

Exploitation's goal is to improve on successful and pre-
viously known solutions. Due to the search process not 
stopping at one level, the level of the ideal solution can be 
found. The c1 coefficient is in charge of maintaining a bal-
ance between exploration and exploitation. It is calculated 
using the formula Eq. (21).

(21)x
j

i
=

1

2

(
x
j

i
+ x

j−1

i

)

(22)x
j

i
=

⎧⎪⎨⎪⎩

lj if x
j

i
≤ li

uj if x
j

i
≤ uj

x
j

i
if x

j

i
≤ li

3.4 � The Proposed Hybrid Algorithm (RSA‑SSA)

The study presents a hybrid approach for segmenting 
images. Based on the RSA and SSA algorithms, the sug-
gested algorithm, dubbed RSA-SSA, uses Otsu's tech-
nique as its objective function. The ideal multi-level 
thresholding values that optimize Otsu's goal function 
are found using the proposed hybrid technique. The sug-
gested hybrid technique depends on SSA use to improve 
RSA performance.

The RSA narrows the search region by selecting the 
optimal solution. Next, the SSA optimizes each agent less 
than the restricted base. Consequently, after calculating an 
input image's histogram, a random population of solutions 
is generated (threshold values). The RSA then refreshes this 
population using levels that are represented by four differ-
ent motions. Then, using Otsu's method, the best solution 
is picked from the population (the best solutions from the 
RSA algorithm).

After determining the globally optimal solution (SSA 
algorithm's output), all preceding steps are repeated until 
the halting conditions are satisfied. The SSA uses the 
result from the RSA (worst solution) to start calculat-
ing the minimal thresholding value, and the population's 
solutions are then optimized using the method covered in 
Sect. 3.3.2. Figure 7 depicts the RSA-concluding SSA's 
procedures.

4 � Experiments and Results

In this section, the experiment is used to assess the perfor-
mance of the RSA-SSA ability for segmentation NORMAL 
and COVID-19. Comparable algorithms include the Marine 
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Table 4   SSIM of COVID and 
NORMAL cases images

K AO WOA SSA RSA-SSA RSA MPA PSO

COVID-1 2 MEAN 0.42965 0.40297 0.376196 0.45871 0.40297 0.444653 0.460506
STD 0.03405 0.05994 0.03036 0.01114 0.059947 0.023983 0.024026

3 MEAN 0.49806 0.44377 0.53224 0.41162 0.443777 0.395412 0.467073
STD 0.00533 0.0407 0.07087 0.10924 0.040703 0.04514 0.015658

4 MEAN 0.46394 0.50754 0.53656 0.46277 0.507542 0.475494 0.533161
STD 0.0213 0.01404 0.03246 0.0421 0.014043 0.021184 0.05675

5 MEAN 0.5298 0.5217 0.5346 0.50467 0.52172 0.561966 0.555674
STD 0.03282 0.04483 0.02549 0.07967 0.044831 0.048949 0.046626

6 MEAN 0.54274 0.58835 0.55735 0.62441 0.588358 0.576641 0.591855
STD 0.05497 0.03155 0.0859 0.091 0.0314 0.052018 0.019438

COVID-2 2 MEAN 0.50924 0.42224 0.42558 0.37087 0.422248 0.360834 0.439632
STD 0.01713 0.06783 0.05705 0.09721 0.067832 0.134443 0.073197

3 MEAN 0.48167 0.41479 0.51593 0.45614 0.414796 0.460597 0.418115
STD 0.08559 0.0175 0.07921 0.08515 0.01758 0.089635 0.056822

4 MEAN 0.52968 0.54112 0.49385 0.52068 0.541124 0.546894 0.480378
STD 0.12498 0.03782 0.1051 0.01472 0.037822 0.017256 0.063804

5 MEAN 0.58313 0.6066 0.55032 0.62619 0.60667 0.586562 0.535726
STD 0.08215 0.02334 0.08076 0.00756 0.023342 0.004549 0.052696

6 MEAN 0.57667 0.62786 0.56212 0.62452 0.627816 0.646609 0.597459
STD 0.00633 0.02681 0.08871 0.02341 0.026981 0.032317 0.066562

COVID-3 2 MEAN 0.373967 0.339013 0.495861 0.512224 0.339003 0.56946 0.450022
STD 0.142947 0.091252 0.080724 0.016876 0.091282 0.062944 0.080966

3 MEAN 0.530732 0.551748 0.610586 0.280487 0.551768 0.455782 0.558857
STD 0.125136 0.022145 0.029913 0.08828 0.022165 0.027358 0.124729

4 MEAN 0.437222 0.465512 0.523524 0.601395 0.465522 0.531071 0.585213
STD 0.324238 0.031438 0.049375 0.029156 0.031428 0.156657 0.104579

5 MEAN 0.636554 0.589412 0.519042 0.563354 0.589412 0.672963 0.601557
STD 0.062811 0.010422 0.172 0.081168 0.010432 0.027416 0.023636

6 MEAN 0.688038 0.602256 0.63167 0.552424 0.602256 0.635441 0.565898
STD 0.022429 0.080002 0.073866 0.096402 0.080002 0.03781 0.100983

NORMAL-1 2 MEAN 0.377072 0.433945 0.425974 0.448437 0.60622 0.439367 0.45975
STD 0.146139 0.084738 0.05663 0.082113 0.059084 0.072743 0.040375

3 MEAN 0.487931 0.495169 0.466183 0.461924 0.675019 0.350841 0.485511
STD 0.052161 0.090261 0.09588 0.028882 0.031402 0.186978 0.069474

4 MEAN 0.449308 0.497662 0.500883 0.494075 0.63306 0.43292 0.405417
STD 0.069547 0.053722 0.040597 0.13073 0.03235 0.074601 0.032333

5 MEAN 0.622331 0.586756 0.527278 0.454854 0.694551 0.575692 0.406074
STD 0.014378 0.043584 0.078913 0.04693 0.054632 0.068585 0.225934

6 MEAN 0.521997 0.582859 0.549776 0.506106 0.661963 0.426425 0.46821
STD 0.060609 0.03107 0.088384 0.125498 0.077946 0.160948 0.194706

NORMAL-2 2 MEAN 0.440137 0.443875 0.448085 0.380422 0.433945 0.425825 0.361047
STD 0.108188 0.064598 0.031175 0.042702 0.084738 0.041938 0.024426

3 MEAN 0.478387 0.499265 0.441933 0.506195 0.495169 0.518201 0.507956
STD 0.071283 0.042977 0.040663 0.03042 0.090261 0.041512 0.050541

4 MEAN 0.457856 0.585825 0.600818 0.497838 0.497662 0.574744 0.507555
STD 0.029951 0.044236 0.048041 0.062741 0.053722 0.017915 0.06425

5 MEAN 0.637749 0.590795 0.571383 0.554001 0.586756 0.58265 0.578656
STD 0.010376 0.081043 0.081152 0.04878 0.043584 0.044166 0.042985

6 MEAN 0.620989 0.610829 0.657615 0.554396 0.582859 0.579489 0.577239
STD 0.080172 0.021174 0.094464 0.080524 0.03107 0.042093 0.075686
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Table 4   (continued) K AO WOA SSA RSA-SSA RSA MPA PSO

NORMAL-3 2 MEAN 0.579632 0.525593 0.470218 0.496973 0.443875 0.528933 0.55688

STD 0.067865 0.084187 0.209488 0.121069 0.064598 0.144974 0.043189

3 MEAN 0.659135 0.637236 0.659628 0.671445 0.499265 0.578848 0.623327

STD 0.043666 0.017713 0.0457 0.090691 0.042977 0.125382 0.065171

4 MEAN 0.727387 0.723672 0.70059 0.724118 0.585825 0.660755 0.688485

STD 0.051295 0.035443 0.012628 0.049346 0.044236 0.089128 0.021552

5 MEAN 0.671559 0.666467 0.750507 0.702174 0.590795 0.701738 0.693761

STD 0.088484 0.039542 0.046332 0.044752 0.081043 0.059367 0.068361

6 MEAN 0.746381 0.745939 0.749069 0.726662 0.610829 0.750085 0.745973

STD 0.022251 0.073073 0.061598 0.055838 0.021174 0.024152 0.016091

Table 5   Friedman ranking test 
for the methods of PSNR for 
COVID-19 experiment

PSNR_rank K AO WOA SSA RSA-SSA RSA MPA PSO

COVID1 2 1 5 6 2 3 7 4
3 1 3 5 2 4 6 7
4 4 7 2 5 1 3 6
5 3 5 6 2 1 4 7
6 7 1 4 2 5 3 6
SUM 14 15 23 13 14 19 21
Mean rank 2.8 3 4.6 2.6 2.8 3.8 4.2
Final rank 2 3 6 1 2 4 5

COVID2 2 1 5 7 2 4 6 3
3 2 5 4 1 6 3 7
4 3 7 6 2 4 1 5
5 3 7 6 4 2 1 5
6 6 3 5 2 1 7 4
SUM 15 19 25 11 17 12 23
Mean rank 3 3.8 5 2.2 3.4 2.4 4.6
Final rank 3 5 7 1 4 2 6

COVID3 2 5 7 2 4 6 1 3
3 4 3 1 5 6 7 2
4 6 5 4 1 2 3 7
5 7 5 6 1 4 3 2
6 1 5 4 2 7 3 6
SUM 20 24 17 13 25 16 15
Mean rank 4 4.8 3.4 2.6 5 3.2 3
Final rank 5 6 4 1 7 3 2

Table 6   Summary of Friedman 
ranking test for the methods 
of PSNR for the COVID-19 
experiment

PSNR_rank AO WOA SSA RSA-SSA RSA MPA PSO

COVID1 2 3 6 1 2 4 5
COVID2 3 5 7 1 4 2 6
COVID3 5 6 4 1 7 3 2
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Predators Algorithm (MPA) [47], Salp Swarm Algorithm 
(SSA) [57], Whale Optimization Algorithm (WOA) [59], 
Particle Swarm Optimization Algorithm (PSO) [60], Aquila 
Optimization Algorithm (AO) [61], and the Reptile Search 
Algorithm (RSA) [55]. These algorithms demonstrated their 

effectiveness as image segmentation optimization techniques 
in the literature.

4.1 � Image Dataset

The trials were carried out on six photographs of well-
known test images for a better comparison of the segmen-
tation results, as shown in Fig. 8. Each image with a size 
of (256 × 256). Five thresholds (2–6) were used in this 
research's multi-level image segmentation procedure. Opti-
mization systems using swarm intelligence usually display 
random behavior. Each experiment was carried out 100 
times for each image and level in three times run.

In this study, the algorithms will be tested using the 
dataset's standard gray images of (COVID-19, NORMAL) 
X-rays, which were released on the link on January 4, 2022: 
https://​www.​kaggle.​com/​tawsi​furra​hman/​covid​19-​radio​gra-
phy-​datab​ase

Fig. 9   Friedman ranking in term PSNR chart (COVID-19)

Table 8   Summary of Friedman 
ranking test for the methods 
of PSNR for the NORMAL 
experiment

PSNR_rank AO WOA SSA RSA-SSA RSA MPA PSO

NORMAL1 3 1 2 1 4 6 5
NORMAL2 2 3 6 1 4 5 3
NORMAL3 3 4 7 1 6 5 2

Table 7   Friedman ranking test 
for the methods of PSNR for 
NORMAL experiment

PSNR_rank K AO WOA SSA RSA-SSA RSA MPA PSO

NORMAL1 2 5 7 4 1 6 3 2
3 5 1 4 3 2 6 7
4 7 1 3 2 4 5 6
5 1 4 2 3 5 7 6
6 2 7 3 4 1 6 5
SUM 17 13 16 13 18 25 21
Mean rank 3.4 2.6 3.2 2.6 3.6 5 4.2
Final rank 3 1 2 1 4 6 5

NORMAL2 2 1 7 6 3 5 2 4
3 3 6 5 2 1 7 4
4 7 1 2 4 6 5 3
5 3 4 6 1 2 5 7
6 2 1 7 3 5 6 4
SUM 15 17 24 13 18 19 17
Mean rank 3 3.4 4.8 2.6 3.6 3.8 3.4
Final rank 2 3 6 1 4 5 3

NORMAL3 2 2 5 6 3 1 4 7
3 3 7 2 1 4 5 6
4 2 1 6 4 5 3 7
5 4 3 7 2 6 5 1
6 7 4 6 3 5 2 1
SUM 16 17 26 13 21 19 14
Mean rank 3.2 3.4 5.2 2.6 4.2 3.8 2.8
Final rank 3 4 7 1 6 5 2

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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4.2 � Segmented Image Quality Measures

The performance of the algorithms will be compared using 
different metrics, including PSNR, SSIM, and Friedman 
ranking test.

1. The peak signal-to-noise ratio (PSNR) measure is used 
to measure the variance between the reference image and 
segmented image [62], and it depends on the value of inten-
sity in:

RMSE refers to the root-mean-squared error detected 
as:

The terms I and Seg denote the original and segmented 
images, respectively, of sizes M and Q. The highest PSNR 
value represents the highest level of performance for the 
segmentation algorithms.

(22)PSNR = 20log10

(
255

RMSE

)
, (indB).

(23)RMSE =

����
∑M

i=1

∑Q

j=1
(I(i, j) − Seg(i, j))2

M ∗ Q
.

Fig. 10   Friedman ranking in term PSNR chart (NORMAL)

Table 10   Summary of 
Friedman ranking test for 
the methods of SSIM for the 
COVID-19 experiment

SSIM_rank AO WOA SSA RSA-SSA RSA MPA PSO

COVID1 5 4 2 1 5 3 1
COVID2 2 3 5 1 6 4 7
COVID3 5 6 4 1 5 2 3

Table 9   Friedman ranking test 
for the methods of SSIM for the 
COVID-19 experiment

SSIM_rank K AO WOA SSA RSA-SSA RSA MPA PSO

COVID1 2 4 5 6 1 3 7 2
3 2 4 1 3 5 6 7
4 6 7 1 4 3 5 2
5 5 7 4 1 6 2 3
6 7 2 6 4 5 3 1
SUM 22 20 18 13 22 19 13
Mean rank 4.4 4 3.6 2.6 4.4 3.8 2.6
Final rank 5 4 2 1 5 3 1

COVID2 2 1 5 4 3 6 7 2
3 3 7 2 1 4 5 6
4 4 2 5 1 6 3 7
5 7 1 5 4 2 3 6
6 4 3 7 1 5 2 6
SUM 14 15 21 10 23 19 26
Mean rank 2.8 3 4.2 2 4.6 3.8 5.2
Final rank 2 3 5 1 6 4 7

COVID3 2 4 6 7 5 2 1 3
3 7 3 1 5 4 6 2
4 6 7 4 1 5 3 2
5 3 5 6 1 4 2 7
6 2 7 4 1 4 3 5
SUM 19 23 17 13 19 15 16
Mean rank 3.8 4.6 3.4 2.6 3.8 3 3.2
Final rank 5 6 4 1 5 2 3
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2. The structural similarity index (SSIM): is used to 
assess how comparable (I) and (Seg) images are [63], and 
is defined as:

μI and μSeg denote the mean intensity of (σI) and (σSeg) 
and the standard deviation of (I) and (Seg), respectively. 
σI, Seg also denotes the variance of (I) and (Seg). Con-
stants c1 and c2 have values of 6.5025 and 58.52252, 
respectively. The highest SSIM value indicates better 
performance.

3. Friedman ranking test: the one-way ANOVA with 
repeated measures is a non-parametric alternative to the 
Friedman ranking test. When the dependent variable being 
measured is ordinal, it is utilized to examine changes 
across groups. Additionally, it can be applied to continu-
ous data that deviates from the presumptions required to 
conduct a one-way ANOVA with repeated measures [43].

(24)SSMI(I, Seg) =
(2�I�Seg + C1)(2�I.Seg + C2)

(�2

I
+ �2

Seg
+ C1)(�

1

I
+ �2

Seg
+ C2)

Fig. 11   Friedman ranking in term SSIM chart (COVID-19)

Table 12   Summary of 
Friedman ranking test for 
the methods of SSIM for the 
NORMAL experiment

SSIM_rank AO WOA SSA RSA-SSA RSA MPA PSO

NORMAL1 3 2 4 1 5 7 6
NORMAL2 3 2 2 1 4 4 5
NORMAL3 2 5 3 1 2 4 5

Table 11   Friedman ranking test 
for the methods of SSIM for 
NORMAL experiment

SSIM_rank K AO WOA SSA RSA-SSA RSA MPA PSO

NORMAL1 2 6 4 5 2 1 3 7
3 7 2 5 1 3 6 4
4 4 3 2 1 6 5 7
5 1 2 7 5 4 3 6
6 4 2 3 1 6 7 5
SUM 18 13 19 10 20 23 22
Mean rank 3.6 2.6 3.8 2 4 4.6 4.4
Final rank 3 2 4 1 5 7 6

NORMAL2 2 7 2 1 4 3 5 6
3 5 4 6 1 2 7 3
4 6 7 1 2 3 4 5
5 1 3 6 2 5 4 7
6 2 3 1 4 7 5 6
SUM 17 15 15 13 20 20 25
Mean rank 3.4 3 3 2.6 4 4 5
Final rank 3 2 2 1 4 4 5

NORMAL3 2 2 5 6 1 3 4 7
3 2 7 1 3 4 6 5
4 7 3 4 1 2 6 5
5 5 6 2 1 3 7 4
6 4 5 7 2 3 1 6
SUM 15 23 16 8 15 20 23
Mean rank 3 4.6 3.2 1.6 3 4 4.6
Final rank 2 5 3 1 2 4 5
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4.3 � Experiment Setup

The comparison of six different algorithms, the Marine 
Predators Algorithm (MPA), Salp Swarm Algorithm (SSA), 
Whale Optimization Algorithm (WOA), Particle Swarm 
Optimization (PSO), Aquila Optimizer (AO), and the novel 
of the RSA. The studies were carried out on six well-known 
test photos, as shown in Fig. 8. To compare the segmentation 
results more effectively, those that are used in the research 
have the same cessation conditions (maximum iterations set 
to 100), with a total run of 10 per algorithm, and the size 

of the population "set to (25). The parameters of all algo-
rithms are shown in Table 2. For performance evaluation 
of all experiments on the test, images are done by the num-
ber of thresholds": 2, 3, 4, 5 "and 6 as in [37, 64, 65]. The 
selection for such thresholds was to illustrate the algorithm's 
performance (RSA-SSA) compared with the traditional seg-
mentation algorithms based on the swarm. All algorithms 
are programmed in Matlab2017 and implemented in the 
"Windows 10—64bit" environment on a computer with Intel 
Corei7 10th Gen (1.99 GHz) processor" 1T" memory and 
SSD (128).

4.4 � Benchmark Images

To test each method, this study uses six photos—three 
COVID-19 case images and three NORMAL case images.

The dataset used to create these photos was made avail-
able on the website https://​www.​kaggle.​com/​tawsi​furra​
hman/​covid​19-​radio​graphy-​datab​ase on April 9, 2021. Fig-
ure 8 shows these images have NORMAL1, NORMAL2, 
NORMAL3, COVID1, COVID2, and COVID3. All have a 
dimension of 256 × 256 and the PNG extension.

Fig. 12   Friedman ranking in term SSIM chart (NORMAL)

Fig. 13   Histogram for COVID images experiments for proposed technique in threshold 2,3,4,5,6

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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Fig. 14   Histogram for NORMAL images experiments for proposed technique in threshold 2,3,4,5,6

4.5 � The Results and Discussions

In our trials, the objective function that was maximized 
based on the WOA, MPA, SSA, AO, RSA-SSA, and PSO 
algorithm chest X-ray Images for COVID-19 Cases was 
Otsu's technique (between-class variance). Six test pho-
tos were used to test the approach. They were thinking 
about the thresholds of 2, 3, 4, 5, and 6. For the WOA, 
MPA, SSA, AO, RSA-SSA, and PSO algorithms, the 
PSNR, SSIM, and Friedman ranking test values are pro-
vided. The results of the comparing approaches are pro-
vided in terms of PSNR using the Otsu function, as seen 
in Table 3. The findings unmistakably demonstrated that 
the proposed method outperformed all comparison meth-
odologies, which speaks to the proposed method's capac-
ity to accurately segment the images and select the best 

threshold values. The proposed method came out on top in 
the Friedman ranking test, followed by MPA, WOA, SSA, 
AO, and PSO. The results of the comparison approaches 
are expressed in terms of SSIM using the Otsu function, 
as seen in Table 4. The findings showed that the suggested 
technique outperformed other comparison methods, dem-
onstrating its searchability in segmenting the tested images 
and choosing the suitable threshold values to produce pre-
cise segmented images. The proposed method came out 
on top in the Friedman ranking test, followed by the SSA, 
AO, WOA, MPA, and PSO.

Table 5 shows each algorithm's degree at each threshold 
level and image. Degree 1 means the method has the best 
degree and more accurate performance of PSNR measure of 
COVID-19 cases images.

We can summarize the results of Table 5 as in Table 6. 
Table 6 shows the levels for all algorithms in Table 5 sorted 
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Fig. 16   NORMAL1 segment
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depending on the final rank of the Friedman ranking test 
of PSNR measure of COVID-19 cases images, as shown 
in Fig. 9.

This table shows the degree for each algorithm at each 
threshold level and each image. Degree 1 means the method 
has the best degree and more accurate performance of PSNR 
measure of NORMAL cases images.

We can summarize the results of Table 7 as in Table 8. 
Table 8 shows the levels for all algorithms in Table 7 sorted 
depending on the final rank of the Friedman ranking test 
of PSNR measure of NORMAL cases images, as shown in 
Fig. 10.

We can summarize the results of Table 9 as in Table 10. 
Table 10 shows the levels for all algorithms in Table 9 sorted 
depending on the final rank of the Friedman ranking test 
of SSIM measure of COVID-19 cases images, as shown in 
Fig. 11.

This table shows the degree for each algorithm at each 
threshold level and each image. Degree 1 means the method 
has the best and more accurate performance of SSIM meas-
ure of NORMAL cases images.

We can summarize the results of Table 11 as in Table 12. 
Table 12 shows the levels for all algorithms in Table 11 
sorted depending on the final rank of the Friedman ranking 
test of SSIM measure of NORMAL cases images, as shown 
in Fig. 12.

The discussion depends on each measure given in this 
section, and Figs. 13 and 14 show the image's histogram 
for the algorithm (RSA-SSA) at k equal to 2, 3, 4, 5, and 6. 
Figures 15 and 16 show the compression techniques used in 
different thresholds.

The limitations of the proposed method can be stated as 
follows: the tested images can be changed to other image 
classes, the parameters of the used methods can be inves-
tigated to get the best results and configuration, and the 
proposed method can be investigated further to validate its 
performance to solve other optimization problems.

5 � Conclusion and Future Work

Identifying the optimal or best threshold for image seg-
mentation is a challenge in this study's scenario of multi-
layer thresholding. The term optimization difficulty has 
been used to describe this issue. As a fitness function, 
Otsu's function has been used. Consequently, a multi-
level threshold image segmentation RSA-SSA technique 
was proposed. This issue has been resolved using the sug-
gested algorithm. Its goal is to establish the ideal thresh-
old value that improves Otsu's function. The algorithm's 
outcomes have been contrasted with those of the MPA, 
SSA, WOA, AO, and PSO algorithms. The following 
metrics have been used to assess algorithm performance: 

PSNR, SSIM, and Friedman ranking test. We used six 
benchmark images for COVID-19 and NORMAL cases 
in all experiments. The study finds that the RSA-SSA 
suggested approach performs well during the segmenta-
tion. This superiority is mainly because it avoids becom-
ing stuck at a local optimum. All of this suggests that 
this method has a strong capacity to locate the image's 
ideal solution. The Future Work advocated using the tech-
nique to address various issues and applications involv-
ing image processing, including (visualization, computer 
vision, computer-aided diagnostics, image classification, 
etc.). The finesses of the images are a very significant dif-
ficulty in image segmentation in all of these applications. 
Low resolutions, excessive noise, or poor contrast may 
bring on this issue. Pre-processing the photos is essential 
to increase the quality of that situation and achieve the 
best segmentation results.
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