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Abstract
Oil–water mixing has brought many problems to a society, and it is of great significance to develop a simple, convenient, 
efficient, and durable separation material to solve the problem of oil–water mixing. In this paper, modified cottons were 
successfully prepared using polydopamine as the in situ mineralization site of  TiO2 nanoparticles combined with synergistic 
crosslinking with KH550. A large number of hydrophilic groups endowed the cotton with superhydrophilic ability, which 
greatly shortened its water spreading time. The prepared modified cotton could be successfully separated from oil and water, 
and still had a separation efficiency of 99.999% after 50 cycles. In addition, after 24 h immersion in 1 M HCl, NaOH, and 
NaCl solutions and 50 abrasion experiments, the modified cotton showed excellent oil–water separation ability, and the 
separation efficiency was above 99.990%. Successfully provided a simple preparation method to prepare high-efficiency and 
clean cottons for oil–water separation.
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1 Introduction

The mixing and leakage of oil and water have brought many 
problems to society [1], including environmental pollution, 
biological loss, and blocked production activities. There 
exists an urgent need to develop an approach for oil–water 
separation. Traditional oil–water separation technologies 
including coagulation [2], air flotation [3], gravity [4], 
absorption [5], membrane filtration [6, 7], etc., are mostly 
inefficient and complicated. Finding a simple, efficient, and 
selective method to separate oil and water is necessary.

The process of oil–water separation is a kind of interfa-
cial wetting [8]. According to the different wettability of 
some animal and plant surfaces to oil and water, research-
ers have developed a series of superwettability materials for 
oil–water separation [9–13]. The upper surface of the lotus 

leaf is Superhydrophobic/Superoleophilic (SHB/SOI) in 
air. Li et al. [14] reported a SHB/SOI composite film using 
polycaprolacone composite material to imitate lotus leaf 
structure, successfully used for oil–water separation, with 
high oil–water separation efficiency (> 99.93%) and oil flux. 
SHB/SOI materials are suitable for heavy oil–water separa-
tion. Due to the differences of density, when separating light 
oil and water, water is heavier than oil, resulting in a layer of 
water between oil and film. Moreover, because oil and water 
do not blend, light oil cannot be filtered by film. In contrast, 
Superhydrophilic/Superoleophobic (SHI/SOB) materials 
can solve this problem. Guo et al. [15] reported a SHI/SOB 
surface using silica nanoparticles, aluminum phosphate, and 
Capstone FS-50 for oil–water separation, and reproducible 
separation of immiscible polar liquids and non-polar liq-
uids. However, it is very difficult to achieve SHI/SOB in the 
air, and fluorine-containing materials are needed, which is 
harmful to the environment [16]. Inspired by fish scales, Liu 
et al. [17] reported a high-flux Superhydrophilic/Underwa-
ter Superoleophobic (SHI/USOB) separation film prepared 
from cellulose, starch, and silica, which can achieve water 
removal without doping fluorine-containing materials. At 
present, SHI/USOB oil–water separation materials have 
been successfully prepared on nylon membrane [18], copper 
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mesh [19], porous ceramics [20], cotton [21, 22], and hydro-
gel [23], etc.

Cotton has the advantages of high porosity, low cost, 
renewable, biodegradable, and is a kind of environmentally 
friendly material. It is hydrophilic in the air, because the cot-
ton is rich in hydroxyl groups on its surface [24–26]. How-
ever, its affinity for water is not good enough for oil–water 
separation, caused by the covering of some non-cellulose 
compounds on the cuticle of cotton, including pectin, pro-
tein, and wax. It is necessary to treat and modify it. Tita-
nium dioxide has the advantages of being antibacterial, 
anti-ultraviolet, and nontoxic, and can increase membrane 
flux after hydrophilic modification [27–30]. Inspired by 
mussels [31], polydopamine can stick to a variety of sur-
faces. Hydrophilic modification of cotton using hydrophilic 
titanium dioxide nanoparticles and polydopamine effectively 
improved its hydration ability to fabricate a SHI/USOB cot-
ton for oil–water separation [32]. The actual use environ-
ment of the material is complex and diverse. Polydopamine 
will decompose in an alkaline environment, selected KH550 
to cooperate with it in crosslinking and polymerization to 
ensure its use time. At the same time, the amino group of 
KH550 further improved the hydration ability of the cotton. 
The modified cotton was prepared by the one-step impregna-
tion method, which was simple, convenient, and economical.

2  Experimental Section

2.1  Materials

The cotton was purchased from Taobao. Tris-hydrochloride 
buffer (tris–HCl, pH = 8.5), dopamine hydrochloride (DA, 
98%), (3-aminopropyl) triethoxysilane (KH550, 99%), pol-
yethylene glycol (PEG, average Mn 200), titanium oxide 
 (TiO2, rutile, 99.8% metals basis, diameter: 25 nm) were 
purchased from Aladdin Biochemical Technology Co., Ltd, 
Shanghai, China. Hydrogen peroxide  (H2O2, 30%), cop-
per sulfate pentahydrate  (CuSO4·5H2O), sodium hydroxide 
(NaOH), n-hexane, toluene, ethanol were purchased from 
Sinopharm Chemical Reagent Co., Ltd, Shanghai, China. 
Isooctane was purchased from Shanghai Macklin Biochemi-
cal Co., Ltd., China. All chemicals and solvents were used as 
received without further purification. Deionized water (DI 
water) was obtained from a water purifier (Ulupure-I-20T, 
Sichuan Ulupure Technology Co., Ltd.) with a resistivity of 
18.25 MΩ cm.

2.2  Preparation of Cotton@PDA@TiO2 Membrane

The cotton (3 × 3 cm) was immersed in 1 M sodium hydrox-
ide solution under 95 °C for 24 h [33], then cleaned in etha-
nol and DI water in an ultrasonic cleaner (40 kHz). 120 mg 

 TiO2 NPs and 110 µL PEG were added at room temperature 
to a beaker containing 30 mL tris–HCl buffer (50 mM), 
ultrasonicated for 10 min at 40 kHz. Later on, 0.0375 g 
 CuSO4·5H2O (5 mM), 60 µL  H2O2 (19.6 mM), 130 µL 
KH550, and 120 mg DA were added to the above-dispersed 
solution and stirred to disperse uniformly. The treated cotton 
was moistened uniformly with a small amount of dispersed 
solution, and then in a water bath at 30 °C for 10 h. Finally, 
the as-prepared cotton was washed with DI water three times 
and placed in a vacuum oven for desiccation at 60 °C.

2.3  Characterization

The morphologies of samples were obtained via Field Emis-
sion Scanning Electron Microscope (FESEM, sigma 500). 
The elemental distribution of samples was measured via 
Energy Dispersive X-ray Spectrometry (EDS, D8 Advance). 
X-ray Photoelectron Spectroscopy (XPS, Thermo Scientific 
ESCALAB 250Xi) was hired to perform surface element 
composition analysis. The JC2000D contact angle measur-
ing instrument (Shanghai Zhongchen Digital Technology 
Equipment Co., Ltd.) was used to measure the sample’s 
water spread times and Contact Angles (CAs).

2.4  Oil–water Separation Measurement

The obtained cottons were used to separate oil–water mix-
tures in a homemade setup. One piece of cotton was hori-
zontally fixed between the ends of two vertical glass tubes. 
Experimental oils include n-hexane, isooctane, cyclohexane, 
and toluene. Before separation, the prepared cotton was first 
wetted with water. Water and oil were mixed in a volume 
ratio of 50%, with a total volume of 20 mL. The prepared 
oil–water mixtures were poured onto the cotton and water 
spontaneously permeated quickly under the gravity force. 
The time of the water to pass through the cotton completely 
was measured. The volume of permeating was measured by 
the difference in the mass before and after the collection of 
bottles. The water flux (J) was calculated using the follow-
ing equation:

where V is the volume (L) of permeate, A is the active area 
 (m2) of the cotton, and t is the recorded permeation time (h) 
of water.

The Chemical Oxygen Demand (COD) of collected water 
was measured via Multi-parameter water quality tester (5B-
6C (V12), Beijing Lianhua YongXing Science and Technol-
ogy Development Co., Ltd). The separation efficiency was 
calculated via the following equation:

(1)J =
V

A ⋅ t
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where Ci is the concentration (g·cm−1) of oil in the mixture 
before separation, and Cf is the concentration (g·cm−1) of oil 
in the mixture after separation.

3  Results and Discussion

3.1  Strategy of Cotton Modification

The pristine cotton cannot be used for oil–water separation 
because of the lack of formation of water film caused by its 
inadequate hydration capacity, even though it is SHI/USOB 
[34]. First, the hydrophobic non-fiber material on the sur-
face of the pristine cotton was removed by the thermo-alkali 
method, and the rough structure of the cotton surface was 
enhanced. The strategy of heightening hydration capacity 
was via hydrophilic  TiO2 and abundant hydrophilic groups. 
Hydrophilic  TiO2 modification can improve membrane flux 
by reducing oil absorption deposition on the membrane 
surface and pore blockage to mitigate oil pollution in the 
membrane and pore [35]. Inspired by mussels, PDA can 
adhere to a variety of substrates, including glass [36], wood 
[37], plastic [38], cotton [39, 40], etc.  TiO2 can be firmly 
adhered to the surface of the cotton, using PDA as its in-
situ mineralization platform. Catechol structure in DA is 
dissolved and oxidized in an alkaline environment to gener-
ate dopamine derivatives, which are synergistically cross-
linked and polymerized through Schiff base reaction and 
Michael addition reaction with amino reaction in KH550. 

(2)R =
C
i
− C

f

C
i

∗ 100%
The catechol structure in DA and the hydrolyzed hydroxyl 
group of KH550 are combined with  TiO2. A small amount 
of  Cu2+ in the catalyst also chelates with PDA.  TiO2, PDA, 
and KH550 can enhance the binding force with the cotton 
through synergistic cross-linking behavior, and adhere to the 
cotton surface (Figs. 1 and 2). PDA, KH550, and the cot-
ton surface provide a large number of hydroxyl and amino 
groups, hydroxyl, amino, and hydrophilic  TiO2 synergisti-
cally enhance the hydrophilicity of the cotton. Water can 
quickly moisten the surface of cotton, forming a water film 
that adheres firmly to the cotton and resists oil adhesion. The 
improvement of hydration capacity can achieve the effect of 
oil–water separation and increase its flux. If the ratio of DA 
to KH550 is too small, the pore size will decrease. If the 
ratio is too large, the hydrophilic group is not enough. When 
the ratio is 1:1, the water permeation flux is greater than 
the ratio is 1:2 and 1:0.5 [41]. The ratio of 1:1 is adopted to 
further ensure the flux. 

3.2  Surface Morphology and Elemental Analysis 
of Cotton@PDA@TiO2

As mentioned above, cotton serves as the substrate for 
the separation material, providing a porous, hydroxyl sur-
face. The pristine cotton is made of interlaced warp and 
weft yarns. The yarns consisted of several cotton fibers, 
ranging in width from 10 to 20 μm, have finely folded 
surfaces, and are smooth relative to the modified sam-
ples (Fig. 3a, b). After modification, the overall structure 
of the fibber is not changed, and there are many flower 
clusters on the surface, of different sizes (Fig. 3c, d). 
The flower cluster materials are  TiO2 NPs through EDS 

Fig. 1  Fabrication of cotton@PDA@TiO2 (a), surface wettability of cotton@PDA@TiO2 (b), oil–water separation model (c)



903Simple and Ultrahigh Efficient Superhydrophilic Polydopamine‑coated  TiO2 Cotton for…

1 3

of analysis (Fig. 3f, g). Due to high surface energy and 
van der Waals attraction, agglomeration occurs. The spa-
tial elemental distributions of C, N, and Si demonstrated 
that  TiO2 is successfully coated by PDA and KH550 
(Fig. 3h–j).

According to the Raman spectrum (Fig. 3l), the peak 
at 1095  cm−1 is the main characteristic peak of pristine 
cotton, from the “ring breathing” of cellulose molecules. 
The modified cotton has 1595, 1385, 1204, and 945  cm−1 
more peaks. The peak of 1595 and 1385   cm−1 are the 
deformation vibration of the benzene ring of PDA and 
the C–C and C–O stretching vibration of the aliphatic 
group, respectively [42, 43]. The peak of 945   cm−1 is 
attributed to benzene breathing, which proved PDA suc-
cessfully adhered to the cotton surface. Another strong 
peak of 1204  cm−1 is the rocking vibration of the amino 
group, demonstrating the amount of amino group in the 
cotton surface.

Via the surface element distribution analysis of XPS 
(Fig. 3k), the main peaks of pristine cotton are 285 and 
532 eV, corresponding to C 1s and O 1s, respectively. 
Compared with the pristine cotton, the modified cotton 
has 102, 152, and 399 eV more peaks, corresponding to 
Si 2p, Si 2s, and N 1s, respectively. The lack of Ti peak 
indicated that  TiO2 is successfully coated by PDA and 
KH550.

3.3  Wettability of Cotton@PDA@TiO2

The wettability of the cotton is explained by measuring 
water spreading time and Underwater Oil Contact Angle 
(UWOCA). The water spreading time of pristine cotton 
reaches 13.43 s due to the presence of hydrophobic non-
cellulose materials (Fig. 4a), indicating that the pristine cot-
ton is not strong in hydration capacity. After modification, a 
large number of hydrophilic groups are successfully attached 
to the surface of the cotton, increasing the hydrophilic prop-
erty, so the water spreading time was 0.5 s (Fig. 4b). The 
water spreading time of the cotton is greatly shortened, indi-
cating that the hydration capacity is enhanced. The CAs of 
different oil underwater are all above 169° (Fig. 4c), indicat-
ing that cotton@PDA@TiO2 is USOB. In conclusion, cot-
ton@PDA@TiO2 is SHI/USOB and can possess the ability 
of oil–water separation.

3.4  Oil–water Separation of Cotton@PDA@TiO2

It has been proved that the modified cotton is SHI/USOB 
and its water spreading time is very short. The modified 
cotton was tested for oil–water separation performance 
with the self-made oil–water separation device (Fig. 5a). 
Because the cotton is biphilic in the air, it needs to be wet-
ted with water before separation. The separation of four 
oils was repeated three times and the average value was 
taken (Fig. 5b). The average separation fluxes of n-hexane, 

Fig. 2  Schematic diagram 
of hydrolysis of KH550 (a), 
KH550 binding to  TiO2 (b), 
possible chemical reaction of 
KH550 crosslinking with PDA 
and DA derivatives (c)
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toluene, isooctane, and cyclohexane are 28,932, 31,025, 
28,321, 29,807 L·m−2·h−1, respectively, and the highest 
flux can be at 32,000 L·m−2·h−1 or more (Fig. 5c). Testing 
the chemical oxygen demand to calculate the oil content 
in water, the separation efficiency can be calculated. The 
separation efficiency of the four types of light oils is very 
high, above 99.995%. The flux and separation efficiency of 
the modified cotton can prove that the cotton has excellent 
oil–water separation ability.

The durability of the cotton was proven by cycle testing. 
Using n-hexane as the light oil in this cycle, the separation 
efficiency after 50 oil–water separations was tested. After 
50 cycles, the separation efficiency of the modified cotton 
is still very high, reaching 99.999% (Fig. 5d). The COD 
values of 50 cycles are all below 20 mg·L−1 which means 
the separation efficiency remains at the same level during 
the whole cycle. Thus, cotton@PDA@TiO2 has an excel-
lent oil–water separation ability after 50 cycles, which can 
carry out long-term oil–water separation and has a long 
service life.

3.5  Stability of Cotton@PDA@TiO2

The oil–water separation in the laboratory is generally a 
single oil–water environment, and its pH is neutral. How-
ever, the actual separation environment is very complex. The 
actual use environment was simulated by soaking the cottons 
in 1 M HCl, NaOH, and NaCl solutions for 24 h. The cotton 
soaked in acid and salt has no change, but the color of the 
cotton soaked in alkali turned white due to PDA is not resist-
ant to alkalis and will be decomposed (Fig. 6f). Through the 
Raman spectrum (Fig. 6e), the main characteristic peaks of 
PDA at 1595, 1385, 1204, and 945  cm−1 become weaker, 
proving that PDA is indeed decomposed in an alkaline envi-
ronment. Via the SEM (Fig. 6d), there is still a lot of  TiO2 
NPs adhered to the surface of the cotton, indicating that  TiO2 
NPs can still firmly adhere to the surface of the cotton under 
the synergistic cross-linking effect of KH550 and  Cu2+, and 
the cotton still exhibits superhydrophilicity. The oil–water 
separation performance of soaked cottons was tested and 
repeated three times. After long-term immersion in acid, 
alkali, and salt, the separation efficiency is still very high, 
all above 99.990% (Fig. 6g). It is proved that cotton still 

Fig. 3  SEM images of pristine cotton (a, b), cotton@PDA@TiO2 (c, d), EDS images of cotton@PDA@TiO2 (e–j), XPS full spectrum of pris-
tine cotton, and cotton@PDA@TiO2, and C 1s spectra of cotton@PDA@TiO2 (k), Raman spectra of pristine cotton, and cotton@PDA@TiO2 (l)
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Fig. 4  Spread time of water droplets on pristine cotton (a), cotton@PDA@TiO2 (b), UWOCA of cotton@PDA@TiO2 (c)

Fig. 5  Oil–water separation device (a), oil–water separation test (b), separation efficiency and flux of cotton@PDA@TiO2 for various oil/water 
mixtures (c), the n-hexane/water separation efficiency after different recycle numbers (d)
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has excellent oil–water separation performance under the 
immersion of HCl, NaOH, and NaCl.

In addition to the chemical stability test, the actual work-
ing environment of the cotton may also be physically dam-
aged, so the abrasion test of the modified cotton was also 
carried out to prove its abrasion resistance. The actual work-
ing environment was simulated by dragging the cotton to 
move on 800-grit sandpaper under a 2800 Pa pressure, and 
taking 20 cm as a wear cycle (Fig. 6a). After 50 wear cycles, 
a little bit of fiber debris fell off the sandpaper. The fiber part 
of the uppermost surface of the cotton is torn from the mid-
dle, and in severe cases, the whole is nearly broken (Fig. 6b). 
The water spreading time of the cotton worn 25 times 

increases to 1.37 s, which is 174% higher than that of the 
modified cotton. The water spreading time of the cotton after 
50 wears further increased, reaching 1.73 s, which is 246% 
higher than that of the modified cotton (Fig. 6c). After wear 
treatment, part of the hydrophilic modified materials adhered 
to the cotton surface fell off with the fiber debris, resulting 
in a slight decrease in hydrophilicity. The water spreading 
time is still very short compared to the pristine cotton. The 
test of oil–water separation was repeated 3 times, and taken 
the average value. After 50 times of wear, the cotton still 
maintains a very high separation efficiency, above 99.995% 
(Fig. 6h). The COD values are also below 20 mg·L−1 except 
for 5 times of wear. Because the first test COD value of 5 

Fig. 6  Schematic diagram of a wear cycle (a), SEM image of cot-
ton@PDA@TiO2 after 50 wears (b), water spread time of cotton@
PDA@TiO2 after 25 wears and 50 wears (c), SEM (d), and Raman 
spectra (e) of cotton@PDA@TiO2 after immersing in NaOH solution 
for 24 h, an optical photograph of cotton@PDA@TiO2 after immers-

ing in HCl, NaOH, and NaCl solutions for 24 h (f), separation effi-
ciency and COD of cotton@PDA@TiO2 after immersing in HCl, 
NaOH, and NaCl solutions for 24 h (g) and cotton@PDA@TiO2 after 
wears (h)
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times of wear was very high, reaching 140 mg·L−1, while 
the other two times were below 10 mg·L−1. The reason for 
such an abnormality may be due to the experimental error 
caused by the residual oil in the beaker, which should be an 
accidental event. The COD value and separation efficiency 
obtained from the abrasion experiment can prove that the 
modified cotton has good abrasion resistance.

4  Conclusions

We successfully fabricated a SHI cotton with greatly short-
ened water spreading time by utilizing PDA as the in situ 
mineralization site of  TiO2 NPs, combined with the synergis-
tic crosslinking ability of KH550. The preparation method 
was simple, convenient, and environmentally friendly. The 
prepared cotton was successfully used for oil–water sepa-
ration with a high separation efficiency of the four kinds 
of light oils (99.995%), and the highest flux reached more 
than 32,000 L·m−2·h−1. Through 50 cycle tests, the separa-
tion efficiency was above 99.999%, which demonstrated that 
cotton has a long service life. The cotton still had excellent 
oil–water separation ability after being soaked in acidic and 
alkaline solutions and 50 times of wear.
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