
Vol:.(1234567890)

Journal of Bionic Engineering (2022) 19:1140–1160
https://doi.org/10.1007/s42235-022-00190-4

1 3

RESEARCH ARTICLE

Comparative Performance Analysis of Differential Evolution Variants
on Engineering Design Problems

Sanjoy Chakraborty1,2 · Apu Kumar Saha3  · Sushmita Sharma3 · Saroj Kumar Sahoo3 · Gautam Pal4

Received: 29 August 2021 / Revised: 21 March 2022 / Accepted: 23 March 2022 / Published online: 13 June 2022
© Jilin University 2022

Abstract
Because of their superior problem-solving ability, nature-inspired optimization algorithms are being regularly used in solv-
ing complex real-world optimization problems. Engineering academics have recently focused on meta-heuristic algorithms
to solve various optimization challenges. Among the state-of-the-art algorithms, Differential Evolution (DE) is one of the
most successful algorithms and is frequently used to solve various industrial problems. Over the previous 2 decades, DE
has been heavily modified to improve its capabilities. Several DE variations secured positions in IEEE CEC competitions,
establishing their efficacy. However, to our knowledge, there has never been a comparison of performance across various
CEC-winning DE versions, which could aid in determining which is the most successful. In this study, the performance of
DE and its eight other IEEE CEC competition-winning variants are compared. First, the algorithms have evaluated IEEE
CEC 2019 and 2020 bound-constrained functions, and the performances have been compared. One unconstrained problem
from IEEE CEC 2011 problem suite and five other constrained mechanical engineering design problems, out of which four
issues have been taken from IEEE CEC 2020 non-convex constrained optimization suite, have been solved to compare the
performances. Statistical analyses like Friedman's test and Wilcoxon's test are executed to verify the algorithm’s ability
statistically. Performance analysis exposes that none of the DE variants can solve all the problems efficiently. Performance
of SHADE and ELSHADE-SPACMA are considerable among the methods used for comparison to solve such mechanical
design problems.

Keywords  Differential evolution · Metaheuristics · IEEE CEC · Mechanical design problem

1  Introduction

Optimization is a sort of decision-making and one of the
essential quantitative techniques in decision-making machin-
ery. Under specific predetermined conditions, decisions must
be made to optimize one or more objectives. Most real-world
problems may be stated in optimization models, including

numerous criteria and goals [1]. Optimization techniques
are based on biology, artificial intelligence, nature, and sci-
entific areas such as physics, chemistry, etc. [2]. The scope
of research with optimization is vast. Optimization methods
can solve problems from linear programming, integer pro-
gramming, quadratic programming, non-convex optimiza-
tion, engineering, science, and economics, etc. Solving these
problems becomes more complicated when the nature of
the problem cannot be known in advance. Without knowing
the nature of the problem, it is also tough to select a proper
method for finding the solution [1].

Furthermore, an equilibrium between exploration and
exploitation, also known as global and local search, is
critical in any optimization approach. An algorithm must
maintain a healthy balance between exploration and exploi-
tation to be effective [3]. According to the theory of "No
Free Lunch" (NFL) [4], theorems, no algorithm can solve
problems of all types with equal efficiency. Even the same
algorithm may give different solutions based on different

 *	 Apu Kumar Saha
	 apusaha.nita@gmail.com

1	 Department of Computer Science and Engineering, National
Institute of Technology Agartala, Agartala, Tripura 799046,
India

2	 Department of Computer Science and Engineering, Iswar
Chandra Vidyasagar College, Belonia, Tripura 799155, India

3	 Department of Mathematics, National Institute
of Technology Agartala, Agartala, Tripura 799046, India

4	 Department of Computer Science and Engineering, Tripura
Institute of Technology, Narsingarh, Tripura 799015, India

http://orcid.org/0000-0002-3475-018X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42235-022-00190-4&domain=pdf

1141Comparative Performance Analysis of Differential Evolution Variants on Engineering Design…

1 3

parameter values. This has led to the development of new
algorithms and their modified forms by researchers world-
wide. The last few decades have seen a surge in developing
algorithms classified as meta-heuristics.

Meta-heuristic methods being different from determinis-
tic methods can search the global solution without gradient
information of the optimization issue [5]. The Differential
Evolution (DE) technique is a part of evolutionary program-
ming. It is designed by R. Storn and K. Price [6] to optimize
issues over the continuous field. In DE, the worth of every
variable is a real number. DE utilizes mutation and selection
during the search to guide the pursuit toward the potential
zone. The standard DE method comprises four essential
phases—initialization of population, calculation of donor
vector, the crossover between donor vector and target vector
to form a trial vector, selection of target vector for the next
generation from trial vector, and target vector of the present
generation. The last three stages of DE execute as a circle
for ensuing DE generations until a termination criterion is
triggered.

1.1 � Advantages and Disadvantages of DE

DE is a powerful and valuable global optimizer. DE is a
population-based method that belongs to the evolutionary
algorithm’s category. In DE, siblings are formed by disrupt-
ing the arrangements with a scaled distinction between two
randomly selected individuals from the population. It distin-
guishes DE from other evolutionary methods. DE employs
a process of coordinated substitution. "On the off occasion
that the trial vector is superior to the parent solution, it is
chosen." In contrast to a few other evolutionary calculation
methods, DE is a simple method that can be implemented
with a few lines of code in any standard programming lan-
guage. Also, DE requires not many control parameters (3
to be exact: the scale factor, the crossover rate, and the
population size) a component that makes it simple to use
for the experts", as per Das et al. [7]. The authors likewise
referenced that "no other single search paradigm has been
able to secure competitive ranking in nearly all the CEC
competitions on a single objective, constrained, dynamic,
large-scale, multi-objective, and multimodal optimization
problems." DE is exceptionally adequate to researchers and
specialists because of its reliability and high performance;
Neri et al. [8]. The writers of the similar article likewise
called attention to the explanation for the massive achieve-
ment of DE is a suggested self-variation delimited in the
design of the actual DE technique. As solutions are spread
inside the pursuit space, the algorithm should be explorative
in its beginning phase. In the later stage of the optimiza-
tion process, exploitation is fundamental. DE is profoundly
explorative toward the start of the process, and bit by bit, it
becomes exploitative.

Regardless of these benefits, DE has a couple of burdens.
It tends to be composed that the search process is indeed
negotiated if promising arrangements are not discovered in
hardly any explorative moves. The proficient working of DE
relies upon the three control parameters referenced previ-
ously. The population size is related to the possible moves.
A small population can have a predetermined number of
developments, and an enormous population has numerous
exercises. If the population is small, that may lead to pre-
mature convergence, Eiben et al. [9]. The scaling factor and
crossover rate value play a crucial role in the algorithm's
well-functioning. Still, the selection of these values is a tedi-
ous task. The problem of parameter setting can be typical
while solving real-life optimization problems with larger
dimensions; the risk of stagnation increases in DE with
increased dimensionality, Zamuda et al. [10]. Not only the
dimensionality problem, but DE is also inefficient in noisy
optimization problems. Standard DE can fail in handling the
noisy fitness function, Krink et al. [11]. Based on the above
facts, the scientific community is aware that although DE is
a decent algorithm, there is extensive scope for updating the
algorithmic structure.

1.2 � Types of Modifications on DE

Several works on DE have been done over the previous 2
decades, and new modified forms of DE have been proposed
using the methodologies which are mentioned in following
subsections. Also, a pictorial representation of different DE
variants using different strategies is shown in Fig. 1.

1.2.1 � Modification in Population Initialization

In population-based search methods, the initial population
generated through the system produced arbitrary numbers
that generally follow a uniform distribution. However, this is
a straightforward strategy for instating the population; spe-
cialists saw that altering the introduction interaction may
help in improving the effectiveness of the method. There-
fore, an assortment of initialization techniques has been
proposed in the literature. For the most part, these changes
depend on one or the other contracting the search space
before all else itself to empower quicker convergence or,
again, depend on isolating the population into more modest
subgroups of populations that can simultaneously tune the
population adaptively.

1.2.2 � Alteration in Mutation Strategy

The mutation phase of DE is the most important, since
it introduces a new individual into the population. The
nature of the problem determines the choice of mutation
strategy. The amplification factor's strategy determines the

1142	 S. Chakraborty et al.

1 3

population's diversity. The researchers put a lot more work
into designing algorithms by changing current methods,
merging many techniques in one algorithm, and adaptively
determining the strategy.

1.2.3 � Variation in Crossover Strategy

The trial vector is created from the donor and target vector
using the crossover approach. Exponential crossover is used
in the original DE. Later on, the binomial kind of crossover
gained prominence. Since DE's debut, scholars have pro-
posed several crossover approaches.

1.2.4 � Change in the Selection Strategy

DE has a novel selection mechanism that isolates it from
other methods. Even though alterations proposed in the
selection mechanism are restricted to a couple of papers,
analysts have shown that reasonable changes can also help
improve the method's efficacy.

1.2.5 � Variation in Choosing the Parameter

Parameters are the essential elements of an evolutionary pro-
cess. Canonical DE uses three basic parameters, mutation
factor, crossover rate, and population size. The selection of
parameters can be deterministic, adaptive, or self-adaptive.
In deterministic parameter selection, values are modified
using some deterministic rule after a fixed number of gen-
erations is elapses. Adaptive parameter selection is when

parameters are changed according to feedback from the
search process. During self-adaptation, parameters encoded
into the chromosomes, the better value of these parameters
produces better offspring, propagating to the next generation.

1.2.6 � Hybridization

Sometimes the effectiveness of an algorithm may be
increased in terms of convergence speed, computational
complexity, ability to get out from local optima, identifying
the stagnation, etc., by utilizing the working procedure of
one or more other algorithms. Therefore, hybridization is
the technique of merging two or more algorithms to design
a robust method.

1.3 � Few Works on Verification of Performance
and Real‑World Problem Solving

A reasonable number of surveys using the basic meta-heu-
ristic algorithms or their variants have been carried out.
Nama et al. [12] studied the performance of Harmony Search
Algorithm (HSA), Teaching–Learning Based Optimization
(TLBO), and Particle Swarm Optimization (PSO) for finding
the total active earth force on the back of a retaining wall.
Yildiz et al. [5] solved six mechanical engineering problems
utilizing ten meta-heuristics and presented a comparative
study on their effectiveness. Kashani et al. [13] evaluated
the uses of PSO on geo-specialized issues and finally offered
a comparative study solving three geotechnical engineer-
ing problems using the PSO variants. Foroutan et al. [14]

Fig. 1   Percentage of different
DE variants developed using
various strategies

1143Comparative Performance Analysis of Differential Evolution Variants on Engineering Design…

1 3

proposed the green hybrid traction power supply substation
model and investigated the performance of a few recent opti-
mization algorithms on the problem. The effect of various
nature-inspired algorithms on intrusion detection problems
is tested by Thakur & Kumar [15]. Effectiveness of some
recently designed algorithms and few DE variants tested on
economic optimization of cooling tower problem by Patel
et al. [16]. Performance of 12 meta-heuristics on wind farm
layout optimization problem studied by Kunakote et al. [17].
Nama et al. [18] modified the Backtracking Search algorithm
(BSA), incorporating a new adaptive control parameter, and
used the modified method to determine active earth pressure
on retaining wall supporting c-Ф backfill using the pseudo-
dynamic method. Demirci and Yıldız [19] designed a novel
hybrid approach, referred to as Hybrid Gradient Analysis
(HGA) which is introduced for the evaluation of both con-
vex and concave constraint functions in Reliability-Based
Design Optimization (RBDO). Yıldız et al. [20] developed
Henry Gas Solubility Optimization (HGSO) algorithm and
solved the shape optimization of a vehicle brake pedal.
Champasak et al. [21] designed a new self-adaptive meta-
heuristic based on decomposition and solved unmanned
aerial vehicle (UAV) problem with six objective functions.
Sharma et al. [22] integrated the mutualism phase of the
SOS algorithm with BOA and optimized some engineer-
ing design problems. Yildiz et al. [23] used the Butterfly
Optimization Algorithm (BOA) to optimize coupling with
a bolted rim problem. They also used it to solve the shape
optimization of a vehicle suspension arm. Nama et al. [24]
introduced a new variant of Symbiotic Organisms Search
(SOS) algorithm with self-adaptive benefit factors and modi-
fied the mutualism phase. The authors used the new algo-
rithm to solve five real-world problems. Yıldız et al. [25]
used Equilibrium Optimization Algorithm (EOA) to solve
a structural design optimization problem for a vehicle seat
bracket. Yıldız et al. [26] used the Sine Cosine Algorithm
(SCA) to solve the shape optimization of a vehicle clutch
lever. Panagant et al. [27] used Seagull Optimization Algo-
rithm (SOA) to solve the shape optimization of a vehicle
bracket. The design problem is to find structural shape while
minimizing structural mass and meeting a stress constraint.
Dhiman et al. [28] introduced the evolutionary multi-objec-
tive version of the Seagull Optimization Algorithm (SOA),
entitled Evolutionary Multi-objective Seagull Optimiza-
tion Algorithm (EMoSOA). Twenty-four benchmark func-
tions and four real-world engineering design problems are
validated using the proposed algorithm. Chakraborty et al.
[29] designed a modified WOA and applied it to optimize
real-world problems from civil and mechanical engineer-
ing disciplines. Yıldız et al. [30] developed a new approach
based on the Grasshopper Optimization Algorithm and
Nelder–Mead Algorithm to optimize robot gripper problem
with a fast and accurate solution. Additionally, vehicle side

crash design, multi‐clutch disk, and manufacturing optimiza-
tion problems were also solved with the developed method.
Sharma et al. [31] designed a balanced variant of BOA
incorporating mutualism and parasitism phases of SOS with
the basic BOA. Image segmentation problem with multilevel
thresholding approach was solved using the new algorithm.
Chakraborty et al. [32] modified the Whale Optimization
Algorithm (WOA) and segmented the COVID-19 X-ray
images to diagnose the disease easily.

Though all the CEC-winning algorithms are highly effi-
cient in solving optimization problems, comparing perfor-
mance among these efficient algorithms can be an attractive
effort. With this motivation in this study, DE and its eight
CEC-winning variants, SaDE, jDE, SHADE, LSHADE,
LSHADE-EpSin LSHADE-cnEpSin, LSHADE-SPACMA,
and ELSHADE-SPACMA, are selected for the experiment.
Table 1 displays the rank of the algorithms and the year of
holding the position. First, CEC 2019 and CEC 2020 bound-
constrained suite is evaluated using the chosen methods, and
then, a total of six real-world problems are solved. Among
the problems selected, one is an unconstrained problem
from CEC 2011 problem suite and five other constrained
mechanical engineering design problems. Four mechanical
engineering problems are taken from CEC 2020 non-convex
constrained optimization suite. Statistically, the performance
of the algorithms is analyzed using non-parametric tests like
Friedman's test and Wilcoxon test.

The rest of the paper is organized as follows: Sect. 2 sum-
marizes the algorithms employed here for comparison. Eval-
uated IEEE CEC 2019 and CEC 2020 results are tabulated,
and a discussion on the results is given in Sect. 3. Section 4
represents a brief discussion of the real-world problems
employed and a discussion on the results evaluated by the
algorithms. Statistical analysis of the evaluated numerical
data is carried out in Sect. 5. Discussion on the evaluated
run time of the real-world problems is given in Sect. 6. Sec-
tion 7, finally, concludes the study with future extensions.

Table 1   List of DE variants employed

DE variants Year of competition Rank

SaDE [33] 2005 3rd
jDE [34] 2009 1st
SHADE [35] 2013 4th
LSHADE [36] 2014 1st
LSHADE-Epsin [37] 2016 1st
LSHADE-cnEpsin [38] 2017 2nd
LSHADE-SPACMA [39] 2017 3rd
ELSHADE-SPACMA [40] 2018 3rd

1144	 S. Chakraborty et al.

1 3

2 � Brief Description of DE and Its Variants
Employed

A brief description of DE and its CEC-winning variants pre-
ferred here for comparison is given in this section.

2.1 � Differential Evolution (DE) [6]

Differential Evolution is a population-based, stochastic
optimization algorithm. It is used for solving the nonlinear
optimization problem. It is a parallel direct search technique
that uses population size ( Np ) parameter vectors as a popula-
tion for each generation. Here, weighted difference vector
between two population members is added to a third member
to produce a new parameter vector. The resultant vector, hav-
ing a lower objective function value than a predetermined
population member, is selected. This selected vector will
replace the vector with which it has been compared in the
next generation. The performance of DE depends on the
proper selection of the trial vector generation technique and
corresponding control parameter values. Finding of most
suitable method and associated parameter settings in a trial-
and-error approach involves more computational costs. Dif-
ferent approaches may need to couple with different param-
eter settings in various stages of evolution to get the best
performance. DE has three steps in each generation: muta-
tion, crossover, and selection. In the mutation phase, each
individual in the population produces a respective mutation
vector based on some strategy. The mutation vector and tar-
get vector exchange internal components during crossover
to create a resultant vector. The selection step decides which
vectors enter the next generation using greedy binary selec-
tion between the target and trial vectors. DE∕rand∕1 is the
mutation strategy used in basic DE. Later on, this strategy is
altered using diverse concepts to modify the DE algorithm.
The well-known mutation strategies used in DE algorithms
are given below

rnd∕1∕bml ∶

(1)p
′ (k)

= pk
���1

+ F.
(
pk
���2

− pk
���3

)
;

rnd∕2∕bml ∶

(2)p
′ (k)

= pk
���1

+ F.
(
pk
���2

− pk
���3

)
+ F.

(
pk
���4

− pk
���5

)
;

Best∕1∕bml ∶

(3)p
′ (k)

= pk
����

+ F.
(
pk
���1

− pk
���2

)
;

In the above equations, pk is the kth solution of the popu-
lation (P) and p′ (k) is the donor vector. Crossover types used
in DE can be binomial or exponential. Here, bml signifies
the binomial crossover.

2.2 � Differential Evolution Algorithm with Strategy
Adaptation (SaDE) [33]

Trial vector generation methods and related control param-
eters are slowly self-adapted by learning from their past
experiences in the Self-adaptive DE (SaDE) technique to
produce the best solutions. It keeps a candidate pool of many
powerful trial vector generation techniques. A particular
method is selected from the candidate pool in the evolu-
tion process for each target vector in the present population.
The collection contains four mutation strategies, namely,
εDE∕rand∕1∕bin,DE∕rand − to − best∕2∕bin,DE∕rand∕

2∕bin, and DE∕current − to − rand∕1ε. A technique is cho-
sen based on past probability learned of producing favorable
solutions, and this is applied to perform mutation operation.
To generate a trial vector in the SaDE algorithm, control
parameters are assigned probabilistically to each target vec-
tor in the present population. The probabilities are slowly
learned from the experience to produce better solutions.
Here, the parameter resembled a normal distribution with a
mean value of 0.5 and a standard deviation of 0.3. A batch
of values is sampled randomly and used in each target vec-
tor in the present population. In this way, for small values,
' exploitation' and large values' exploration' are maintained
throughout the evolution process.

2.3 � Self‑adapting Control Parameters in Differential
Evolution (jDE) [34]

It is one of the most efficient DE variants. jDE uses a self-
adaptive control technique to change the control parame-
ters. The control parameters are adjusted with the Evolu-
tion. Here, user needs not to assume the appropriate values,

Best∕2∕bml ∶

(4)p
′ (k)

= pk
����

+ F.
(
pk
���1

− pk
���2

)
+ F.

(
pk
���3

− pk
���4

)
;

Current − to − best∕1∕bml ∶

(5)p
′ (k)

= pk + F.
(
pk
����

− pk
���1

)
+ F.

(
pk
���2

− pk
���3

)
;

Current − to − pbest∕1∕bml ∶

(6)p
′ (k)

= pk + F.
(
pk
����

− pk
)
+ F.

(
pk
���1

− pk
���2

)
.

1145Comparative Performance Analysis of Differential Evolution Variants on Engineering Design…

1 3

which are problem-dependent. This technique changes the
control parameters F and cr during the run. The third control
parameter Np , the number of members in a population is not
changed during the run. The control parameters F and cr are
adjusted during the evolution process, and both are applied
at each level. The upper and lower value of F is 0.1 and 0.9,
respectively. cr takes a value between (0,1). F and cr are
evaluated using the following equations:

Value of ∅1 and ∅2 remain fixed, and it is 0.1. Superior
values of these control parameters generate better individu-
als. This individual produces offspring and propagates these
better parameter values. In this approach, multiple runs are
not needed to adjust control parameters. Self-adaptive DE
is more independent than DE.

2.4 � Success‑History‑Based Parameter Adaptation
for Differential Evolution (SHADE) [35]

SHADE is a kind of adaptive DE. The origin of this algo-
rithm is JADE and uses the current − to − pbest∕1 muta-
tion strategy, an external archive, and adaptively controls
the parameter values F and cr . It uses a historical memory
of successful control parameter settings to guide the selec-
tion of future control parameter values. It uses a historical
memory Mcr&MF that stores set of cr & F values which
achieved a better result in the past. The SHADE approach
maintains a historical memory with H entries for both DE
control parameters. New cr & F pair is assessed directly by
sampling the parameter space close to one of these stored
pairs as per the following equations:

In any case, if the value of cr
i
 goes outside [0,1], replaced

by the value 0 or 1, which is near the generated value. If
the value of Fi > 1 , it is transformed to 1, and when Fi ≤ 0 ,
eqn. (x) is executed repeatedly to generate a legal value. The
parameter p , which is used to adjust the greediness of the
current-to-best/1 mutation strategy, is set for each solution
in the population using the equation

(7)Fk
g+1

=

{
Fl + rnd ∗ Fu if rnd < ∅1

Fk
g
Otherwise

(8)C
r(k)

g+1
=

{
rnd if rnd < ∅2

Cr(k)
g

Otherwise
.

(9)cr
i
=

{
0, if Mcr ,rndi

=⟂

rndni
(
Mcr ,rndi

, 0.1
)
, otherwise

,

(10)Fi = rndci(
(
MF,rndi

, 0.1
)
.

(11)pi = rnd
[
pmin, 0.2

]
.

2.5 � Improving the Search Performance of SHADE
Using Linear Population Size Reduction
(LSHADE) [36]

L-SHADE is the extended version of SHADE with Linear
Population Size Reduction (LPSR). It is a simple determin-
istic population resizing method that continuously reduces
population size according to a linear function. LPSR method
is a simplified, particular case of SVPS, which reduces the
population linearly as a function of the number of fitness
evaluations and requires only one parameter (initial popula-
tion sizes). In LSHADE, minimum size of the population is
defined in advance. Reduction of population increases the
algorithm's convergence speed and decreases the computa-
tional complexity. Excluding the population reduction pro-
cess, the search steps of LSHADE are precisely the same as
SHADE. Population reduction is accomplished in the algo-
rithm using the formula

Whenever Np,g+1 < Np,g , then Np,g − Np,g+1 ; the number
of population is deducted from the population.

2.6 � An Ensemble Sinusoidal Parameter Adaptation
Incorporated with L‑SHADE (LSHADE‑EpSin) [37]

In the LSHADE-EpSin approach, a different parameter adap-
tation technique is used to select control parameters to per-
form better than the L-SHADE algorithm. Like LSHADE,
it also uses DE∕current − to − pbest∕1 mutation strategy.
The proposed algorithm uses a new ensemble sinusoidal
approach to adapt the DE algorithm's scaling factor auto-
matically. This ensemble technique combines two sinusoidal
formulas: (i) a non-adaptive sinusoidal decreasing adjust-
ment and (ii) an adaptive history-based sinusoidal increasing
adjustment. These two strategies were used to generate scal-
ing factor for each solution of the population during the first
half of the iteration process using the following equations:

freqn in Eq. (13) represents the frequency of sinusoidal
function and freqni in Eq. (14) is an adaptive frequency
estimated using an adaptive scheme. At every generation
freqni,g is calculated using a Cauchy distribution. During
the second half of the search process, F & cr is estimated

(12)Np,g+1 =

[

round

(
Nmin
p

− N initl
p

maxnfes

)

∗ nfe + N initl
p

]

.

(13)Fi
g
=

1

2
∗

(

sin(2� ∗ freqn ∗ g + �) ∗
gmax − g

gmax

+ 1

)

(14)Fi
g
=

1

2
∗

(

sin
(
2� ∗ freqni,g ∗ g + �

)
∗

g

gmax

+ 1

)

;

1146	 S. Chakraborty et al.

1 3

using Cauchy and normal distributions, respectively. This
sinusoidal ensemble approach aims to find an effective bal-
ance between exploiting the already found best solutions and
exploring non-visited regions. The Gaussian walks-based
local search method is used to increase the exploitation abil-
ity of the process. In this method, a self-adaptive system is
used to adapt the control settings during the search. A new
ensemble of adaptive version sinusoidal techniques is used
to adjust the scaling factor values automatically.

2.7 � Ensemble Sinusoidal Differential Covariance
Matrix Adaptation with Euclidean
Neighborhood (LSHADE‑cnEpSin) [38]

This algorithm is an enhanced version of LSHADE-EpSin.
The modification is based on two main changes, like an
ensemble of sinusoidal approaches based on performance
adaptation and covariance matrix learning for the crossover
operator. Non-adaptive sinusoidal decreasing adjustment
and an adaptive sinusoidal increasing adjustment are used
to adapt the scaling factor. In this method, a performance
adaptation mechanism based on previous success selects the
sinusoidal waves. To set up a satisfactory coordinate system
and improve LSHADE-EpSin, covariance matrix learning
with the Euclidean neighborhood is used for the crosso-
ver operator. This will tackle issues with high correlation
among the variables. In this technique, the individuals are
first sorted according to their function values, and the best
individual, P, is marked. After that, the Euclidean distance
is calculated between P and every other individual in the
population. Finally, the individuals are sorted based on their
Euclidean distance.

2.8 � LSHADE with Semi‑parameter Adaptation
Hybrid with CMA‑ES (LSHADE‑SPACMA) [39]

It is a hybrid variant of LSHADE-SPA and modified CMA-
ES. LSHADE-SPA was proposed with a semi-parameter
adaptation scheme to generate scaling factor. Two different
strategies were adopted for estimation of F & cr. During the
first half of the iteration process, F & cr are evaluated using
the formulas given below

Mcr(i) is the position selected arbitrarily from the pool of
successful mean values. rnd, here, is a random number
between (0,1). During the second half of the search process,
the estimation process of Cr does not change, and scaling

(15)Fi = 0.45 + 0.1 ∗ rnd

(16)Cr(i) = rndn
(
Mcr(i), 0.1

)
;

factor is selected using Cauchy distribution as per the fol-
lowing equation:

� here denotes the standard deviation. After every iteration,
Lehmer mean is evaluated using successful Fi values and
one position of MF is updated. LSHADE-SPA and modified
CMA-ES are hybridized and named LSHADE-SPACMA.
The modified CMA-ES goes through the crossover operation
to enhance the exploration capability. In this approach, both
techniques work parallelly on the same population, and more
solutions from the population will be allocated slowly to the
algorithm with better performance.

2.9 � Enhanced LSHADE‑SPACMA Algorithm
(ELSHADE‑SPACMA) [40]

An Enhanced LSHADE-SPACMA technique is the improved
variant of LSHADE-SPACMA. In this approach, the p value
of the DE∕current − to − pbest∕1 strategy responsible for
the greediness of the mutation strategy is made dynamic.
The larger value of p enhances the exploration, and smaller
values will enhance the exploitation. p is calculated using
the following equation:

pinitl and pmin symbolizes the initial and minimum value of
the variable. Again, a directed mutation strategy has been
added within the hybridization framework to improve the
performance. Dual enhancement is done for better perfor-
mance improvement of LSHADE-SPACMA. First, 50% of
each LSHADE-SPACMA and AGDE algorithm is integrated
into a hybridized framework. In this process, the population
is shared alternatively among the algorithms. The second
adjustment is the evaluation of p according to the behavior
of ELSHADE-SPACMA. Value of p starts with a bigger
value to increase exploration and reduces linearly later on.
This technique improves the explorative capability at the
end of the search.

3 � Experimental Results and Discussion
on IEEE CEC 2019 and CEC 2020 Functions

The selected algorithms are first tested with IEEE CEC
2019 [41] function suite. The suite contains ten compli-
cated multimodal functions. Then, the IEEE CEC 2020 [42]
bound-constrained functions are evaluated. This function set
contains unimodal, basic, hybrid, and composite categories

(17)Fi = rndc
(
MFi , �

)
,

(18)pg+1 =

[

round

(
pmin − pinitl

maxnfes

)

∗ nfe + pinitl

]

;

1147Comparative Performance Analysis of Differential Evolution Variants on Engineering Design…

1 3

functions. In this paper, the function set is assessed using
dimension 20. Appendix-I represents the function sets
used for the comparison. The termination criteria are set as
D*10,000 function evaluations for all the comparison algo-
rithms during the IEEE function evaluation. The parameters
of all the chosen algorithms were kept the same as advised
in the respective original study. The results are collected as
the average value of 30 independent runs. The experiment's
device configuration consists of MATLAB version R2015a
with an Intel i3 processor, 8 GB DDR-4 RAM, and operating
system Windows10.

3.1 � Comparison Using IEEE CEC 2019 Functions

DE and its variants were used to examine the results, as
shown in Table 2. The table shows the average (avg), stand-
ard deviation (sd), and best (bst) values calculated by the
algorithms for each of the functions. "NA" represents a func-
tion that an algorithm cannot evaluate. An equivalent value
denoted by the symbol ≈. SHADE, LSHADE-SPACMA,
LSHADE-cnEpSin, and ELSHADE-SPACMA outperform
comparison algorithms on 3, 1, 1, and 3 functions, respec-
tively, according to Table 2. SHADE calculates the minimal
optimal value on F2, F3, and F5. LSHADE-SPACMA and
LSHADE-cnEpSin determine the ideal value for functions
F4 and F9. ELSHADE-SPACMA generates the minimum
value for functions F7, F8, and F10. The function F1 can-
not be evaluated using the LSHADE-cnEpSin algorithm. On
functions F1 and F6, just a few algorithms produce identi-
cal optimal values. SHADE and ELSHADE-SPACMA
were created as the best-performing algorithms. DE and
jDE appeared as the worst algorithms, since they generated
maximum value on four functions.

3.2 � Comparison Using IEEE CEC 2020 Functions

DE and its variants were used to examine the results, as
shown in Table 3. The same optimal value evaluated by
many algorithms is an equivalent value denoted by the
sign ≈. Table 3 show that DE, SHADE, LSHADE-EpSin,
LSHADE-SPACMA, and LSHADE-cnEpSin outperform
comparison algorithms on the 2, 3, 1, 1, and 1 function,
respectively. DE determines the best value for the func-
tions F15 and F20. SHADE calculates the minimal optimal
value on F12, F14, and F19. LSHADE-EpSin, LSHADE-
SPACMA, and LSHADE-cnEpSin, respectively, measure
the best value for functions F13, F16, and F17. On functions
F11 and F18, just a few algorithms produce identical optimal
values. SHADE has been identified as the algorithm with
the most significant results. On CEC 2020 functions, DE
and LSHADE-EpSin appeared as the worst algorithms, since
both of them generated maximum value on three functions.

4 � Description of Real‑World Problems
Employed and Discussion on the Results

Total six engineering design problems are solved using the
algorithms employed. Among the issues selected, one is
unconstrained, and the rest are constrained. The termina-
tion criteria are set as D*10,000 function evaluations for
all the comparison algorithms during the evaluation. The
parameters of all the chosen algorithms were kept the same
as advised in the respective original study. While solving
constrained problems, the death penalty method [43] is used.

This simple and popular strategy simply rejects the
population's unfeasible answers. There will never be any
unfeasible solutions in the population in this circumstance.
According to this process, if any constraint is violated, a
penalty value is assigned, and later sum of all the penalty
values is added or subtracted with the objective function.
This strategy should perform well if a possible search space
is convex or a reasonable portion of the entire search space.
However, when the problem is extremely limited, the algo-
rithm will waste a lot of time identifying a small number of
viable solutions. Furthermore, just evaluating points in the
viable portion of the search space precludes superior solu-
tions from being found.

4.1 � Parameter Estimation for Frequency‑Modulated
Sound Waves Problem

This problem is collected from CEC 2011 real-world opti-
mization problem suit [44]. Description of the problem and
analysis of the results assessed are given below:

4.1.1 � Problem Definition

The frequency-modulated (FM) sound system is necessary
for the present-day musical frameworks. The goal here is
to produce a sound like the perfect sound naturally, and the
highlights are extricated utilizing dissimilarity of highlights
among integrated and goal sounds. This cycle of highlight
extraction is followed, except if both integrated and target
sounds become comparative. The issue is exceptionally
convoluted and with multi-modular capacity having epista-
sis. The optimal value of objective function f (X∗) = 0 . A
considerable number of researchers have already solved the
problem. The mathematical expression for assessed sound
y(t) and wanted sound y0(t) waves are given by

(19)y(t) = a1.sin(�1.t.� + a2.sin
(
�2.t.� + a3.sin

(
�3.t.�

))
)

(20)
y0(t) = (1.0).sin(5.0.t.� − 1.5.sin(4.8.t.� + 2.0.sin(4.9.t.�))).

1148	 S. Chakraborty et al.

1 3

Ta
bl

e 
2  

C
om

pa
ris

on
 o

f e
va

lu
at

ed
 re

su
lts

 o
n

IE
EE

 C
EC

 2
01

9
fu

nc
tio

n
su

ite

B
ol

d
nu

m
be

rs
 in

 th
e

ta
bl

e
in

di
ca

te
 su

pe
rio

r v
al

ue
s

Fu
nc

tio
n-

id
D

E
jD

E
Sa

D
E

SH
A

D
E

LS
H

A
D

E
LS

H
A

D
E-

Ep
Si

n
LS

H
A

D
E-

SP
A

C
M

A
LS

H
A

D
E-

cn
Ep

Si
n

EL
SH

A
D

E-
SP

A
C

M
A

F1
av

g
sd bs

t

1 3.
03

e−
03

1

1.
03

8.
82

e−
02

1

1.
58

1.
78

1

1≈ 0 1

1≈ 0 1

1≈ 0 1

1.
02

e+
09

8.
43

e+
08

8.
77

e+
01

N
A

N
A

N
A

1≈ 0 1
F2

av
g

sd bs
t

9.
53

9.
09

2.
02

4.
16

e+
01

4.
16

e+
01

2.
81

3.
28

e+
01

3.
72

e+
01

3.
02

4 1.
6

1.
38

7.
26

6.
18

2.
5

5 0 5

3.
22

e+
04

6.
53

e+
03

1.
61

e+
04

6.
38

3.
84

2.
62

1.
33

e+
01

1.
47

e+
01

1.
97

F3
av

g
sd bs

t

1.
92

1.
55

1

1.
53

5.
29

e−
01

1

1.
3

1.
84

e−
01

1

1.
19

1.
98

e−
01

1

1.
24

2.
02

e−
01

1

1.
32

1.
73

e−
01

1

1.
3

1.
84

e−
01

1

1.
34

1.
55

e−
01

1

1.
31

1.
75

e−
01

1
F4

av
g

sd bs
t

7.
26

3.
66

3.
98

3.
91

1.
97

1

4.
46

1.
94

2

3.
89

9.
90

e−
01

2

4.
52

1.
07

2

3.
42

9.
67

e−
01

1

3.
39

8.
52

e−
01

1

3.
72

1.
25

1.
99

4.
45

2.
02

2
F5

av
g

sd bs
t

1.
03

3.
03

e−
02

1

1.
02

1.
45

e−
02

1

1.
01

1.
08

e−
02

1

1.
01

6.
14

e−
03

1

1.
01

1.
27

e−
02

1

1.
01

1.
02

e−
02

1

1.
01

7.
49

e−
03

1

1.
01

1.
04

e−
02

1

1.
03

2.
66

e−
02

1
F6

av
g

sd bs
t

1≈ 0 1

1.
38

4.
58

e−
01

1

1≈ 0 1

1≈ 0 1

1.
02

8.
51

e−
02

1

1 6.
42

e−
07

1

1 2.
64

e−
03

1

1.
02

8.
51

e−
02

1

1≈ 0 1
F7

av
g

sd bs
t

4.
93

e+
02

4.
17

e+
02

1.
19

2.
11

e+
02

1.
60

e+
02

1.
36

2.
60

e+
02

1.
39

e+
02

4.
76

1.
37

e+
02

9.
67

e+
01

4.
81

1.
74

e+
02

1.
14

e+
02

5.
15

1.
72

e+
02

1.
04

e+
02

1.
23

1.
47

e+
02

1.
19

e+
02

1.
46

1.
44

e+
02

1.
15

e+
02

1.
19

1.
19
e+

02
9.

80
e+

01
1.

31
F8

av
g

sd bs
t

2.
97

6.
60

e−
01

1.
49

3.
33

2.
46

e−
01

2.
69

2.
98

3.
42

e−
01

2

2.
72

2.
87

e−
01

2

2.
82

3.
75

e−
01

1.
85

2.
37

4.
44

e−
01

1.
32

2.
38

3.
50

e−
01

1.
73

2.
35

4.
85

e−
01

1.
39

2.
35

4.
31

e−
01

1.
15

F9
av

g
sd bs

t

1.
10

4.
60

e−
02

1.
01

1.
13

2.
39

e−
02

1.
07

1.
13

2.
49

e−
02

1.
08

1.
09

1.
42

e−
02

1.
06

1.
08

2.
64

e−
02

1.
02

1.
05

2.
22

e−
02

1.
01

1.
04

1.
82

e−
02

1.
01

1.
04

1.
50

e−
02

1.
01

1.
04

2.
36

e−
02

1.
01

F1
0

av
g

sd bs
t

1.
64

e+
01

8.
38

1

2.
10

e+
01

5.
34

e−
01

1.
82

e+
01

1.
50

e+
01

9.
26

1

1.
46

e+
01

8.
75

1.
25

1.
73

e+
01

7.
51

1.
38

1.
44

e+
01

8.
82

1.
09

1.
32

e+
01

9.
69

1

1.
46

e+
01

9.
16

1

1.
04
e+

01
8.

38
1

1149Comparative Performance Analysis of Differential Evolution Variants on Engineering Design…

1 3

Ta
bl

e 
3  

C
om

pa
ris

on
 o

f e
va

lu
at

ed
 re

su
lts

 o
n

IE
EE

 C
EC

 2
02

0
fu

nc
tio

n
su

ite

B
ol

d
nu

m
be

rs
 in

 th
e

ta
bl

e
in

di
ca

te
 su

pe
rio

r v
al

ue
s

Fu
nc

tio
n-

id
D

E
jD

E
Sa

D
E

SH
A

D
E

LS
H

A
D

E
LS

H
A

D
E-

Ep
Si

n
LS

H
A

D
E-

SP
A

C
M

A
LS

H
A

D
E-

cn
Ep

Si
n

EL
SH

A
D

E-
SP

A
C

M
A

F1
1

av
g

sd bs
t

10
0

2.
64

e−
15

10
0

10
0

2.
64

e−
15

10
0

10
0

1.
17

e−
09

10
0

10
0

9.
15

e−
15

10
0

10
0

1.
18

e−
14

10
0

8.
73

e+
02

1.
35

e+
03

1.
01

e+
02

10
0≈

0 10
0

10
0

4.
51

e−
14

10
0

10
0≈

0 10
0

F1
2

av
g

sd bs
t

2.
36

e+
03

1.
24

e+
03

1.
11

e+
03

1.
55

e+
03

1.
49

e+
02

1.
30

e+
03

1.
28

e+
03

1.
12

e+
02

1.
11

e+
03

1.
12
e+

03
3.

17
e+

01
1.

10
e+

03

1.
14

e+
03

5.
33

e+
01

1.
10

e+
03

1.
21

e+
03

7.
93

e+
01

1.
11

e+
03

1.
17

e+
03

7.
28

e+
01

1.
10

e+
03

1.
23

e+
03

7.
02

e+
01

1.
11

e+
03

1.
13

e+
03

4.
87

e+
01

1.
10

e+
03

F1
3

av
g

sd bs
t

7.
35

e+
02

1.
52

e+
01

7.
24

e+
02

7.
30

e+
02

3.
05

7.
23

e+
02

7.
23

e+
02

1.
08

7.
21

e+
02

7.
23

e+
02

7.
93

e−
01

7.
21

e+
02

7.
23

e+
02

9.
49

e−
01

7.
21

e+
02

7.
08
e+

02
2.

75
7.

02
e+

02

7.
24

e+
02

2.
32

7.
21

e+
02

7.
26

e+
02

5.
75

7.
10

e+
02

7.
23

e+
02

8.
13

e−
01

7.
22

e+
02

F1
4

av
g

sd bs
t

1.
90

e+
03

2.
41

1.
90

e+
03

1.
90

e+
03

2.
89

e−
01

1.
90

e+
03

1.
90

e+
03

6.
31

e−
01

1.
90

e+
03

1.
90
e+

03
1.

10
e−

01
1.

90
e+

03

1.
90

e+
03

2.
55

e−
01

1.
90

e+
03

1.
90

e+
03

4.
12

e−
01

1.
90

e+
03

1.
90

e+
03

2.
01

e−
01

1.
90

e+
03

1.
90

e+
03

1.
70

e−
01

1.
90

e+
03

1.
90

e+
03

7.
56

e−
01

1.
90

e+
03

F1
5

av
g

sd bs
t

1.
79
e+

03
8.

98
e+

01
1.

70
e+

03

2.
10

e+
03

2.
87

e+
02

1.
72

e+
02

2.
64

e+
03

1.
37

e+
03

1.
78

e+
03

2.
19

e+
03

2.
10

e+
02

1.
78

e+
03

2.
34

e+
03

2.
99

e+
02

1.
92

e+
03

1.
92

e+
05

1.
01

e+
05

3.
73

e+
04

2.
55

e+
03

3.
13

e+
02

2.
18

e+
03

1.
93

e+
03

10
0

1.
75

e+
03

2.
23

e+
03

2.
37

e+
02

1.
86

e+
03

F1
6

av
g

sd bs
t

1.
74

e+
03

9.
25

e−
13

1.
74

e+
03

1.
88

e+
03

4.
63

e−
13

1.
88

e+
03

1.
63

e+
03

4.
63

e−
13

1.
63

e+
03

1.
68

e+
03

4.
63

e−
13

1.
68

e+
03

1.
68

e+
03

1.
16

e−
12

1.
68

e+
03

1.
68

e+
03

6.
94

e−
13

1.
68

e+
03

1.
60
e+

03
4.

63
e−

13
1.

60
e+

03

2.
05

e+
03

9.
25

e−
13

2.
05

e+
03

1.
62

e+
03

6.
94

e−
13

1.
62

e+
03

F1
7

av
g

sd bs
t

2.
14

e+
03

5.
12

e+
01

2.
10

e+
03

2.
16

e+
03

6.
93

e+
01

2.
10

e+
03

2.
23

e+
03

9.
72

e+
01

2.
11

e+
03

2.
27

e+
03

9.
22

e+
01

2.
10

e+
03

2.
28

e+
03

1.
05

e+
02

2.
10

e+
03

1.
07

e+
05

6.
56

e+
04

1.
59

e+
04

2.
38

e+
03

2.
00

e+
02

2.
14

e+
03

2.
14
e+

03
3.

44
e+

01
2.

10
e+

03

2.
28

e+
03

1.
20

e+
02

2.
11

e+
03

F1
8

av
g

sd bs
t

2.
30

e+
03

2.
06

e−
01

2.
30

e+
03

2.
30

e+
03

8.
44

e−
14

2.
30

e+
03

2.
30

e+
03

3.
43

e−
01

2.
30

e+
03

2.
30
e+

03
≈

0 2.
30

e+
03

2.
35

e+
03

2.
63

e+
02

2.
30

e+
03

2.
30

e+
03

1.
31

e−
12

2.
30

e+
03

2.
30

e+
03

6.
81

e−
01

2.
30

e+
03

2.
30

e+
03

6.
49

e−
13

2.
30

e+
03

2.
30
e+

03
≈

0 2.
30

e+
03

F1
9

av
g

sd bs
t

2.
81

e+
03

1.
21

e+
01

2.
76

e+
03

2.
82

e+
03

5.
03

2.
81

e+
03

2.
81

e+
03

7.
93

2.
80

e+
03

2.
81
e+

03
3.

43
2.

80
e+

03

2.
81

e+
03

4.
25

2.
80

e+
03

2.
84

e+
03

7.
81

2.
82

e+
03

2.
81

e+
03

5.
06

2.
80

e+
03

2.
83

e+
03

6.
36

e+
03

2.
50

e+
03

2.
82

e+
03

8.
14

2.
81

e+
03

F2
0

av
g

sd bs
t

2.
91
e+

03
3.

67
e−

02
2.

91
e+

03

2.
91

e+
03

1.
69

e+
01

2.
91

e+
03

2.
94

e+
03

2.
69

e+
01

2.
91

e+
03

2.
92

e+
03

1.
29

e+
01

2.
91

e+
03

2.
91

e+
03

2.
27

2.
91

e+
03

2.
91

e+
03

9.
15

e−
01

2.
91

e+
03

2.
92

e+
03

1.
58

e+
01

2.
91

e+
03

2.
91
e+

03
7.

63
e−

02
2.

91
e+

03

2.
91

e+
03

8.
91

e−
01

2.
91

e+
03

1150	 S. Chakraborty et al.

1 3

In this problem, � =
2Π

100
 and the parameters lie within

the range [− 6.4, 6.35]. The fitness function is defined as
the summation of square errors between the assessed sound
and the wanted sound. The objective function of the problem
is defined as

A diagram of the problem is given in Fig. 2a.

4.1.2 � Analysis of Result

Table 4 shows the results of the algorithms used to calcu-
late them. Table 4 reveals that most of the algorithms can
determine the best ideal value. DE identifies the problem's
minimal average, standard deviation, and best among all
the comparison algorithms. The other two algorithms on
the list, SaDE, and LSHADE, are ranked second and third.
LSHADE-SPACMA calculates the problem's worst mean
value.

4.2 � Car Side Impact Design Problem

This problem was initially proposed by Gu et al. [45]. A dia-
gram of the problem is given in Fig. 2b. Description of the
problem and discussion on the evaluated results are given
below:

4.2.1 � Problem Definition

The car is exposed to a side impact on the foundation of the
European Enhanced Vehicle Safety Committee (EEVC) pro-
cedures. The objective is to minimize the car's total weight
using eleven mixed variables while maintaining safety per-
formance according to the standard. These variables repre-
sent the thickness and material of critical parts of the vehi-
cle. The 8th and 9th variables are discrete, and these are
material design variables, while the rest are continuous and
represent thickness design variables.

The symbols a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11 are
used here to represent the variables thickness of B-pillar
inner, the thickness of B-pillar reinforcement, the thick-
ness of floor side inner, the thickness of cross members, the
thickness of door beam, the thickness of door beltline rein-
forcement, the thickness of roof rail, the material of B-pillar
inner, the material of floor side inner, barrier height, and bar-
rier hitting position, respectively. The problem is subjected
to ten inequality constraints. The car side impact design is
considered a confirmed case of a mechanical optimization
problem with mixed discrete and continuous design vari-
ables. This problem can be mathematically described as

(21)f (X) =

100∑

t=0

(
y(t) − y0(t)

)2
.

Objective function

subject to:

where

(22)a =
{
a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11

}
.

(23)
Minf (a) = 1.98 + 4.90a1 + 6.67a2 + 6.98a3

+ 4.01a4 + 1.78a5 + 2.73a7,

(24)
h1(a) = 1.16 − 0.3717a2a4 − 0.00931a2a10

− 0.484a3a9 + 0.01343a6a10 ≤ 1

(25)

h2(a) = 0.261 − 0.0159a1a2 − 0.188a1a8 − 0.019a2a7

+ 0.0144a3a5 + 0.0008757a5a10 + 0.080405a6a9

+ 0.00139a8a11 + 0.00001575a10a11 ≤ 0.32,

h3(a) = 0.214 + 0.00817a5 − 0.131a1a8

− 0.0704a1a9 + 0.03099a2a6−

(26)

0.018a2a7 + 0.0208a3a8 + 0.121a3a9

− 0.00364a5a6 + 0.0007715a5a10

− 0.0005354a6a10 + 0.00121a8a11 ≤ 0.32,

h4(a) = 0.074 − 0.061a2 − 0.163a3a8 + 0.001232a3a10 − 0.166a7a9

(27)+0.227a2
2
≤ 0.32,

(28)
h5(a) = 28.98 + 3.818a3 − 4.2a1a2 + 0.0207a5a10

+ 6.63a6a9 − 7.7a7a8 + 0.32a9a10 ≤ 32,

(29)

h6(a) = 33.86 + 2.95a3 + 0.1792a10 − 5.05a1a2

− 11.0a2a8 − 0.0215a5a10 − 9.98a7a8

+ 22.0a8a9 ≤ 32,

(30)
h7(a) = 46.36 − 9.9a2 − 12.9a1a8 + 0.1107a3a10 ≤ 32,

(31)
h8(a) = 4.72 − 0.5a4 − 0.19a2a3 − 0.0122a4a10

+ 0.009325a6a10 + 0.000191a2
11

≤ 4,

(32)

h9(a) = 10.58 − 0.674a1a2 − 1.95a2a8 + 0.02054a3a10

− 0.0198a4a10 + 0.028a6a10 ≤ 9.9,

(33)

h10(a) = 16.45 − 0.489a3a7 − 0.843a5a6 + 0.0432a9a10

− 0.0556a9a11 − 0.000786a2
11

≤ 15.7,

1151Comparative Performance Analysis of Differential Evolution Variants on Engineering Design…

1 3

Fig. 2   Diagram of the real-world problems

1152	 S. Chakraborty et al.

1 3

4.2.2 � Analysis of Results

Table 5 shows the results of the comparison algorithms' cal-
culations. Table 5 reveals that LSHADE-EpSin is capable of
finding the smallest best value. On the problem, LSHADE-
cnEpSin determines the second minimum optimal value.
LSHADE-EpSin determines the issue's minimal average
value and the best value among all the comparison methods.
Other algorithms, however, found a lower standard deviation
value. Different algorithms rated 2nd and 3rd are DE and
LSHADE and ELSHADE-SPACMA. SaDE calculates the
problem's worst mean value.

4.3 � Multiple Disk Clutch Brake Design Problem

It comes from the category of a mechanical engineering
design problem. Figure 2c represents the diagram of the

0.5 ≤ ai ≤ 1.5, i = 1, 2, 3, 4, 5, 6, 7, a8, a9 ∈ (0.192, 0.345),

−30 ≤ a10, a11 ≤ 30.

problem. The problem is described in [29]. Details of the
problem and analysis of the results assessed by different
algorithms are given below:

4.3.1 � Problem Definition

The minimization of the mass of multiple disk clutch brake
is the prime objective of the problem. This can be achieved
by optimizing five decision variables, namely inner radius
( x1) , outer radius ( x2) , disk thickness ( x3) , the force of actua-
tors ( x4) , and the number of frictional surfaces ( x5) . It is
a constrained problem and contains eight nonlinear con-
straints. The mathematical formulation of the problem is
given below.

Objective function

Constraints

(34)Minf (x) = �
(
x2
2
− x2

1

)
x3
(
x5 + 1

)
�.

(35)h1(x) = −pmax + prz ≤ 0,

Table 4   Comparison of results
on the parameter estimation for
frequency-modulated sound
waves problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation
time (seconds)

Optimal value

DE 0 0 0 1.8978e + 02 0
jDE 9.37021e−01 2.51343 7.11378e−17 2.2937e+02
SaDE 1.36053e−03 6.46447e−03 0 4.1959e+02
SHADE 2.39056 3.22852 0 1.7953e+02
LSHADE 1.18685 2.48267 0 2.1719e+02
LSHADE-EpSin 3.90314 4.61850 9.45145e−04 2.2417e+02
LSHADE-SPACMA 1.35825e+01 5.77936 0 2.3020e+02
LSHADE-cnEpSin 8.58850 4.64689 1.40708 2.4162e+02
ELSHADE-SPACMA 4.90410 5.64013 0 2.2765e+02

Table 5   Comparison of results
on the car side impact design
problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation
time (seconds)

Optimal value

DE 2.28429e+01 5.35960e−15 2.28429e+01 4.2466e+02 2.189634e+01
jDE 2.28429e+01 1.94790e−10 2.28429e+01 3.6223e+02
SaDE 2.28429e+01 3.91906e−08 2.28429e+01 7.3100e+02
SHADE 2.28429e+01 7.52199e−15 2.28429e+01 2.7731e+02
LSHADE 2.28429e+01 6.11801e−15 2.28429e+01 3.4284e+02
LSHADE-EpSin 2.18963e+01 2.84921 1.55150e+01 3.8264e+02
LSHADE-SPACMA 2.28429e+01 6.29335e−15 2.28429e−15 4.0453e+02
LSHADE-cnEpSin 2.26907e+01 1.61958 1.65571e+01 3.8240e+02
ELSHADE-SPACMA 2.28429e+01 6.11801e−15 2.28429e+01 3.4728e+02

1153Comparative Performance Analysis of Differential Evolution Variants on Engineering Design…

1 3

where

A = �(x2
2
− x

2

1
),

p
rz
=

x4

A
,

(36)h2(x) = przVsr − Vsr,maxpmax ≤ 0,

(37)h3(x) = ΔR + x1 − x2 ≤ 0,

(38)h4(x) = −Lmax + (x5 + 1)
(
x3 + �

)
≤ 0,

(39)h5(x) = sMs −Mh ≤ 0,

(40)h6(x) = T ≥ 0,

(41)h7(x) = −Vsr,max + Vsr ≤ 0,

(42)h8(x) = T − Tmax ≤ 0,

Mh =
2

3
�x4x5

x3
2
− x3

1

x2
2
− x2

1

,

� =
Πn

30

rad

s
,

Vsr =
ΠRsrn

30
,

Rsr =
2

3

x3
2
− x3

1

x2
2
x2
1

,

T =
Iz�

Mh +Mf

,

Variable range

4.3.2 � Analysis of Result

Table 6 shows the results provided by the comparison algo-
rithms. Table 6 shows that, except for LSHADE-SPACMA
and LSHADE-cnEpSin, all algorithms discover the same
value as average ideal value, standard deviation value, and
best value. On this problem, LSHADE-cnEpSin is the worst
performer of the compared algorithms.

4.4 � Weight Minimization of a Speed Reducer
Problem

The issue is related to the Mechanical Engineering disci-
pline. A diagram of the problem is given in Fig. 2d.

4.4.1 � Problem Definition

The notched is used as an independent element to reduce or
increase the speed, and a firm covering is used to enclose
them. When this unit is used to minimize any device's speed,
it is called a speed reducer. Reducer is widely used in tur-
bines, rolling mills to reduce speed. The parameters required
to optimize this problem are the gear's b-face width, z-num-
ber of pinning teeth, m-teeth module, l1-length of the shaft-1

ΔR = 20, Lmax = 30,� = 0.6,

Vsr,max = 10, � = 0.5, s = 1.5,

Tmax = 15, n = 250, Iz = 55

Ms = 40,Mf = 3, andpmax = 1.

60 ≤ x1 ≤ 80, 90 ≤ x2 ≤ 110, 1 ≤ x3 ≤ 3, 0 ≤ x4 ≤ 1000, 2 ≤ x5 ≤ 9.

Table 6   Comparison of results
on the multiple disk clutch
brake design problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation
time (seconds)

Optimal value

DE 2.35242e–01 1.41150e–16 2.35242e–01 1.57862e+02 2.352424e–01
jDE 2.35242e–01 1.41150e–16 2.35242e–01 2.02500e+02
SaDE 2.35242e–01 1.41150e–16 2.35242e–01 3.69844e+02
SHADE 2.35242e–01 1.41150e–16 2.35242e–01 1.53062e+02
LSHADE 2.35242e–01 1.41150e–16 2.35242e–01 1.84641e+02
LSHADE-EpSin 2.35242e–01 1.41150e–16 2.35242e–01 1.91125e+02
LSHADE-SPACMA 2.42347e–01 2.76493e–02 2.35242e–01 1.92797e+02
LSHADE-cnEpSin 4.84572e–01 1.05304e–01 3.11188e–01 2.00047e+02
ELSHADE-SPACMA 2.35242e–01 1.41150e–16 2.35242e–01 1.96078e+02

1154	 S. Chakraborty et al.

1 3

between bearing, l2-length of the shaft-2 between bearing,
d1 - diameter of shaft-1, and d2 - diameter of shaft-2. Here, the
problem's design variables are represented by the position
vectors of the algorithm in the following manner:

Face width of the gear (b) = x1
Teeth module (m) = x2
Number of pinning teeth (z) = x3
Length of shaft-1 between bearing (l1)= x4
Length of shaft-2 between bearing (l2)= x5
Diameter of shaft-1 (d1)  = x6
Diameter of shaft-1 (d2)  = x7.
The problem is found in [29]. The mathematical repre-

sentation of the problem is
Objective function

(43)

Min.f (x) =0.7854x2
2
x1

(
14.9334x3 + 3.3333x2

3
− 43.0934

)

+ 0.7854
(
x4x

2

6
+ x5x

2

7

)
+ 7.477

(
x
3

7
+ x

3

6

)

− 1.508
(
x
2

7
+ x

2

6

)

(44)h1(x) = x1x
2

2
x3 + 27 ≤ 0,

(45)h2(x) = −(1)x2
2
x2
3
+ 397.5 ≤ 0,

(46)h3(x) = −x2x
4

2
x3x

−3
4

+ 1.93 ≤ 0,

(47)h4(x) = −x2x
4

7
x3x

−3
5

+ 1.93 ≤ 0,

(48)h5(x) = 10x−3
6

√
16 ⋅ 91 × 106 +

(
745x4x

−1
2
x
−1
3

)2
− 1100 ≤ 0,

(49)
h6(x) = 10x−3

7

√
157.5 × 10

6 +
(
745x5x

−1
2
x−1
3

)2
− 850 ≤ 0,

(50)h7(x) = x2x3 − 40 ≤ 0,

Variable range

4.4.2 � Analysis of Result

Table 7 shows the estimated results from the comparison
algorithms. Examining Table 7 shows that all algorithms,
except LSHADE-cnEpSin and LSHADE-EPSin, find the
same value as average ideal value, standard deviation value,
and best value as average optimal value, standard deviation
value, and best value. LSHADE-cnEpSin can determine
the optimal value, which is lower than the value found in
the literature. The average and best values determined by
LSHADE-cnEpSin are lower than those determined by the
other algorithms used in this study. LSHADE-EpSin is the
worst contrast algorithms in terms of average and standard
deviation values.

4.5 � Welded Beam Design Problem

This is a design problem from the mechanical engineering
discipline. Figure 2e shows a diagram of the problem.

(51)h8(x) = −x1x
−1
2

+ 5 ≤ 0,

(52)h9(x) = x1x
−1
2

− 12 ≤ 0,

(53)h10(x) = 1.5x6 − x4 + 1.9 ≤ 0,

(54)h11(x) = 1.1x7 − x5 + 1.9 ≤ 0.

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5, 7.3 ≤ x4, x5 ≤ 8.3.

Table 7   Comparison of results on the weight minimization of a speed reducer problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation time (seconds) Optimal value

DE 2.99442e+03 0 2.99442e+03 2.12390e+02 2.9944e + 03
jDE 2.99442e+03 0 2.99442e+03 2.52094e+02
SaDE 2.99442e+03 0 2.99442e+03 4.93062e+02
SHADE 2.99442e+03 0 2.99442e+03 1.924844e+02
LSHADE 2.99442e+03 0 2.99442e+03 2.28797e+02
LSHADE-EpSin 3.01072e+03 8.92779e+01 2.99442e+03 2.47641e+02
LSHADE-SPACMA 2.99442e+03 0 2.99442e+03 2.53031e+02
LSHADE-cnEpSin 2.82398e+03 1.13335e+01 2.80147e+03 2.66656e+02
ELSHADE-SPACMA 2.99442e+03 0 2.99442e+03 2.62484e+02

1155Comparative Performance Analysis of Differential Evolution Variants on Engineering Design…

1 3

4.5.1 � Problem Definition

The minimization of the fabrication cost of the welded beam
is the main objective of the problem. The problem comprises
five constraints and four variables. Limitations are shear
stress (�) , bending stress within the beam (θ), buckling load
(Pc) , and end deflection of the beam (�) . The variables to be
optimized here are the height of the bar (t) , the thickness of
the weld (h), the thickness of the bar (b), and the length of the
clamped bar (l).h, l, t, and b in the problem are represented by
x1 , x2 , x3 , and x4. The problem is described in the Mechanical
engineering category of the literature [29]. The mathemati-
cal formulation of the problem is.

Objective function

subject to.
h1(x) = x1 − x4 ≤ 0 , (56)

where

(55)Min.f (x) = 0.04811x3x4
{
x2 + 14

}
+ 1010471x2

1
x2

(57)h2(x) = �(x) − �max ≤ 0,

(58)h3(x) = P ≤ Pc(x),

(59)h4(x) = �max ≥ �(x),

(60)h5(x) = �(x) − �max ≤ 0,

R =

�
x
2

2

4
+

�
x1 + x3

2

�2

, J = 2
x
2

2

4
+

�
2��

x1+x3

2

��√
2x1x2

�

,

σ(x) =
6PL

x4x
2

3

, δ(x) =
6PL3

Ex2
3
x4

,Pc(x) =
4.013Ex3x

3

4

6L2

(

1 −
x3

2L

√
E

4G

)

,

where

4.5.2 � Analysis of Result

Results calculated by the comparison algorithms are pre-
sented in Table 8. Table 8 reveals that the average value and
the best value evaluated by most employed algorithms are
the same. LSHADE-cnEpSin is not suitable for this prob-
lem. Though other algorithms except LSHADE-EpSin and
LSHADE-cnEpSin generate the same average value and best
value, their standard deviation value differs. The minimum
standard deviation value designates the algorithm's robust-
ness in finding the solution. SaDE, DE, and LSHADE-
SPACMA are ranked as 1st, 2nd, and 3rd algorithms based
on generated standard deviation values. The performance of
LSHADE-EpSin is recorded as the worst on this problem.

4.6 � Robot Gripper Problem

This problem was first modeled by Osyczka et al. [46]. It is a
design problem from the discipline Mechanical Engineering.
Diagram of the problem are given in Fig. 2f, g.

4.6.1 � Problem Definition

This problem has seven decision variables denoted by
x =

[
a, b, c, e, f , I, �

]
 where, a, b, c, e, f , I, are dimensions of

the gripper, and � is the angle between c and b shown in
Fig. 2g. The objective function of the problem is the absolute
value of the difference between the maximum and minimum

L = 14,P = 6000,E = 30 × 16,G = 12 × 10
6

�max = 30, 000, �max = 0.25, �max = 13600,

0.1 ≤ x3, x2 ≤ 10, 0.125 ≤ x1 ≤ 2, 0.1 ≤ x4 ≤ 2.

Table 8   Comparison of results
on the welded beam design
problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation time
(seconds)

Optimal value

DE 1.67021 1.93398e–16 1.67021 1.26031e+02 1.67021e+00
jDE 1.67021 1.10100e–08 1.67021 1.53297e+02
SaDE 1.67021 1.88951e–16 1.67021 2.72844e+02
SHADE 1.67021 2.25840e–16 1.67021 1.18000e+02
LSHADE 1.67021 2.18182e–16 1.67021 1.36906e+02
LSHADE-EpSin 1.69763 1.66363e–02 1.67473 1.54141e+02
LSHADE-SPACMA 1.67021 1.97744e–16 1.67021 1.53266e+02
LSHADE-cnEpSin NA NA NA NA
ELSHADE-SPACMA 1.67021 2.14251e–16 1.67021 1.51109e+02

1156	 S. Chakraborty et al.

1 3

force generated by the robot. The mathematical formulation
of the robot gripper problem is shown below:

subject to

where

(61)f (x) = |
|maxFK(x, z) − minFK(x, z)

|
|

(62)g1(x) = y
(
x, zmax

)
− Ymin ≤ 0

(63)g2(x) = y
(
x, zmax

)
≤ 0

(64)g3(x) = Ymax − y(x, 0) ≤ 0

(65)g4(x) = y(x, 0) − YG ≤ 0

(66)g5(x) = I2 + e2 − (a + b)2 ≤ 0

(67)g6(x) = b2 − (a − e)2 −
(
I − zmax

)2
≤ 0

(68)g7(x) = zmax − I ≤ 0,

� = ArcCos

(
g2 + a2 − b2

g × 2b

)

+ �; g2 − e2

= (z − I)2;� = ArcTan

(
e

1 − z

)

� = ArcCos

(
g2 + b2 − a2

g × 2b

)

− �; y(x, z)

= 2(c + e + f × sin(� + �))

Fk =

(
sin(� + �) × b × p

2c × cos�

)

;Ymin = 50;Ymax = 100;

YG = 150;zmax = 100;p = 100

4.6.2 � Analysis of Result

The optimal value of this problem is 2.5287918415. Numeri-
cal results evaluated by the algorithms are given in Table 9.
LSHADE records the average value close to the optimal
value found in the literature. The standard deviation value
calculated by SHADE is minimum among the algorithms.
LSHADE-EpSin algorithm evaluates the best optimal
value. LSHADE-SPACMA is not suitable for this problem.
SHADE and ELSHADE-SPACMA are ranked as 2nd and
3rd, respectively, on this problem. LSHADE-cnEpSin is the
worst algorithms in terms of results among the compared
algorithms.

5 � Statistical Analysis

Statistical test of the evaluated results is performed using
Friedman's rank test of results on IEEE CEC 2019 and IEEE
2020 functions. The Wilcoxon signed-rank test is executed
based on the algorithms evaluating real-world problems
employed. Friedman's test and Wilcoxon signed-rank test
fall into the non-parametric statistical hypothesis test cate-
gory and compare two related samples, matched samples, or
repeated measurements on a single sample to assess whether
their population mean ranks differ (i.e., it is a paired dif-
ference test). Tables 10 and 11 illustrate the outcomes of
Friedman's test, and Table 12 demonstrates the results of the
Wilcoxon signed-rank test. Analysis of the data in Table 10
exposes that SHADE, ELSHADE-SPACMA, and LSHADE-
EpSin can be ranked as 1st, 2nd, and 3rd, respectively.
Similarly, the analysis of Table 11 reveals that SHADE,
LSHADE, and ELSHADE-SPACMA are the algorithms that

10 ≤ f , a, b ≤ 150;0 ≤ e ≤ 50;100 ≤ l ≤ 300;

100 ≤ c ≤ 200;1 ≤ � ≤ 3.14.

Table 9   Comparison of results
on the robot gripper problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation time
(seconds)

Optimal value

DE 2.62965 1.56533e–01 2.52681 8.49294e+03 2.52879e+00
jDE 0 0 0 9.75948e+03
SaDE 2.56782 6.39773e–02 2.52681 9.02325e+03
SHADE 2.52681 3.19622e–14 2.52681 8.69750e+03
LSHADE 2.52790 5.92604e–03 2.52681 8.59072e+03
LSHADE-EpSin 2.65886 1.62913e–01 2.52739 9.20495e+03
LSHADE-SPACMA NA NA NA NA
LSHADE-cnEpSin 2.82731 2.75806e–01 2.14118 8.92586e+03
ELSHADE-SPACMA 2.52681 3.94040e–14 2.52681 8.45197e+03

1157Comparative Performance Analysis of Differential Evolution Variants on Engineering Design…

1 3

can be ranked as 1st, 2nd, and 3rd, respectively. Therefore,
the performance of SHADE and ELSHADE-SPACMA are
consistent with the IEEE functions employed in this study.

Table 12 displays the results of the Wilcoxon signed-rank
test on real-world problems. It can be seen from the results
that DE is the best algorithm in terms of the minimum rank
obtained by the algorithm. ELSHADE-SPACMA and SaDE
are the algorithms ranked as 2nd and 3rd. Evaluating the
mean final rank, it can be concluded that SHADE is the best
algorithm and ELSHADE-SPACMA is the 2nd best algo-
rithm among the algorithms employed here for comparison.

6 � Run‑Time Analyses of the Algorithms
in Real‑World Problems

The total time taken by every algorithm to evaluate the
mean, standard deviation, and best value within 30 inde-
pendent runs on a particular problem is shown as the algo-
rithm's run time. The run time of a problem depends on
the algorithm's complexity, the number of dimensions, and

the complexity of the problem. The six real-world issues
evaluated in this study have 6, 11, 5, 7, 4, and 7 dimen-
sions, respectively. Analyzing the runtimes being assessed
in Tables 6, 7, 8 and 9 exposes that SHADE evaluates the
first five out of six problems in less run time than other algo-
rithms. ELSHADE-SPACMA optimizes the 6th problem in
a minimum run time than the compared algorithms. The
second problem (car side impact design) has the maximum
dimension among the real-world problems employed. Thus,
the evaluation time of this problem is more. Due to the prob-
lem complication evaluation time of the last problem (robot
gripper) is greater than all the problems.

7 � Conclusion

Numerous optimization algorithms are available in the lit-
erature. Among them, considering the efficacy of DE, the
researchers have modified it extensively. Several variants
of DE have won the CEC competitions. These CEC-win-
ning variants are regarded as strong algorithms to solve

Table 11   Result of Friedman's rank test on IEEE CEC 2020 functions

Bold numbers in the table indicate superior values

Algorithm Mean rank Rank sum Final rank P value

DE 4.9 49 5 P value (0.000 < 0.01) indicates that Ho is rejected at 1% level of significance. i.e.,
there is a significant difference between the performances of different methods at
a 1% level of significance

jDE 6.1 61 9
SaDE 5.65 56.5 7
SHADE 3.5 35 1
LSHADE 4.05 40.5 2
LSHADE-EpSin 5.85 58.5 8
LSHADE-SPACMA 4.95 49.5 6
LSHADE-cnEpSin 4.7 47 4
ELSHADE-SPACMA 4.3 43 3

Table 10   Result of Friedman's rank test on IEEE CEC 2019 functions

Bold numbers in the table indicate superior values

Algorithm Mean
rank

Rank sum Final rank P value

DE 6.8 68 8 P value (0.000 < 0.01) indicates that Ho is rejected at 1% level of significance. i.e.,
there is a significant difference between the performances of different methods at
a 1% level of significance

jDE 7.7 77 9
SaDE 5.8 58 7
SHADE 2.6 26 1
LSHADE 5.3 53 6
LSHADE-EpSin 3.5 35 3
LSHADE-SPACMA 4.2 42 4
LSHADE-cnEpSin 4.6 46 5
ELSHADE-SPACMA 3.2 32 2

1158	 S. Chakraborty et al.

1 3

complicated problems. Comparison of performance within
the CEC competition-winning variants of DE has never been
done as per our knowledge. In this study, performance of DE
and its eight CEC competition-winning variants is studied,
evaluating IEEE CEC 2019 function suite, IEEE CEC 2020
function suite, and one unconstrained and five constrained
real-world engineering problems. The time taken by the
algorithms for solving real-world problems is also assessed.
Besides comparing the performance of the algorithms with
numerical results, their performance is also analyzed statisti-
cally. Performance analysis exposes that SHADE is the best
algorithm while solving CEC functions, and in five out of six
real-world problems, it has been found the faster in calculat-
ing the result. On real-world problems, DE outperforms all
its variants used here for comparison. ELSHADE-SPACMA
emerged as a unique algorithm ranked 2nd or 3rd in every
problem set. Evaluated optimal result in weight minimiza-
tion of a speed reducer design problem is recorded mini-
mum than the optimal value found in the literature. Finally,
it can be concluded that among the compared algorithms,
SHADE and ELSHADE-SPACMA can effectively solve

complex problems and can be used to solve other problems
from engineering and industry.

Data Availability Statements  All data generated or analyzed during this
study are included in this published article.

Declarations 

Conflict of interest  All authors of this article declare that there is no
conflict of interest associated with this publication, and there has been
no significant financial support for this work that could have influenced
its outcome.

References

	 1.	 Pant, M., Zaheer, H., Garcia-Hernandez, L., & Abraham, A.
(2020). Differential Evolution: A review of more than two decades
of research. Engineering Applications of Artificial Intelligence,
90, 103479.

	 2.	 Osman, I. H., & Kelly, J. P. (1996). Meta-Heuristics: An Over-
view. In I. H. Osman & J. P. Kelly (Eds.), Meta-Heuristics (pp.
1–21). Springer.

Table 12   Result of Wilcoxon signed-rank test on real-world problems

Bold numbers in the table indicate superior values

RLP DE jDE SaDE SHADE LSHADE LSHADE-
EpSin

LSHADE-
SPACMA

LSHADE-
cnEpSin

ELSHADE-
SPACMA

Frequency
modulation

0.00E+00 9.37E–01 1.36E–03 2.39E+00 1.19E+00 3.90E+00 1.36E+01 8.59E+00 4.90E+00

Individual rank 1 3 2 5 4 6 9 8 7
Car Side

impact design
2.28E+01 2.28E+01 2.28E+01 2.28E+01 2.28E+01 2.19E+01 2.28E+01 2.27E+01 2.28E+01

Individual
Rank

5.5 5.5 9 5.5 5.5 1 5.5 2 5.5

Multiple disk
clutch brake
design

2.35E–01 2.35E–01 2.35E–01 2.35E–01 2.35E–01 2.35E–01 2.42E–01 4.85E–01 2.35E–01

Individual
Rank

4 4 4 4 4 4 8 9 4

Weight mini-
mization of a
speed reducer

2.99E+03 2.99E+03 2.99E+03 2.99E+03 2.99E+03 3.01E+03 2.99E+03 2.82E+03 2.99E+03

Individual
Rank

5 5 5 5 5 9 5 1 5

Welded beam
design

1.67E+00 1.67E+00 1.67E+00 1.67E+00 1.67E+00 1.70E+00 1.67E+00 1.76E+00 1.67E+00

Individual
Rank

3.5 7 3.5 3.5 3.5 8 3.5 9 3.5

Robot gripper
problem

2.63E+00 0.00E+00 2.57E+00 2.53E+00 2.53E+00 2.66E+00 2.48E+01 2.83E+00 2.53E+00

Individual
Rank

6 1 5 2.5 4 7 9 8 2.5

Rank sum 20 29.5 26 27 29 37 39 31.5 25
Final rank 1 6 3 4 5 8 9 7 2

1159Comparative Performance Analysis of Differential Evolution Variants on Engineering Design…

1 3

	 3.	 Črepinšek, M., Liu, S.-H., & Mernik, M. (2013). Exploration and
exploitation in evolutionary algorithms. ACM Computing Surveys,
45, 1–33.

	 4.	 Wolpert, D. H., & Macready, W. G. (1997). No free lunch theo-
rems for optimization. IEEE Transactions on Evolutionary Com-
putation, 1, 67–82.

	 5.	 Yildiz, A. R., Abderazek, H., & Mirjalili, S. (2019). A Compara-
tive study of recent non-traditional methods for mechanical design
optimization. Archives of Computational Methods in Engineering,
27, 1031–1048.

	 6.	 Storn, R., & Price, K. (1997). Differential evolution-a simple and
efficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization, 11, 341–359.

	 7.	 Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent
advances in differential evolution—an updated survey. Swarm
and Evolutionary Computation, 27, 1–30.

	 8.	 Neri, F., & Tirronen, V. (2010). Recent advances in differential
evolution: A survey and experimental analysis. Artificial Intel-
ligence Review, 33, 61–106.

	 9.	 Eiben, A. E., & Smith, J. E. (2003). to evolutionary computing
(Vol. 53, p. 18). Berlin: Springer.

	10.	 Zamuda, A., Brest, J., Boskovic, B., & Zumer, V. Large scale
global optimization using differential evolution with self-adapta-
tion and cooperative co-evolution. In IEEE Congress on Evolu-
tionary Computation (IEEE World Congress on Computational
Intelligence), Hong Kong, China, 2008, 3718–3725.

	11.	 Krink, T., Filipic, B., & Fogel, G. B. Noisy optimization prob-
lems-a particular challenge for differential evolution. In Proceed-
ings of the Congress on Evolutionary Computation, Oregon, Port-
land, USA, 2004, 332–339.

	12.	 Nama, S., Saha, A. K., & Ghosh, S. (2015). Parameters optimiza-
tion of geotechnical problem using different optimization algo-
rithm. Geotechnical and Geological Engineering, 33, 1235–1253.

	13.	 Kashani, A. R., Chiong, R., Mirjalili, S., & Gandomi, A. H.
(2020). Particle swarm optimization variants for solving geo-
technical problems: Review and comparative analysis. Archives
of Computational Methods in Engineering, 28, 1871–1927.

	14.	 Foroutan, F., Mousavi Gazafrudi, S. M., & Shokri-Ghaleh, H.
(2020). A comparative study of recent optimization methods for
optimal sizing of a green hybrid traction power supply substa-
tion. Archives of Computational Methods in Engineering, 28,
2351–2370.

	15.	 Thakur, K., & Kumar, G. (2020). Nature inspired techniques and
applications in intrusion detection systems: Recent progress and
updated perspective. Archives of Computational Methods in Engi-
neering, 28, 2897–2919.

	16.	 Patel, V. K., Raja, B. D., Savsani, V. J., & Desai, N. B. (2021).
Performance of recent optimization algorithms and its comparison
to state-of-the-art differential evolution and its variants for the
economic optimization of cooling tower. Archives of Computa-
tional Methods in Engineering, 28, 4523–4535.

	17.	 Kunakote, T., Sabangban, N., Kumar, S., Tejani, G. G., Panagant,
N., Pholdee, N., Bureerat, S., & Yildiz, A. R. (2022). Compara-
tive performance of twelve metaheuristics for wind farm layout
optimization. Archives of Computational Methods in Engineering,
29, 717–730.

	18.	 Nama, S., Saha, A. K., & Ghosh, S. (2017). Improved backtrack-
ing search algorithm for pseudo dynamic active earth pressure on
retaining wall supporting c-Ф backfill. Applied Soft Computing,
52, 885–897.

	19.	 Demirci, E., & Yıldız, A. R. (2019). A new hybrid approach for
reliability-based design optimization of structural components.
Materials Testing, 61, 111–119.

	20.	 Yıldız, B. S., Yıldız, A. R., Pholdee, N., Bureerat, S., Sait, S.
M., & Patel, V. (2020). The henry gas solubility optimization

algorithm for optimum structural design of automobile brake com-
ponents. Materials Testing, 62, 261–264.

	21.	 Champasak, P., Panagant, N., Pholdee, N., Bureerat, S., & Yildiz,
A. R. (2020). Self-adaptive many-objective meta-heuristic based
on decomposition for many-objective conceptual design of a fixed
wing unmanned aerial vehicle. Aerospace Science and Technol-
ogy, 100, 105783.

	22.	 Sharma, S., & Saha, A. K. (2020). m-MBOA: A novel butterfly
optimization algorithm enhanced with mutualism scheme. Soft
Computing, 24, 4809–4827.

	23.	 Yıldız, B. S., Yıldız, A. R., Albak, E. İ, Abderazek, H., Sait, S.
M., & Bureerat, S. (2020). Butterfly optimization algorithm for
optimum shape design of automobile suspension components.
Materials Testing, 62, 365–370.

	24.	 Nama, S., Saha, A. K., & Sharma, S. (2020). A novel improved
symbiotic organisms search algorithm. Computational Intelli-
gence. https://​doi.​org/​10.​1111/​coin.​12290

	25.	 Yıldız, A. R., Özkaya, H., Yıldız, M., Bureerat, S., Yıldız, B. S.,
& Sait, S. M. (2020). The equilibrium optimization algorithm
and the response surface-based metamodel for optimal structural
design of vehicle components. Materials Testing, 62, 492–496.

	26.	 Yıldız, A. B. S., Pholdee, N., Bureerat, S., Yıldız, A. R., & Sait,
S. M. (2020). Sine-cosine optimization algorithm for the con-
ceptual design of automobile components. Materials Testing, 62,
744–748.

	27.	 Panagant, N., Pholdee, N., Bureerat, S., Kaen, K., Yıldız, A. R.,
& Sait, S. M. (2020). Seagull optimization algorithm for solving
real-world design optimization problems. Materials Testing, 62,
640–644.

	28.	 Dhiman, G., Singh, K. K., Slowik, A., Chang, V., Yildiz, A. R.,
Kaur, A., & Garg, M. (2021). EMoSOA: A new evolutionary
multi-objective seagull optimization algorithm for global optimi-
zation. International Journal of Machine Learning and Cybernet-
ics, 12, 571–596.

	29.	 Chakraborty, S., Saha, A. K., Sharma, S., Mirjalili, S., &
Chakraborty, R. (2021). A novel enhanced whale optimization
algorithm for global optimization. Computers & Industrial Engi-
neering, 153, 107086.

	30.	 Yildiz, B. S., Pholdee, N., Bureerat, S., Yildiz, A. R., & Sait, S.
M. (2021). Robust design of a robot gripper mechanism using new
hybrid grasshopper optimization algorithm. Expert Systems, 38,
e12666.

	31.	 Sharma, S., Saha, A. K., Majumder, A., & Nama, S. (2021).
MPBOA-A novel hybrid butterfly optimization algorithm
with symbiosis organisms search for global optimization and
image segmentation. Multimedia Tools and Applications, 80,
12035–12076.

	32.	 Chakraborty, S., Saha, A. K., Nama, S., & Debnath, S. (2021).
COVID-19 X-ray image segmentation by modified whale optimi-
zation algorithm with population reduction. Computers in Biology
and Medicine, 139, 104984.

	33.	 Qin, A. K., & Suganthan, P. N. Self-adaptive differential evolution
algorithm for numerical optimization. In IEEE Congress on Evo-
lutionary Computation, Edinburgh, Scotland, 2005, 1785–1791.

	34.	 Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V.
(2006). Self-adapting control parameters in differential evolution:
a comparative study on numerical benchmark problems. In IEEE
Transactions on Evolutionary Computation, Vancouver, Canada,
2006, 646–657

	35.	 Tanabe, R., & Fukunaga, A. Success-history based parameter
adaptation for differential evolution. In IEEE Congress on Evolu-
tionary Computation, Cancun, Mexico, 2013, 71–78.

	36.	 Tanabe, R., & Fukunaga, A. S. Improving the search performance
of SHADE using linear population size reduction. In IEEE Con-
gress on Evolutionary Computation (CEC), Beijing, China, 2014,
1658–1665.

https://doi.org/10.1111/coin.12290

1160	 S. Chakraborty et al.

1 3

	37.	 Awad, N. H., Ali, M. Z., Suganthan, P. N., & Reynolds, R. G.
An ensemble sinusoidal parameter adaptation incorporated with
L-SHADE for solving CEC2014 benchmark problems. In IEEE
Congress on Evolutionary Computation (CEC), Vancouver, Can-
ada, 2016, 2958–2965.

	38.	 Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017). Ensemble
sinusoidal differential covariance matrix adaptation with euclid-
ean neighborhood for solving CEC2017 benchmark problems. In
IEEE Congress on Evolutionary Computation (CEC), Donostia-
San Sebastián, Spain, 2017, 372-379

	39.	 Mohamed, A. W., Hadi, A. A., Fattouh, A. M., & Jambi, K. M.
(2017). LSHADE with semi-parameter adaptation hybrid with
CMA-ES for solving CEC 2017 benchmark problems. In IEEE
Congress on Evolutionary Computation (CEC), Donostia-San
Sebastián, Spain, 2017, 145-152

	40.	 Hadi, A. A., Mohamed, A. W., & Jambi, K. M. (2018). Single-
objective real-parameter optimization: Enhanced LSHADE-
SPACMA algorithm. Heuristics for Optimization and Learning,
906, 103–121.

	41.	 Price, K. V., Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2018).
Problem definitions and evaluation criteria for the 100-digit chal-
lenge special session and competition on single objective numeri-
cal optimization. In Technical Report, Nanyang Technological
University, Singapore, Singapore , 2018, 1-21.

	42.	 Kadavy, T., Pluhacek, M., Viktorin, A., & Senkerik, R. SOMA-CL
for competition on single objective bound constrained numerical
optimization benchmark: a competition entry on single objective
bound constrained numerical optimization at the genetic and evo-
lutionary computation conference (GECCO) 2020. In Proceed-
ings of the Genetic and Evolutionary Computation Conference
Companion, Prague, Czech Republic, 2020, 9–10.

	43.	 Coello, C. A. C. (2002). Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: A survey
of the state of the art. Computer Methods in Applied Mechanics
and Engineering, 191, 1245–1287.

	44.	 Das, S., & Suganthan, P. N. (2010). Problem definitions and
evaluation criteria for CEC competition on testing evolutionary
algorithms on real world optimization problems. Jadavpur Uni-
versity, Nanyang Technological University, Kolkata, India, 2010,
341–359.

	45.	 Gu, L., Yang, R. J., Tho, C. H., Makowskit, M., Faruquet, O.,
& Li, Y. (2001). Optimization and robustness for crashworthi-
ness of side impact. International Journal of Vehicle Design, 26,
348–360.

	46.	 Osyczka, A., Krenich, S., & Karas, K. Optimum design of robot
grippers using genetic algorithms. In Proceedings of the Third
World Congress of Structural and Multidisciplinary Optimization
(WCSMO), New York, USA, 1999, 241–243.

	Comparative Performance Analysis of Differential Evolution Variants on Engineering Design Problems
	Abstract
	1 Introduction
	1.1 Advantages and Disadvantages of DE
	1.2 Types of Modifications on DE
	1.2.1 Modification in Population Initialization
	1.2.2 Alteration in Mutation Strategy
	1.2.3 Variation in Crossover Strategy
	1.2.4 Change in the Selection Strategy
	1.2.5 Variation in Choosing the Parameter
	1.2.6 Hybridization

	1.3 Few Works on Verification of Performance and Real-World Problem Solving

	2 Brief Description of DE and Its Variants Employed
	2.1 Differential Evolution (DE) [6]
	2.2 Differential Evolution Algorithm with Strategy Adaptation (SaDE) [33]
	2.3 Self-adapting Control Parameters in Differential Evolution (jDE) [34]
	2.4 Success-History-Based Parameter Adaptation for Differential Evolution (SHADE) [35]
	2.5 Improving the Search Performance of SHADE Using Linear Population Size Reduction (LSHADE) [36]
	2.6 An Ensemble Sinusoidal Parameter Adaptation Incorporated with L-SHADE (LSHADE-EpSin) [37]
	2.7 Ensemble Sinusoidal Differential Covariance Matrix Adaptation with Euclidean Neighborhood (LSHADE-cnEpSin) [38]
	2.8 LSHADE with Semi-parameter Adaptation Hybrid with CMA-ES (LSHADE-SPACMA) [39]
	2.9 Enhanced LSHADE-SPACMA Algorithm (ELSHADE-SPACMA) [40]

	3 Experimental Results and Discussion on IEEE CEC 2019 and CEC 2020 Functions
	3.1 Comparison Using IEEE CEC 2019 Functions
	3.2 Comparison Using IEEE CEC 2020 Functions

	4 Description of Real-World Problems Employed and Discussion on the Results
	4.1 Parameter Estimation for Frequency-Modulated Sound Waves Problem
	4.1.1 Problem Definition
	4.1.2 Analysis of Result

	4.2 Car Side Impact Design Problem
	4.2.1 Problem Definition
	4.2.2 Analysis of Results

	4.3 Multiple Disk Clutch Brake Design Problem
	4.3.1 Problem Definition
	4.3.2 Analysis of Result

	4.4 Weight Minimization of a Speed Reducer Problem
	4.4.1 Problem Definition
	4.4.2 Analysis of Result

	4.5 Welded Beam Design Problem
	4.5.1 Problem Definition
	4.5.2 Analysis of Result

	4.6 Robot Gripper Problem
	4.6.1 Problem Definition
	4.6.2 Analysis of Result

	5 Statistical Analysis
	6 Run-Time Analyses of the Algorithms in Real-World Problems
	7 Conclusion
	References

