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Abstract
Whale optimization algorithm (WOA) tends to fall into the local optimum and fails to converge quickly in solving complex 
problems. To address the shortcomings, an improved WOA (QGBWOA) is proposed in this work. First, quasi-opposition-
based learning is introduced to enhance the ability of WOA to search for optimal solutions. Second, a Gaussian barebone 
mechanism is embedded to promote diversity and expand the scope of the solution space in WOA. To verify the advantages 
of QGBWOA, comparison experiments between QGBWOA and its comparison peers were carried out on CEC 2014 with 
dimensions 10, 30, 50, and 100 and on CEC 2020 test with dimension 30. Furthermore, the performance results were tested 
using Wilcoxon signed-rank (WS), Friedman test, and post hoc statistical tests for statistical analysis. Convergence accuracy 
and speed are remarkably improved, as shown by experimental results. Finally, feature selection and multi-threshold image 
segmentation applications are demonstrated to validate the ability of QGBWOA to solve complex real-world problems. 
QGBWOA proves its superiority over compared algorithms in feature selection and multi-threshold image segmentation by 
performing several evaluation metrics.

Keywords  Whale optimization algorithm · Quasi-opposition-based learning · Gaussian barebone · Image segmentation · 
Feature selection · Bionic algorithm

1  Introduction

Due to the rapid development of various industries, peo-
ple face more complex optimization problems in real life. 
Conventional optimization techniques have limitations in 
resolving complex and massive optimization problems, 

which cannot meet the requirement of convergence speed 
and calculation accuracy [1]. Compared with conventional 
optimization techniques, meta-heuristic algorithms (MAs) 
have the characteristics of flexibility, simplicity, derivation-
free mechanism, and local optimal avoidance [2]. Therefore, 
MAs have been widely used to resolve complex optimiza-
tion issues in recent years. The research inspiration for MAs 
mainly comes from biological behavior or natural physical 
phenomena. Furthermore, according to the different simu-
lated natural behaviors, MAs can be divided into three main 
classes: evolution-based algorithms (EAs), physical-based 
algorithms (PAs), and swarm-based algorithms (SAs) [3]. 
EAs are inspired by Charles Darwin’s theory of natural 
selection, in which the best individuals always combine to 
produce better offspring [4]. The main representatives of the 
evolution-based algorithm are genetic algorithms (GA) and 
differential evolution (DE). PAs imitate the physical rules 
and chemical reactions of the universe, such as simulated 
annealing (SA), particle swarm optimization (PSO), and 
sine cosine algorithm (SCA) [5]. SAs is a kind of heuris-
tic algorithm that simulates the swarm behavior to solve 
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optimization problems, such as firefly algorithms (FA) [6], 
moth flame optimization (MFO) [7], flame optimization 
algorithm (FOA) [8], Harris Hawks optimizer (HHO) [9], 
and Slime Mould algorithm (SMA) [10]. SAs have become 
an important method for solving optimization problems 
because of their excellent self-organization, self-adaptation, 
and self-learning characteristics. It has been adopted in var-
ious domains [11, 12], such as image segmentation [13], 
wireless networks [14], unmanned aerial vehicles [15], target 
tracking [16], neural network [17], MRI classification [18], 
feature selection [19], and engineering problems [20], and 
vehicle design [21, 22].

Mirjalili and Lewis proposed a novel meta-heuristic algo-
rithm in 2016 [23], named whale optimization algorithm 
(WOA), which was encouraged by the humpback whale’s 
foraging behavior. In recent years, WOA has attracted much 
attention and has been utilized to find optimal solutions in 
many fields. For example, based on chaotic and multi-swarm 
strategies, Wang et al. [24] developed an improved WOA 
and used it in two optimization scenarios. Chen et al. [25] 
introduced a chaotic local search strategy and Levy flight 
(LF) into WOA (BWOA), which was applied to solve three 
well-known problems in mathematical modeling studies. 
Abdel-Basset et al. [26] proposed two new variants of WOA, 
based on the ranking method and cyclic exploration–exploi-
tation operator, and named RWOA and HWOA, respectively. 
They were applied to identify the parameters of the three-
diode photovoltaic model. Peng et al. [27] proposed a hybrid 
WOA to improve the performance of cloud load forecasting. 
Chakraborty et al. [28] proposed a modified WOA variant 
and used it to solve problems in the engineering domain. 
Peng et al. [27] introduced a hybrid WOA based on the Levy 
and migration strategies into cloud load forecasting. Ye et al. 
[29] devised a novel modified WOA using the strategy of LF 
and pattern search and applied it to the field of energy opti-
mization. Mostafa et al. [30] studied a WOA-based liver seg-
mentation method from magnetic resonance images. Chao 
et al. [31] embedded orthogonal crossover into WOA to 
improve its exploration ability and applied it to estimate the 
surface duct. Hassib et al. [32] combined WOA with bidi-
rectional recurrent neural network algorithms to train a deep 
learning approach. M.Hassi et al. [32] combined WOA with 
bidirectional recurrent neural network algorithms to train 
a deep learning approach. Darwish et al. [33] developed a 
novel whale optimization algorithm based on chaotic maps, 
which was used to select feature sets with high classification 
performance and a small number of features. Tripathi et al. 
[34] proposed a WOA variant for the recommendation over 
large-scale datasets in managing large-scale datasets.

In the original WOA, although the number of parameters 
to be adjusted is less and the convergence ability is strong 

enough, it still has the disadvantages of slow convergence 
speed and low convergence accuracy. Therefore, many opti-
mization schemes were proposed to mitigate them to over-
come these shortcomings. Hussien et al. [35] introduced a 
binary whale optimization algorithm based on two transfer 
functions. Chakraborty [36] et al. improved WOA in three 
aspects: the original algorithm’s parameters, the prey's 
search range, and the inertia weights. While reducing the 
complexity of the algorithm, it effectively improves the per-
formance of the algorithm. Luo et al. [37] improved WOA 
based on the regularity of chaos and the mutational character 
of Gaussian mutation. Saha et al. [38] proposed a cosine-
adapted modified whale optimization by incorporating 
cosine parameters into the selection of control parameters. 
In the study [1], LF and ranking-based mutation operators 
were embedded into WOA, which can prevent the algorithm 
from falling into local optimum and help the algorithm find 
the optimal solution quickly. Tu et al. [39] enhanced WOA 
with the strategies of communication mechanism and bio-
geography-based optimization algorithm, which overcome 
the shortcomings of WOA in slow convergence speed and 
easy trapping into the local optimum. Heidari et al. [40] 
integrated the learning mechanism and hill-climbing local 
search into WOA to enhance the exploitation process of the 
original WOA, which is called BMWOA. Chen et al. [41] 
combined two strategies, random replacement and double 
adaptive weight, with WOA to improve the performance of 
WOA. In the study [42], the exploration and exploitation 
capabilities of WOA were enhanced by embedding the modi-
fied mutualism phase of symbiotic organisms search and 
the DE mutation operator. Wang et al. [43] integrated elite 
strategy and spiral motion from MFO into WOA. Elhosseini 
et al. [44] introduced an inertia weight strategy to improve 
the parameters of WOA nonlinearly as a way to strengthen 
the ability of WOA to find optimal solutions. Chakraborty 
et al. [45] improved the exploration ability of WOA using 
the DE mutation strategy and balanced the exploration and 
exploitation capabilities by introducing a new parameter. 
Wang et al. [46] used opposition-based learning and a global 
grid ranking mechanism to enhance WOA's performance.

Although the above meta-heuristic algorithms, includ-
ing WOA and improved WOA variants, have demonstrated 
their effectiveness in many optimization problems, there are 
still some shortcomings in the convergence speed and accu-
racy [11, 47]. The original WOA can be further improved 
when solving some complex practical problems, especially 
in the field of feature selection [48] and image segmentation 
[49]. In the late iterative stage, the exploitation capabili-
ties of WOA do not enable much change in the location of 
search agents [44, 50]. When the algorithm is trapped in a 
local optimum, it does not solve this type of situation well. 



799Boosting Whale Optimizer with Quasi‑Oppositional Learning and Gaussian Barebone for Feature…

1 3

This may make the WOA-based multi-threshold image seg-
mentation, and feature selection methods have insufficient 
power to jump out of the local optimum and thus fail to 
achieve satisfactory optimization performance. In addition, 
the diversity of the population decreases with the number of 
evaluations [29, 41, 51]. The global exploration capability of 
WOA is insufficient, which may result in some regions with 
better solutions not being found. As a result, when WOA is 
applied in the multi-threshold image segmentation problem 
and feature selection problem, it may miss the thresholds and 
feature subsets that have better effects.

To this end, we designed an improved WOA, called QGB-
WOA, by combining a quasi-opposition-based learning 
(QOBL) strategy and the Gaussian barebone (GB) mecha-
nism. To address the shortcoming of WOA in jumping out of 
the local optimum in the later evaluation, the QOBL strategy 
is introduced. QOBL strategy is characterized by consider-
ing the opposite position of the current solution in the solu-
tion space. Therefore, if the current solution falls into a local 
optimum, its opposite solution may help it to break out of the 
local optimum and find a more optimal solution. The local 
exploitation capability of the algorithm is thus enhanced. 
The GB mechanism is introduced to address the problem 
of population diversity decreasing in the late evaluations. 
GB mechanism can generate the position of individuals in 
the search region by Gaussian distribution. Therefore, it 
enhances the population’s diversity and improves the algo-
rithm’s global exploration ability, which gives the algorithm 
more possibility to move to regions with better solutions for 
searching.

In summary, the main contributions of this paper are as 
follows:

1.	 A new enhanced WOA algorithm combining QOBL and 
GB, called QGBWOA, is proposed, with the experimen-
tal results showing that QGBWOA has higher accuracy 
and a faster convergence rate in obtaining global solu-
tions.

2.	 A QGBWOA-based wrapper feature selection method is 
proposed for tackling feature selection tasks.

3.	 A QGBWOA-based image segmentation method of 2D 
histograms combined with Kapur’s entropy is proposed 
and applied to real COVID-19 pathology images.

4.	 QGBWOA achieves higher classification accuracy and a 
smaller number of features in the feature selection task 
and shows excellent performance in multi-threshold 
image segmentation problems in all three evaluation 
metrics, including Peak Signal to Noise Ratio (PSNR) 
[52], Structural Similarity (SSIM) [53], and Feature 
Similarity (FSIM) [54].

The rest of this article is organized as follows. The origi-
nal WOA is presented in Sect. 2. Section 3 describes the 
proposed QGBWOA algorithm. Section  4 analyzes the 
experimental results of QGBWOA in the benchmark func-
tion test. Section 5 provides the application of QGBWOA 
to the feature selection and image segmentation problems. 
The conclusion and future work are summarized in Sect. 6.

2 � Whale Optimization Algorithm

WOA [23] simulates the hunting actions of whales: encir-
cling prey, bubble net attack, and searching for prey.

Fig. 1   The flow chart of WOA
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2.1 � Encircling Prey Phase (Exploitation)

In the exploitation phase, whales use bubble nets to attack 
their prey, including two models of shrinking encircling and 
spiral updating. In the encircling prey stage, the best search 
agent position obtained so far is selected as the optimal posi-
tion, and other individuals gradually approach the best agent. 
Its mathematical model is as Eq. (2):

where X(t + 1) is the position of the search agent in the next 
evaluation, X(t) is the position of the search agent in the cur-
rent evaluation, and Xbest (t) is the best agent explored so far. 
Let FEs represent the counter of evaluation, A and C are two 
control parameters that can be presented as follows:

where r1, r2 are two random numbers in [1], MaxFEs denotes 
the maximum number of evaluations of the algorithm, and a 
linearly decreases from 2 to 0 over evaluations.

2.2 � Spiral Updating Phase (Exploitation)

The spiral updating phase is realized by Eq.  (6). 
Odist =

||Xbest (t) − X(t)|| denotes the distance between the 
search agent in the current evaluation and the best agent 
obtained so far.

where f  is a constant that controls the logarithmic spiral’s 
shape and is set to 1 according to the original text. The 
parameter l is a random number in [− 1, 1].

The probability of being selected for the spiral moves and 
shrinking encircling phase is 50% each:

(1)Ddist =
|
|C ∙ Xbest (t) − X(t)||,

(2)X(t + 1) = Xbest (t) − A ∙ Ddist ,

(3)A = 2a ∙ r1 − a,

(4)a = 2 − 2 ×
FEs

MaxFEs
,

(5)C = 2r2,

(6)X(t + 1) = Odist ∙ e
f l ∙ cos(2πl) + Xbest (t),

(7)

X(t + 1) =

{
Xbest (t) − A ∙ Ddist pro < 0.5;

Odist ∙ e
f l ∙ cos(2πl) + Xbest (t) pro ≥ 0.5,

#

where pro is a random number between 0 and 1.

2.3 � Search for Prey Phase (Exploration)

When A is less than − 1 or more than 1, whales use a random 
walk mechanism to search for prey based on the locations of 
other individuals. The mathematical model for the explora-
tion phase is as follows:

where Xrand(t) represents a random search agent selected 
from the current population.

The flow chart of WOA is as shown in Fig. 1.

3 � The proposed QGBWOA

In this section, the proposed QGBWOA will first be 
described by f lowchart and pseudo-code. Then, the 
two strategies, QOBL and GB, will be described in 
detail. Finally, the time complexity of QGBWOA is 
analyzed.

3.1 � Algorithm Overview

The flow chart of QGBWOA is shown in Fig. 2. We present 
the pseudo-code of the proposed QGBWOA in Algorithm 1.

The pipeline of QGBWOA is described as follows. First, 
the population is randomly initialized. Then, find the opti-
mal individual in the current evaluation based on the fitness 
value, and update the individual position. In the position 
updating phase, by incorporating the QOBL mechanism, the 
ability of the algorithm to find a superior solution is boosted 
to some extent. Thus, the convergence rate and the quality of 
the solution can be improved. After the individual position 
is updated, the GB strategy is used to update the population 
position again. The increased diversity of the population 
enhances the exploration ability; thereby, the frequency of 
the algorithm falling into the local optimum is significantly 
reduced. The details of QOBL and GB mechanisms are pre-
sented in the following subsections.

(8)Ddist =
|
|C ∙ Xrand(t) − X(t)||,

(9)X(t + 1) = Xrand(t) − A ∙ Ddist ,
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3.2 � Quasi‑Opposition‑Based Learning

As shown in Eq. (3), the value of parameter A will be less 
than 1 at the late stage of evaluation in the original WOA, 
and the encircling prey phase is executed. The position of 

Algorithm 1 Pseudo-code of QGBWOA

1. Initialization of initial parameters , , , , and population ( = 1,2,3 ⋯ )

2. While ( < ) do
3. for = 1: do
4. Calculate the fitness of 

5. if (the fitness of < ) then
6. Update the position and the fitness of 

7. = + 1

8. end if
9. end for
10. Update , 2

11. for 1: do //update the position of each search agent

12. Update , , , , and

13. for = 1: do

14. if ( < 0.5) then
15. if (| | ≥1) then
16. Update 

17. Update , using Eq. (9)

18. else
19. Update using Eq. (11)

20. Update , using Eq. (10)

21. End if
22. else
23. Update 

24. Update , using Eq. (6)

25. End if
26. End for
27. if (the fitness of <the fitness of )then //perform the QOBL mechanism

28. Update the position of

29. = + 2

30. End if
31. End for
32. for = 1: do //perform the GB mechanism

33. Select three random search agents 1, 2, 3

34. Calculate Vi using Eq. (12)

35. Calculate the fitness of 

36. = + 1

37. Update i if there is a better solution

38. End for
39. End while
40. Return the best solution.

the new individual is only related to the position of the opti-
mal individual and current individual, so the final new indi-
vidual’s position will not change significantly in the late 
evaluation, which may cause it to fall into the local opti-
mum. Therefore, QOBL [55] is taken to enhance the original 
WOA in local search ability in the late evaluation process, to 
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reduce the frequency of WOA falling into the local optimum. 
QOBL is an improved version of opposition-based learning 
(OBL) [56], which considers the individual with the oppo-
site position to the current individual may be closer than the 
current individual. In recent years, the QOBL strategy has 
been used in MAs [57–60] to improve convergence speed 
accuracy.

The mathematical model is depicted as follows:

where xqo
j

 represents the quasi-opposite individual of the 
current search agent in j-th dimension, lbj+ubj

2
 represents the 

center of [lbj, ubj] , rand
[(

lbj+ubj

2

)
, xo

j

]
 represents a uniformly 

distributed random number between in lbj+ubj
2

 and xo
j
 , xo

j
 

denotes the opposite individual of the current search agent 
in j-th dimension:

where lbj denotes the lower bound of the search space, ubj 
denotes the upper bound of the search space, and xj denotes 
the position of the current individual in j-th dimension.

3.3 � Gaussian Barebone Mechanism

As we mentioned earlier, when the algorithm is evaluated 
in the later phase, the diversity of WOA will reduce, which 
can cause insufficient convergence speed and convergence 
accuracy. The GB mechanism can help individuals choose 

(10)x
qo

j
= rand

[(
lbj+ubj

2

)
, xo

j

]
, #

(11)xo
j
= lbj + ubj − xj,

the most suitable direction and continuously approach the 
optimal solution to avoid prematurely falling into local opti-
mality. Therefore, after the position of all the search agents 
has been updated, the characteristics of the randomness of 
GB are incorporated into WOA to enhance the population 
diversity. This balances the algorithm’s local exploitation 
and global search capabilities and further improves the con-
vergence speed.

The GB [61] strategy is on the basis of bare bones PSO 
(BBPSO) [62], and the parameter CR is employed in the 
GB strategy to guide each individual. If the probability of 
random generation is less than CR, the Gaussian distribu-
tion is used to update the individual’s position in the next 
evaluation; otherwise, the idea of differential evolution is 
introduced to update the individual’s position. The GB strat-
egy is as follows:

where Vi,j denotes the position of the i-th individual in the 
j-th dimension, PLeader denotes the global optimal position 
in the population, Xi,j is the current individual in the j-th 
dimension, G represents the Gaussian distribution, r3andr4 
are random numbers within [1], Xt1,j , Xt2,j , Xt3,j are three 
arbitrarily selected individuals that are diverse from the cur-
rent individual.

(12)Vi,j =

{
G
(

PLeader−Xi,j

2
,
|||
PLeader − Xi,j

|||

)
r3 < CR;

Xt1,j + r4 ×
(
Xt2,j − Xt3,j

)
otherwise,

Fig. 2   Flow chart of QGBWOA
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3.4 � Time Complexity of QGBWOA

The time complexity of QGBWOA is subject to the popu-
lation size (N) , the number of dimensions (Dim) , and the 
maximum number of algorithm evaluations (MaxFEs) . Then, 
the overall time complexity is as follows:

•	 The population size is N. The time complexity of initial-
izing all individual whales is O (N).

•	 The time complexity of population fitness and updating 
the position and the fitness of the current optimal solu-
tion is MaxFEs × O(2N).

•	 The primitive WOA search mechanism also causes 
the position of each search agent to change during 
the search process of QGBWOA. The time complex-
ity of updating the position of each search agent is 
MaxFEs × (O(N × Dim) + 5 × N).

•	 I m p l e m e n t i n g  t h e  Q O B L  m e ch a n i s m  i s 
MaxFEs × O(N × Dim).

•	 Performing GB strategy is MaxFEs × O(N × (Dim + 5)).

Therefore, the total time complexity is O (QGBWOA) = O 
(Initialization) + O (Calculation of initial whales and Selec-
tion) + O (WOA) + O (QOBL strategy) + O (GB mecha-
nism) = O(N) + MaxFEs× ( O(2N) + O(N × Dim) + 5 × N + 
O(N × Dim)  + O(N × (Dim + 5))).

4 � Experimental Results and Discussion

In this section, the algorithm stability and strategy combi-
nation are analyzed, and experimental simulation results 
on the IEEE CEC 2014 and CEC 2020 benchmark func-
tions are shown to verify the performance of QGBWOA 
comprehensively.

4.1 � Benchmark Functions

CEC 2014 benchmark functions and CEC 2020 benchmark 
functions are used to verify the efficacy of QGBWOA. The 
details of the functions are shown in Appendix A.

For the fairness of the experiment results, all tested algo-
rithms were performed in the same environment: the pop-
ulation size was 30, the maximum number of evaluations 
was set to 300,000, and the algorithms were independently 

estimated 30 times on each benchmark function. We used the 
Friedman and WS tests to evaluate the experiment results.

4.2 � Balance and Diversity Analysis on QGBWOA 
and WOA

In this section, QGBWOA is qualitatively analyzed on CEC 
2014 in five aspects: search history, search trajectory, aver-
age fitness, and diversity and population balance.

The search history, search trajectory, and average fitness 
results are reported in Appendix B. In Fig. B.1, The first, 
second, third, and fourth columns of the figure show the 
three-dimensional of corresponding functions, the historical 
search trajectories in 2-dimensional (2D), the trajectories 
of the search agents, and the average fitness of individuals, 
respectively.

The red dots shown in Fig. B.1 (b) represent the global 
optimal solution, while the black dots represent the posi-
tion of the search agent. The figure clearly shows that with 
the increase of the number of evaluations, the black dots 
gradually approach the red dots to find the optimal solu-
tion. In Fig. B.1 (c), the individual trajectory fluctuation is 
small in F2, while in the early evaluation process of F4, F10, 
and F16, the individual trajectory fluctuation is relatively 
strong. This shows that QGBWOA can reach most of the 
search space. Figure B.1 (d) shows that the average fitness 
decreases faster in F2, while the average fitness has strong 
fluctuations during early evaluations in F4 and F10. This 
indicates that QGBWOA can quickly determine the approxi-
mate range of optimal solutions in the early evaluations and 
further explore the optimal solution in later evaluations to 
achieve accurate convergence.

Figure B.2 shows the result of QGBWOA and WOA 
balance analysis. The figure's red, blue, and green curves 
represent the exploration, exploitation, and incremental–dec-
remental curves. When the exploration effect is weaker than 
the exploitation effect, the green curve decreases, and vice 
versa. This is because the algorithm usually performs the 
global exploration first in the solution space, determines the 
approximate solution location with superior quality, and 
then performs the solution's local exploitation to find a more 
optimal solution. As shown in Fig. B.2, in the beginning of 
the evaluation, the search curve always starts with a higher 
value and the algorithm is mainly based on a global search. 
Then, local exploitation soon dominated. From Fig. B.2, it 
can be observed that the search phase of QGBWOA ends 
earlier than WOA, indicating that the local exploitation time 
of QGBWOA in the target area is longer.

Figure B.3 shows the results of QGBWOA and WOA 
diversity analysis. The diversity of the population is high at 
the beginning because the algorithm initializes the popula-
tion randomly. As the evaluation progresses, the search range 
of the algorithm continues to decrease, and the population 

Table 1   The ablation 
experiment of QGBWOA

Q GB

WOA 0 0
QWOA 1 0
GBWOA 0 1
QGBWOA 1 1
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diversity also continues to decrease. It can be seen from 
Fig. B.3 that the average diversity of QGBWOA falls faster 
than WOA, which indicates that QGBWOA converges more 
quickly than WOA.

In summary, QGBWOA demonstrates remarkable advan-
tages in terms of convergence speed and global search capa-
bility compared with WOA.
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Fig. 3   Convergence curves and boxplots of QGBWOA and other meta-heuristics (Dim = 30)
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4.3 � Ablation Study on QGBWOA

To demonstrate the influence of QOBL and GB mech-
anisms, ablation experiments with QGBWOA were 
conducted. In Table 1, “Q” and “GB” mean the quasi-
opposition-based learning mechanism and the Gauss-
ian barebone mechanism, respectively. “1” implies that 
the corresponding mechanism is employed, and a “0” 
conversely indicates that it is not used. For example, 
QWOA indicates that WOA only uses the quasi-oppo-
sition-based learning mechanism and does not use the 
Gaussian barebone mechanism. Figure B.4 shows the 
convergence curves of QGBWOA with the other two 
mechanisms and the original WOA on the CEC 2014 
benchmark functions, and the Dim is set to 30. It can be 
seen from the figure that QGBWOA is far superior to 
WOA in terms of convergence speed and convergence 
accuracy, which demonstrates the effectiveness of the 
GB mechanism in the global exploration capability of 
WOA. Experimental results show that QGBWOA is the 
best way to solve these different functions.

The WS test and Friedman test were used to compare 
the algorithms for statistical difference calculation. The 
results are shown in Appendix A. Table A.  3 records 
the average (Avg), standard deviation (Std), and average 
ranking (ARV) for each algorithm. "+", "−" and "=" in 
Table A.  3 indicate that QGBWOA is better than other 
algorithms, inferior to other algorithms, and equal to 
other algorithms, respectively. Table A.  3 shows that 
QGBWOA ranks first among its two variants of the 
mechanism and the original WOA algorithm. On the 
benchmark functions F23–F25 and F27–F30, the Std val-
ues of QGBWOA are 0, which indicates that QGBWOA 
has good robustness. This is because the addition of the 
QOBL strategy improves the local exploitation ability 
of QGBWOA, and the addition of the GB strategy com-
prehensively improves the global exploration ability of 
QGBWOA, improves the population diversity, and better 
helps the algorithm find the global optimal solution. The 
final average ranking of QGBWOA is the first, which 
indicates that the algorithm is optimized best when these 
two mechanisms work together.

Table A.   4 shows the p values results of the WS test. 
When the value in the WS test is less than 0.05, QGBWOA 
has remarkable performance over its peer. The values less 
than 0.05 in the table have been bolded. From Table A.  3 
shows that QGBWOA outperforms QWOA, GBWOA, and 
WOA in 20, 23, and 27 of the 30 benchmark functions, 
respectively. It can be seen that with the integration of the 
proposed two mechanisms, the performance is gradually 
improved.

4.4 � Comparison with Other Metaheuristic 
Algorithms on CEC 2014 Test

In this section, QGBWOA is compared with 7 of the MAs, 
including WOA, DE [63], FA [6], FOA [64], PSO [65], SCA 
[5], and MFO [7]. Table A.   5 shows the results of F1-F30 
with Dim values of 10, 30, 50, and 100, respectively.

It can be found that QGBWOA performs better in F1 
when Dim values are 10, 30, 50, and 100. DE performs 
better on F2 and F3. Furthermore, compared with FOA, 
SCA, MFO, and WOA, QGBWOA is superior to them on 
all hybrid and composition functions when Dim is 10, 30, 
50, and 100, respectively. DE can obtain the optimum on 
F15 in all four dimensions. QGBWOA finally ranks first 
when the Dim is 30, 50, and 100. The average mean is 1.8, 
which is 26% higher than the second-ranked DE algorithm 
and 63% higher than the original WOA. The p values are 
shown in Table A.   6 when Dim is 30. In Table A.   6 shows 
that the values of FA, FOA, and SCA on all functions are 
less than 0.05, indicating that QGBWOA outperforms these 
algorithms.

Figure 3 reports convergence curves and boxplots for each 
algorithm on 10 functions. In Fig. 3, F1 and F2 are unimodal 
functions. F4, F5, and F11 are multi-model functions. F17 
and F18 are hybrid functions. F23, F24, and F29 are com-
position functions. The first and third columns of the figure 
show the convergence curves, and the second and fourth col-
umns show the corresponding box plots. In unimodal, multi-
modal, and partial hybrid functions, although QGBWOA did 
not discover the optimal solution in the beginning phase, it 
converged to the optimal solution in later evaluations, indi-
cating that QGBWOA has a good ability to avoid falling into 
the local optimal solution. In composition functions, the con-
vergence rate and convergence accuracy of QGBWOA are 
significantly better than other algorithms. In the box plot, the 
center marker of each box indicates the intermediate value. 
Each box has the 25th and 75th percentiles at the lower and 
upper margins. Red "+" marks are used to mark outliers. 
The box plot in Fig. 3 shows that QGBWOA has more stable 
optimization results and fewer outliers than the compared 
algorithms in most cases. These results confirm the greatly 
improved performance of QGBWOA compared to WOA and 
other peers. The proposed QGBWOA has better performance 
due to the QOBL strategy and GB mechanism. The impact 
of these two strategies is shown in the convergence plots of 
the benchmark functions. Observing the convergence curves 
of F1, F2, F11, and F17, it can be found that the proposed 
algorithm does not fall into the local optimum at the evalu-
ation times of about 50,000, and continues to converge to 
the region with higher solution quality, which illustrates that 
the QOBL strategy can be a good way to improve the local 
exploitation ability and the accuracy of the solution. In the 
convergence plots of F18, F23, F24, and F29, QGBWOA 
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improves the exploration ability of the population due to the 
GB strategy so that the global optimal solution can be fast 
located, enabling the improvement of convergence faster.

4.5 � Comparison with The State‑of‑The‑Art WOA 
Variants on CEC 2014 Test

To confirm the efficacy of QGBWOA, we compared QGB-
WOA with 6 WOA variants on CEC 2014 test. These 

1 2 3 4 5 6 7 8

Algorithms

2500

3000

3500

4000

4500

5000

F22

1 2 3 4 5 6 7 8

Algorithms

2500

3000

3500

4000

4500

5000

F22

1 2 3 4 5 6 7 8

Algorithms

2500

3000

3500

4000

4500

5000

F22

1 2 3 4 5 6 7 8

Algorithms

520

520.2

520.4

520.6

520.8

521

F5

1 2 3 4 5 6 7 8

Algorithms

520

520.2

520.4

520.6

520.8

521

F5

1 2 3 4 5 6 7 8

Algorithms

520

520.2

520.4

520.6

520.8

521

F5

1 2 3 4 5 6 7 8

Algorithms

850

900

950

1000

1050

F8

1 2 3 4 5 6 7 8

Algorithms

850

900

950

1000

1050

F8

1 2 3 4 5 6 7 8

Algorithms

850

900

950

1000

1050

F8

1 2 3 4 5 6 7 8

Algorithms

615

620

625

630

635

640

F6

1 2 3 4 5 6 7 8

Algorithms

615

620

625

630

635

640

F6

1 2 3 4 5 6 7 8

Algorithms

615

620

625

630

635

640

F6

Fig. 4   Convergence curves and boxplots of QGBWOA and other variants algorithms
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variants include ACWOA [44], CCMWOA [37], OBWOA 
[46], RDWOA [41], BMWOA [40], and BWOA [25].

Table A.7 shows the statistical results in different dimen-
sions. The table shows that QGBWOA obtains the small-
est optimization result among the 30 test functions. QGB-
WOA ranks first when Dim values are 10, 30, 50, and 100, 
respectively. Compared with the second-ranked RDWOA, 
QGBWOA outperforms RDWOA in these four categories 
of dimensions with 8, 19, 19, and 21 functions, respectively. 
Moreover, QGBWOA performs better in all four dimensions 
on functions F1, F2, F4–F7, F15, F17, F19, F21–F23, and 
F27–F30.

Table A.8 reports the comparison results of the WS test 
between QGBWOA and the compared variants of WOA 
when Dim is 30. The p values on all test functions of 

BMWOA except F14 are less than 0.05, which indicates that 
QGBWOA’s performance is superior to that of BMWOA. 
The p values of RDWOA, CCMWOA, and BWOA on the 
F23, F25, F27, and F28 functions are 1, indicating that 
RDWOA, CCMWOA, and BWOA can obtain the same opti-
mization results as QGBWOA.

In Fig. 4, the convergence rate of QGBWOA is faster 
than the compared state-of-the-art algorithms on most of the 
benchmark functions. In addition, it can be observed that its 
convergence accuracy is the best, whereas other variants of 
WOA are trapped in local optimal values to varying degrees. 
Figure 4 depicts the box plots of the fitness of the best indi-
viduals found in the final generation. These comparison 
results show that QGBWOA is better than these state-of-
the-art algorithms for complex optimization problems. The 

Fig. 5   Bonferroni–Dunn test 
results of experiments in 
Sect. 4.4 (Dim = 30)

Fig. 6   Bonferroni–Dunn test 
results of experiments in 
Sect. 4.4.5 (Dim = 30)
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results affirmed the ability of QGBWOA to solve benchmark 
problems in different dimensions.

4.6 � Comparison of CEC 2020 Benchmark Functions

In this subsection, QGBWOA is tested with 7 group intel-
ligence algorithms, including WOA, HHO [9], SMA [10], 
HGS [66], SCA [5], RDWOA [41], ACWOA [44], on the 
CEC 2020 benchmark functions with Dim equals to 30. 
Table A.9 illustrates the statistical results of all optimizers 
on Avg and Std. It can be seen in the table that QGBWOA 
outperforms the compared optimizers for 9, 8, 4, 3, 10, 6, 
and 8 of the 10 CEC 2020 benchmark functions, respec-
tively. QGBWOA ranks first in total with ARV equal to 1.4.

The p value results of QGBWOA against the compared 
optimizers are shown in Table A.10, where p values greater 
than 0.05 are shown in bold. The results show that QGB-
WOA significantly differs from the optimizer for most of the 
tested functions except F9 and F10.

4.7 � Statistical Analysis of QGBWOA

Because the Freidman test can only give a conclusion on 
whether there is a variance in performance among algo-
rithms, a post hoc test is needed to find the statistical differ-
ence in the performance of the algorithms. Commonly used 
follow-up tests include the Nemenyi and Bonferroni–Dunn 
tests [67]. The Nemenyi test is employed to compare the 
performance of algorithms with each other, while the Bon-
ferroni–Dunn test is used to compare an algorithm with the 
rest algorithms. Bonferroni–Dunn post hoc statistical analy-
sis is used in this article to verify the performance difference 
between QGBWOA and the compared algorithms. Assume 
the difference in the average rank between the two algo-
rithms is better than the critical difference (CD). The CD is 
described as Eq. (13).

where � denotes the significant level, q
�
 is the critical value, 

k is the number of algorithms, and Num represents the num-
ber of test functions.

In the experiment in Sect. 4.4, eight algorithms were 
chosen, so k is 8. Thirty benchmark functions were used, 
so Num = 30 . The significant levels of � were selected as 
0.05 and 0.1. According to Eq. (13), it can be calculated 
that when � values are 0.05 and 0.1, respectively, the cor-
responding CD values are 1.7 and 1.55, respectively. The 
average rank of QGBWOA is ARVQGBWOA = 1.70 when Dim 
is 30. When the average rank of the comparison algorithm is 
greater than CD + ARVQGBWOA = 3.4∕3.25(� = 0.05∕0.1) , 
there is a significant difference between QGBWOA and this 
algorithm. In Fig. 5, the solid line represents the threshold 

(13)CD = q
�

√
k(k+1)

6Num
,

when the significant level is 0.1, and the dotted line indi-
cates the threshold when the significant level is 0.05. As 
shown in Fig. 5, QGBWOA outperforms FA, FOA, PSO, 
SCA, MFO, and WOA at these two significant levels. In 
the Bonferroni–Dunn test, QGBWOA and DE showed no 
remarkable difference in performance.

The post hoc test analysis is performed for the experi-
ment in Sect. 4.5. The results are shown in Fig. 6. Because 
eight algorithms were tested in 30 functions, the k is 8 and 
Num is 30. Similarly, CD values are 1.70 and 1.55 when the 
corresponding � values are 0.05 and 0.1, respectively. From 
the figure, we can see that QGBWOA is significantly better 
than ACWOA, BMWOA, CCMWOA, BWOA, OBWOA, 
and WOA at both significant levels and exhibits no obvious 
difference from RDWOA in the Bonferroni-Dunn test.

5 � Applications

In this section, we will show the applications of QGBWOA 
in feature selection and image segmentation.

5.1 � Feature Selection Based on Proposed QGBWOA

5.1.1 � Binary QGBWOA

Data mining technology has been widely used in medicine 
in recent years. Most medical data are high-dimensional, and 
extracting a sub-set of useful features from high-dimensional 
data is tricky. Therefore, the dimensionality of the dataset needs 
to be reduced before data mining. Feature selection is one of the 
dimensionality reduction methods. However, it is often difficult to 
exhaust the combination of feature subsets, especially when deal-
ing with high-dimensional data, and using a heuristic algorithm 
can solve this problem well [68]. As a heuristic method, the SAs 
have the intelligent selection and random search advantages, which 
can search for an ideal solution set. In recent years, the combi-
nation of SAs and feature selection methods has received more 
and more attention from researchers [69–72]. In this subsection, a 
QGBWOA-based wrapper feature selection method is proposed. 
Twenty-four datasets from the UCI machine learning repository 
are utilized to measure the effectiveness of the proposed method.

Since the search space in the feature selection problem is 
represented in binary, the real value of each solution found 
by QGBWOA must be converted into a Boolean type. The 
function is defined as follows:

(14)Xt+1
i,j

{
1, if r5 ≥ T

(
Xt
i,j

)
;

0, otherwise,
#

(15)T(x) =
1

1+e−2x
, #
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where r5 is a random number between in 0 and 1. If Xi,j = 1 , 
it means the solution of Xi in the j-th dimension is regarded 
as a relevant feature; otherwise, if Xi,j = 0 , it means the solu-
tion of Xi in the j-th dimension is regarded as an irrelevant 
feature. Since feature selection aims to obtain better classi-
fication accuracy with fewer features, the classifier error rate 
and the number of selected features are utilized to form the 
fitness function. The fitness function is defined as follows:

where Acc denotes the classification accuracy of the K-near-
est neighbors (KNN) classifier, � and � represent the weight 
coefficients of the classifier error rate and the number of 

(16)Fitness = � ⋅ Acc + � ⋅
S

T
, #

selected features, respectively, S represents the number of 
the selected feature sub-set, and T  means the total number 
of features in the dataset.

The overall algorithm pipeline is shown in Fig. 7. First, 
the dataset is processed. Second, using ten-fold cross-vali-
dation to divide the dataset into ten parts, nine of which are 
used as training data, and the remaining one is used as test 
data. Before utilizing QGBWOA to search for the best fea-
ture combination in the dataset, the number of attributes of 
the dataset is set to the dimension of the population in QGB-
WOA. The KNN classifier is used to evaluate the accuracy 
of the selected features. The fitness of the population is cal-
culated. Then, QGBWOA is applied to update the position 
of the population in the discrete search space. After reaching 
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Fig. 7   The architecture of feature selection using the binary QGBWOA
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a specified number of evaluations, an optimal feature sub-set 
is obtained. The KNN classifier evaluates the classification 
accuracy of the obtained feature sub-set. Finally, the best 
sub-set of features is obtained.

5.1.2 � Experiment on Feature Selection

Twelve low- and high-dimensional datasets are used to 
examine the efficacy of the proposed approaches. Both these 
two categories of datasets are chosen from the California 

Irvine (UCI) Machine Learning Repository [73]. Table 2 
describes datasets in terms of the number of samples, fea-
tures, and classes. It can be seen that datasets in low-dimen-
sion contained less than 350 features, and most of the high-
dimensional datasets have more than 5000 features. And 
QGBWOA was tested together with bMFO [74], BSMA 
[75], BSO [76], bWOA [77], and BDE [78]. Table 3 reports 
their parameter settings. Moreover, the datasets are divided 
by ten-fold cross-validation [79]. The wrapped feature selec-
tion method is based on the KNN ( K = 1 ) classifier [80]. 
The maximum iteration is set to 50.

Appendix A reports the results of QGBWOA and other 
methods based on average classification error, the number 
of selected features, fitness values, and time cost. Table 
A.11–Table A.13 and Table A.15–Table A.17 show the fit-
ness, number of selected features, and average classification 
error results on low-dimensional and high-dimensional data-
sets, respectively. It can be observed that QGBWOA signifi-
cantly outperforms the compared algorithms in terms of fit-
ness and can select a smaller number of features. QGBWOA 
ranked first in total compared to other methods. Table A.14 
and Table A.18 show the timing results on each data set. The 
results in the table report that the time cost of the proposed 
QGBWOA is higher than the compared algorithms, such as 
bSMA and BSO. To a certain extent, the embeddedness of 
QOBL and GB strategies increases the time overhead of the 
proposed algorithm.

Figure B.  5 shows the convergence curves of QGBWOA 
and the other five algorithms on 12 low-dimensional data-
sets. The figure shows that QGBWOA performs well on 
all these 12 datasets. The convergence value of QGBWOA 
reaches the minimum, indicating that QGBWOA can obtain 
higher classification accuracy than the algorithms. Further-
more, it can be seen from Fig. B.   6 that the convergence 
value of the fitness of QGBWOA on all 12 high-dimensional 
datasets is smaller than that of the compared methods except 
Brain_tumor2 and Lung_cancer.

Table 2   Datasets of the feature selection experiment

Category Datasets Samples Attributes Classes

Low-dimension Blood 997 69 2
Breast cancer 286 9 2
Congress 435 17 2
Ionosphere 351 35 2
Krvskp 208 61 2
M-of-n 100 14 2
Parkinson 195 23 2
Sonar 208 61 2
Spect 267 23 2
Heart 270 14 5
Lymphography 148 19 4
Penglung 73 326 7

High-dimension Brain_tumor1 90 5921 5
Brain_tumor2 50 10,368 4
CNS 60 7130 2
DLBCL 77 5470 2
Leukemia 72 7131 2
Leukemia1 72 5328 3
Leukemia2 72 11,226 3
Lung_cancer 203 12,601 3
Prostate_tumor 102 10,510 2
SRBCT 83 2309 4
Tumors_9 60 5727 9
Tumors_11 174 12,534 11

Table 3   Parameter setting of 
compared algorithms

Algorithm Other parameters Common parameters

BMFO b = 1 Dim = number of features in the current data set; population size = 20
BSMA a =

BSO C1 = 0.5

C2 = 2

Threshold = 0.25

bWOA b = 1

r1 =

r2 =

BDE beta_min = 0.2

beta_max = 0.8

pCR = 0.2
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5.2 � Image Segmentation Based on Proposed 
QGBWOA

5.2.1 � Proposed Image Segmentation Method

Image segmentation is a fundamental technique in a variety 
of image processing applications. The characteristics of the 
image divide the image into multiple discrete regions, which 
are characterized by continuity or similarity in the same 
region and have obvious contrast between different regions 
[81]. The multi-threshold method is a commonly used image 
segmentation method, which uses multiple thresholds to 
mark target regions of interest in an image. The choice of 
threshold has an impact on the image segmentation effect. 
One of the often-considered methods is the histogram-based 

method. The histogram describes the frequency of the cor-
responding gray value in the image. The one-dimensional 
histogram only reflects the magnitude of the pixel’s gray 
level, and the 2D histogram can reflect the spatial correla-
tion information between the pixel and its neighborhood. 
Abutaleb et al. [82] proposed an image segmentation method 
combining the local pixel gray average with the original gray 
histogram. Kapur’s entropy can be used to evaluate the opti-
mal thresholds. It divides the image into different categories 
and determines whether the categories are consistent accord-
ing to the entropy size. Kapur’s entropy finds the optimal 
threshold by maximum fitness value [83]. Kapur’s entropy 
is chosen in this article to determine the n best thresholds. 
Let [T1, T2, T3,⋯ , Tn] be the threshold set values to divide 
the image into n + 1 classes and the formula is described as:

Fig. 8   Flow chart of multi-
threshold image segmentation 
using QGBWOA

Start
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image

End
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local means image

Search a optimal threshold 
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with 2D Kapur’s entropy
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image via the obtained 
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Fig. 9   The original images and their 2D histograms
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where P is the total number of pixels in the image, L 
represents the total gray levels of the given image, s is 
the gray level, ps is the probability of the s-th gray level, 
H1,H2,⋯ ,Hn denote the Kapur's entropies of correspond-
ing classes, and �0, �1,⋯ ,�n denote the probabilities of 
corresponding classes.
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�n
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Fig. 10   The optimal threshold of images at threshold level 10

Table 4   PSNR average results 
rankings

Threshold QGBWOA WOA CS MFO SSA BLPSO

4
 ARV 3.500 4.000 3.833 3.000 3.000 3.667
 Rank 3 6 5 1 1 4

6
 ARV 2.833 3.833 3.333 3.833 4.333 2.833
 Rank 1 4 3 4 6 1

10
 ARV 3.167 3.500 4.167 2.833 3.333 4.000
 Rank 2 4 6 1 3 5

15
 ARV 1.833 4.167 4.833 4.000 3.667 2.500
 Rank 1 5 6 4 3 2
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Enumerating all combinations of thresholds and select-
ing the optimal one is quite difficult, and the time complex-
ity will grow exponentially with an increasing number of 
thresholds [84]. The use of MAs to find the optimal thresh-
old has attracted attention in recent years [85–88]. An 
improved butterfly optimization algorithm was proposed by 
Sharma et al. [89], which is utilized for image segmentation 
problems. Chakraborty et al. [90] introduced an enhanced 
version of WOA to tackle image segmentation problems. 
A new pulse couple neural network model based on grey 
wolf optimizer was proposed by Wang et al. [88] for medi-
cal image segmentation. Zhao et al. [91] improved the Salp 
swarm algorithm (SSA). This version is used to find optimal 
segmentation threshold for images.

In this subsection, we put forward a QGBWOA-based 
multi-threshold image segmentation method by integrating 

the 2D histogram with the entropy of Kapur. QGBWOA 
is utilized to find the optimal set of thresholds, where the 
entropy of Kapur is the objective function, and the image is 
segmented according to the threshold. The detailed flowchart 
of the method is given in Fig. 8.

5.2.2 � Simulation Experiment

We selected six COVID-19 patients’ images collected by 
Cohen et al. [92] as the segmentation images. These six 
images are named A, B, C, D, E, and F in this experiment. 
Computed tomography (CT) of the lungs of COVID-19 
patients often shows high-gray diffuse ground-glass and 
pulmonary nodular shadows. This is because the COVID-19 
virus enters the pulmonary bronchi and further invades the 
alveolar epithelial cells, where it replicates itself. The rapid 

Table 5   SSIM average results 
ranking

Threshold QGBWOA WOA CS MFO SSA BLPSO

4
 ARV 2.833 4.667 3.833 2.833 3.167 3.667
 Rank 1 6 5 1 3 4

6
 ARV 2.500 2.500 3.833 3.833 4.500 3.833
 Rank 1 1 3 3 6 3

10
 ARV 3.333 3.833 3.333 3.667 3.833 3.000
 Rank 2 5 2 4 5 1

15
 ARV 2.667 4.167 3.667 4.333 2.833 3.333
 Rank 1 5 4 6 2 3

Table 6   FSIM average results 
ranking

Threshold QGBWOA WOA CS MFO SSA BLPSO

4
 ARV 2.833 4.167 4.167 3 3 3.834
 Rank 1 5 5 2 2 4

6
 ARV 2.667 3.667 4.000 3.500 4.167 3.000
 Rank 1 4 5 3 6 2

10
 ARV 2.500 3.167 4.000 3.667 3.667 4.000
 Rank 1 2 5 3 3 5

15
 ARV 2.500 4.333 4.167 4.500 2.500 3.000
 Rank 1 5 4 6 1 3
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replication of the virus leads to significant swelling of the 
epithelial cells, which will appear as high-gray shadows on 
CT images with significant gray differences from the normal 
lung parenchyma.

Figure 9 shows the original images and the 2D histograms 
of these six images. The population number of the algorithm 
in this experiment was set to 20, the iteration times were set 
as 100, and the size of the image was set as 512 × 400. The 
performance of the QGBWOA-based multi-threshold image 
segmentation method was evaluated at various thresholds, 
including low threshold levels (4 and 6) and high thresh-
old levels (10 and 15). We compared our QGBWOA-based 
multi-threshold image segmentation with the multi-thresh-
old segmentation methods based on other methods, includ-
ing WOA, Cuckoo search (CS) algorithm, MFO, SSA, and 
biogeography-based learning PSO (BLPSO). In addition, the 
experiment results are evaluated by three indicators, includ-
ing PSNR, SSIM, and FSIM.

The set of ideal segmentation thresholds found by the 
proposed algorithm for these images is shown in Fig. 10. 
The solid line in Fig. 10 represents the grayscale histogram, 
and the dotted line represents the ideal threshold set pro-
duced by QGBWOA. Because the threshold is 10, there are 
ten red lines in each picture.

The Avg and Std values of PSNR, SSIM, and FSIM in 
each threshold are shown in Appendix A, where the optimal 
results have been bolded. The results in Tables A.19 to Table 
A.21 show that QGBWOA achieves optimal results at most 
thresholds. The mean value of the overall ranking of these 
evaluation metrics is shown in Tables 4, 5 and 6. The results 
show that the mean of the overall ranking of QGBWOA is 
the smallest, which confirms the strong competitiveness of 
the proposed method. The best results for Kapur’s entropy 
obtained by the proposed method are illustrated in Appendix 
A. In Table A.22, QGBWOA has a noticeable superiority in 
searching for the optimal value of Kapur’s entropy compared 
with other algorithms. Figure 11 illustrates the final segmen-
tation results with a threshold of 10. From the result, we can 
see that depending on the threshold found by QGBWOA; the 
image can be segmented into blocks of pixels with different 
gray values with sharper borders, which is useful for evaluat-
ing suspected cases of COVID-19.

6 � Conclusion and Future Work

In this paper, a new WOA variant QGBWOA based on 
QOBL and GB strategy has been proposed to improve the 
inadequacies of the original WOA. The QOBL strategy is 

Fig. 11   The segmentation results of all images obtained by QGBWOA at threshold level 10



815Boosting Whale Optimizer with Quasi‑Oppositional Learning and Gaussian Barebone for Feature…

1 3

introduced to strengthen the local exploitation ability and 
to assist the proposed method to jump out of the local opti-
mum. The GB strategy is employed to balance the algo-
rithm’s exploitation and exploration capabilities and help 
the algorithm find regions with better solutions. QGBWOA 
was tested on CEC 2014 and CEC 2020 benchmark func-
tions with different dimensions, in which the performance 
of QGBWOA is compared with the basic methods and the 
state-of-the-art WOA variants. The experimental results 
show that QGBWOA can provide optimum solutions and 
effectively avoid premature convergence. Finally, the ability 
of QGBWOA to solve real-world problems is validated by 
the feature selection and the multi-threshold image segmen-
tation applications.

The increase in time complexity is the inherent result of 
mechanism embedding, and how to reduce the time com-
plexity is also our next work. In future, parallel computing 
techniques [93] can be considered to reduce the time com-
plexity while keeping the performance of QGBWOA. Addi-
tionally, we would like to apply QGBWOA to other fields, 
such as multi-objective optimization [94], fuzzy definition 
optimization [95], and dynamic optimization [96].
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