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Abstract
Because of their superior problem-solving ability, nature-inspired optimization algorithms are being regularly used in solv-
ing complex real-world optimization problems. Engineering academics have recently focused on meta-heuristic algorithms 
to solve various optimization challenges. Among the state-of-the-art algorithms, Differential Evolution (DE) is one of the 
most successful algorithms and is frequently used to solve various industrial problems. Over the previous 2 decades, DE 
has been heavily modified to improve its capabilities. Several DE variations secured positions in IEEE CEC competitions, 
establishing their efficacy. However, to our knowledge, there has never been a comparison of performance across various 
CEC-winning DE versions, which could aid in determining which is the most successful. In this study, the performance of 
DE and its eight other IEEE CEC competition-winning variants are compared. First, the algorithms have evaluated IEEE 
CEC 2019 and 2020 bound-constrained functions, and the performances have been compared. One unconstrained problem 
from IEEE CEC 2011 problem suite and five other constrained mechanical engineering design problems, out of which four 
issues have been taken from IEEE CEC 2020 non-convex constrained optimization suite, have been solved to compare the 
performances. Statistical analyses like Friedman's test and Wilcoxon's test are executed to verify the algorithm’s ability 
statistically. Performance analysis exposes that none of the DE variants can solve all the problems efficiently. Performance 
of SHADE and ELSHADE-SPACMA are considerable among the methods used for comparison to solve such mechanical 
design problems.
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1  Introduction

Optimization is a sort of decision-making and one of the 
essential quantitative techniques in decision-making machin-
ery. Under specific predetermined conditions, decisions must 
be made to optimize one or more objectives. Most real-world 
problems may be stated in optimization models, including 

numerous criteria and goals [1]. Optimization techniques 
are based on biology, artificial intelligence, nature, and sci-
entific areas such as physics, chemistry, etc. [2]. The scope 
of research with optimization is vast. Optimization methods 
can solve problems from linear programming, integer pro-
gramming, quadratic programming, non-convex optimiza-
tion, engineering, science, and economics, etc. Solving these 
problems becomes more complicated when the nature of 
the problem cannot be known in advance. Without knowing 
the nature of the problem, it is also tough to select a proper 
method for finding the solution [1].

Furthermore, an equilibrium between exploration and 
exploitation, also known as global and local search, is 
critical in any optimization approach. An algorithm must 
maintain a healthy balance between exploration and exploi-
tation to be effective [3]. According to the theory of "No 
Free Lunch" (NFL) [4], theorems, no algorithm can solve 
problems of all types with equal efficiency. Even the same 
algorithm may give different solutions based on different 
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parameter values. This has led to the development of new 
algorithms and their modified forms by researchers world-
wide. The last few decades have seen a surge in developing 
algorithms classified as meta-heuristics.

Meta-heuristic methods being different from determinis-
tic methods can search the global solution without gradient 
information of the optimization issue [5]. The Differential 
Evolution (DE) technique is a part of evolutionary program-
ming. It is designed by R. Storn and K. Price [6] to optimize 
issues over the continuous field. In DE, the worth of every 
variable is a real number. DE utilizes mutation and selection 
during the search to guide the pursuit toward the potential 
zone. The standard DE method comprises four essential 
phases—initialization of population, calculation of donor 
vector, the crossover between donor vector and target vector 
to form a trial vector, selection of target vector for the next 
generation from trial vector, and target vector of the present 
generation. The last three stages of DE execute as a circle 
for ensuing DE generations until a termination criterion is 
triggered.

1.1 � Advantages and Disadvantages of DE

DE is a powerful and valuable global optimizer. DE is a 
population-based method that belongs to the evolutionary 
algorithm’s category. In DE, siblings are formed by disrupt-
ing the arrangements with a scaled distinction between two 
randomly selected individuals from the population. It distin-
guishes DE from other evolutionary methods. DE employs 
a process of coordinated substitution. "On the off occasion 
that the trial vector is superior to the parent solution, it is 
chosen." In contrast to a few other evolutionary calculation 
methods, DE is a simple method that can be implemented 
with a few lines of code in any standard programming lan-
guage. Also, DE requires not many control parameters (3 
to be exact: the scale factor, the crossover rate, and the 
population size) a component that makes it simple to use 
for the experts", as per Das et al. [7]. The authors likewise 
referenced that "no other single search paradigm has been 
able to secure competitive ranking in nearly all the CEC 
competitions on a single objective, constrained, dynamic, 
large-scale, multi-objective, and multimodal optimization 
problems." DE is exceptionally adequate to researchers and 
specialists because of its reliability and high performance; 
Neri et al. [8]. The writers of the similar article likewise 
called attention to the explanation for the massive achieve-
ment of DE is a suggested self-variation delimited in the 
design of the actual DE technique. As solutions are spread 
inside the pursuit space, the algorithm should be explorative 
in its beginning phase. In the later stage of the optimiza-
tion process, exploitation is fundamental. DE is profoundly 
explorative toward the start of the process, and bit by bit, it 
becomes exploitative.

Regardless of these benefits, DE has a couple of burdens. 
It tends to be composed that the search process is indeed 
negotiated if promising arrangements are not discovered in 
hardly any explorative moves. The proficient working of DE 
relies upon the three control parameters referenced previ-
ously. The population size is related to the possible moves. 
A small population can have a predetermined number of 
developments, and an enormous population has numerous 
exercises. If the population is small, that may lead to pre-
mature convergence, Eiben et al. [9]. The scaling factor and 
crossover rate value play a crucial role in the algorithm's 
well-functioning. Still, the selection of these values is a tedi-
ous task. The problem of parameter setting can be typical 
while solving real-life optimization problems with larger 
dimensions; the risk of stagnation increases in DE with 
increased dimensionality, Zamuda et al. [10]. Not only the 
dimensionality problem, but DE is also inefficient in noisy 
optimization problems. Standard DE can fail in handling the 
noisy fitness function, Krink et al. [11]. Based on the above 
facts, the scientific community is aware that although DE is 
a decent algorithm, there is extensive scope for updating the 
algorithmic structure.

1.2 � Types of Modifications on DE

Several works on DE have been done over the previous 2 
decades, and new modified forms of DE have been proposed 
using the methodologies which are mentioned in following 
subsections. Also, a pictorial representation of different DE 
variants using different strategies is shown in Fig. 1.

1.2.1 � Modification in Population Initialization

In population-based search methods, the initial population 
generated through the system produced arbitrary numbers 
that generally follow a uniform distribution. However, this is 
a straightforward strategy for instating the population; spe-
cialists saw that altering the introduction interaction may 
help in improving the effectiveness of the method. There-
fore, an assortment of initialization techniques has been 
proposed in the literature. For the most part, these changes 
depend on one or the other contracting the search space 
before all else itself to empower quicker convergence or, 
again, depend on isolating the population into more modest 
subgroups of populations that can simultaneously tune the 
population adaptively.

1.2.2 � Alteration in Mutation Strategy

The mutation phase of DE is the most important, since 
it introduces a new individual into the population. The 
nature of the problem determines the choice of mutation 
strategy. The amplification factor's strategy determines the 
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population's diversity. The researchers put a lot more work 
into designing algorithms by changing current methods, 
merging many techniques in one algorithm, and adaptively 
determining the strategy.

1.2.3 � Variation in Crossover Strategy

The trial vector is created from the donor and target vector 
using the crossover approach. Exponential crossover is used 
in the original DE. Later on, the binomial kind of crossover 
gained prominence. Since DE's debut, scholars have pro-
posed several crossover approaches.

1.2.4 � Change in the Selection Strategy

DE has a novel selection mechanism that isolates it from 
other methods. Even though alterations proposed in the 
selection mechanism are restricted to a couple of papers, 
analysts have shown that reasonable changes can also help 
improve the method's efficacy.

1.2.5 � Variation in Choosing the Parameter

Parameters are the essential elements of an evolutionary pro-
cess. Canonical DE uses three basic parameters, mutation 
factor, crossover rate, and population size. The selection of 
parameters can be deterministic, adaptive, or self-adaptive. 
In deterministic parameter selection, values are modified 
using some deterministic rule after a fixed number of gen-
erations is elapses. Adaptive parameter selection is when 

parameters are changed according to feedback from the 
search process. During self-adaptation, parameters encoded 
into the chromosomes, the better value of these parameters 
produces better offspring, propagating to the next generation.

1.2.6 � Hybridization

Sometimes the effectiveness of an algorithm may be 
increased in terms of convergence speed, computational 
complexity, ability to get out from local optima, identifying 
the stagnation, etc., by utilizing the working procedure of 
one or more other algorithms. Therefore, hybridization is 
the technique of merging two or more algorithms to design 
a robust method.

1.3 � Few Works on Verification of Performance 
and Real‑World Problem Solving

A reasonable number of surveys using the basic meta-heu-
ristic algorithms or their variants have been carried out. 
Nama et al. [12] studied the performance of Harmony Search 
Algorithm (HSA), Teaching–Learning Based Optimization 
(TLBO), and Particle Swarm Optimization (PSO) for finding 
the total active earth force on the back of a retaining wall. 
Yildiz et al. [5] solved six mechanical engineering problems 
utilizing ten meta-heuristics and presented a comparative 
study on their effectiveness. Kashani et al. [13] evaluated 
the uses of PSO on geo-specialized issues and finally offered 
a comparative study solving three geotechnical engineer-
ing problems using the PSO variants. Foroutan et al. [14] 

Fig. 1   Percentage of different 
DE variants developed using 
various strategies
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proposed the green hybrid traction power supply substation 
model and investigated the performance of a few recent opti-
mization algorithms on the problem. The effect of various 
nature-inspired algorithms on intrusion detection problems 
is tested by Thakur & Kumar [15]. Effectiveness of some 
recently designed algorithms and few DE variants tested on 
economic optimization of cooling tower problem by Patel 
et al. [16]. Performance of 12 meta-heuristics on wind farm 
layout optimization problem studied by Kunakote et al. [17]. 
Nama et al. [18] modified the Backtracking Search algorithm 
(BSA), incorporating a new adaptive control parameter, and 
used the modified method to determine active earth pressure 
on retaining wall supporting c-Ф backfill using the pseudo-
dynamic method. Demirci and Yıldız [19] designed a novel 
hybrid approach, referred to as Hybrid Gradient Analysis 
(HGA) which is introduced for the evaluation of both con-
vex and concave constraint functions in Reliability-Based 
Design Optimization (RBDO). Yıldız et al. [20] developed 
Henry Gas Solubility Optimization (HGSO) algorithm and 
solved the shape optimization of a vehicle brake pedal. 
Champasak et al. [21] designed a new self-adaptive meta-
heuristic based on decomposition and solved unmanned 
aerial vehicle (UAV) problem with six objective functions. 
Sharma et al. [22] integrated the mutualism phase of the 
SOS algorithm with BOA and optimized some engineer-
ing design problems. Yildiz et al. [23] used the Butterfly 
Optimization Algorithm (BOA) to optimize coupling with 
a bolted rim problem. They also used it to solve the shape 
optimization of a vehicle suspension arm. Nama et al. [24] 
introduced a new variant of Symbiotic Organisms Search 
(SOS) algorithm with self-adaptive benefit factors and modi-
fied the mutualism phase. The authors used the new algo-
rithm to solve five real-world problems. Yıldız et al. [25] 
used Equilibrium Optimization Algorithm (EOA) to solve 
a structural design optimization problem for a vehicle seat 
bracket. Yıldız et al. [26] used the Sine Cosine Algorithm 
(SCA) to solve the shape optimization of a vehicle clutch 
lever. Panagant et al. [27] used Seagull Optimization Algo-
rithm (SOA) to solve the shape optimization of a vehicle 
bracket. The design problem is to find structural shape while 
minimizing structural mass and meeting a stress constraint. 
Dhiman et al. [28] introduced the evolutionary multi-objec-
tive version of the Seagull Optimization Algorithm (SOA), 
entitled Evolutionary Multi-objective Seagull Optimiza-
tion Algorithm (EMoSOA). Twenty-four benchmark func-
tions and four real-world engineering design problems are 
validated using the proposed algorithm. Chakraborty et al. 
[29] designed a modified WOA and applied it to optimize 
real-world problems from civil and mechanical engineer-
ing disciplines. Yıldız et al. [30] developed a new approach 
based on the Grasshopper Optimization Algorithm and 
Nelder–Mead Algorithm to optimize robot gripper problem 
with a fast and accurate solution. Additionally, vehicle side 

crash design, multi‐clutch disk, and manufacturing optimiza-
tion problems were also solved with the developed method. 
Sharma et al. [31] designed a balanced variant of BOA 
incorporating mutualism and parasitism phases of SOS with 
the basic BOA. Image segmentation problem with multilevel 
thresholding approach was solved using the new algorithm. 
Chakraborty et al. [32] modified the Whale Optimization 
Algorithm (WOA) and segmented the COVID-19 X-ray 
images to diagnose the disease easily.

Though all the CEC-winning algorithms are highly effi-
cient in solving optimization problems, comparing perfor-
mance among these efficient algorithms can be an attractive 
effort. With this motivation in this study, DE and its eight 
CEC-winning variants, SaDE, jDE, SHADE, LSHADE, 
LSHADE-EpSin LSHADE-cnEpSin, LSHADE-SPACMA, 
and ELSHADE-SPACMA, are selected for the experiment. 
Table 1 displays the rank of the algorithms and the year of 
holding the position. First, CEC 2019 and CEC 2020 bound-
constrained suite is evaluated using the chosen methods, and 
then, a total of six real-world problems are solved. Among 
the problems selected, one is an unconstrained problem 
from CEC 2011 problem suite and five other constrained 
mechanical engineering design problems. Four mechanical 
engineering problems are taken from CEC 2020 non-convex 
constrained optimization suite. Statistically, the performance 
of the algorithms is analyzed using non-parametric tests like 
Friedman's test and Wilcoxon test.

The rest of the paper is organized as follows: Sect. 2 sum-
marizes the algorithms employed here for comparison. Eval-
uated IEEE CEC 2019 and CEC 2020 results are tabulated, 
and a discussion on the results is given in Sect. 3. Section 4 
represents a brief discussion of the real-world problems 
employed and a discussion on the results evaluated by the 
algorithms. Statistical analysis of the evaluated numerical 
data is carried out in Sect. 5. Discussion on the evaluated 
run time of the real-world problems is given in Sect. 6. Sec-
tion 7, finally, concludes the study with future extensions.

Table 1   List of DE variants employed

DE variants Year of competition Rank

SaDE [33] 2005 3rd
jDE [34] 2009 1st
SHADE [35] 2013 4th
LSHADE [36] 2014 1st
LSHADE-Epsin [37] 2016 1st
LSHADE-cnEpsin [38] 2017 2nd
LSHADE-SPACMA [39] 2017 3rd
ELSHADE-SPACMA [40] 2018 3rd
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2 � Brief Description of DE and Its Variants 
Employed

A brief description of DE and its CEC-winning variants pre-
ferred here for comparison is given in this section.

2.1 � Differential Evolution (DE) [6]

Differential Evolution is a population-based, stochastic 
optimization algorithm. It is used for solving the nonlinear 
optimization problem. It is a parallel direct search technique 
that uses population size ( Np ) parameter vectors as a popula-
tion for each generation. Here, weighted difference vector 
between two population members is added to a third member 
to produce a new parameter vector. The resultant vector, hav-
ing a lower objective function value than a predetermined 
population member, is selected. This selected vector will 
replace the vector with which it has been compared in the 
next generation. The performance of DE depends on the 
proper selection of the trial vector generation technique and 
corresponding control parameter values. Finding of most 
suitable method and associated parameter settings in a trial-
and-error approach involves more computational costs. Dif-
ferent approaches may need to couple with different param-
eter settings in various stages of evolution to get the best 
performance. DE has three steps in each generation: muta-
tion, crossover, and selection. In the mutation phase, each 
individual in the population produces a respective mutation 
vector based on some strategy. The mutation vector and tar-
get vector exchange internal components during crossover 
to create a resultant vector. The selection step decides which 
vectors enter the next generation using greedy binary selec-
tion between the target and trial vectors. DE∕rand∕1 is the 
mutation strategy used in basic DE. Later on, this strategy is 
altered using diverse concepts to modify the DE algorithm. 
The well-known mutation strategies used in DE algorithms 
are given below

rnd∕1∕bml ∶

(1)p
′ (k)

= pk
���1

+ F.
(
pk
���2

− pk
���3

)
;

rnd∕2∕bml ∶

(2)p
′ (k)

= pk
���1

+ F.
(
pk
���2

− pk
���3

)
+ F.

(
pk
���4

− pk
���5

)
;

Best∕1∕bml ∶

(3)p
′ (k)

= pk
����

+ F.
(
pk
���1

− pk
���2

)
;

In the above equations, pk is the kth solution of the popu-
lation (P) and p′ (k) is the donor vector. Crossover types used 
in DE can be binomial or exponential. Here, bml signifies 
the binomial crossover.

2.2 � Differential Evolution Algorithm with Strategy 
Adaptation (SaDE) [33]

Trial vector generation methods and related control param-
eters are slowly self-adapted by learning from their past 
experiences in the Self-adaptive DE (SaDE) technique to 
produce the best solutions. It keeps a candidate pool of many 
powerful trial vector generation techniques. A particular 
method is selected from the candidate pool in the evolu-
tion process for each target vector in the present population. 
The collection contains four mutation strategies, namely, 
εDE∕rand∕1∕bin,DE∕rand − to − best∕2∕bin,DE∕rand∕

2∕bin, and DE∕current − to − rand∕1ε. A technique is cho-
sen based on past probability learned of producing favorable 
solutions, and this is applied to perform mutation operation. 
To generate a trial vector in the SaDE algorithm, control 
parameters are assigned probabilistically to each target vec-
tor in the present population. The probabilities are slowly 
learned from the experience to produce better solutions. 
Here, the parameter resembled a normal distribution with a 
mean value of 0.5 and a standard deviation of 0.3. A batch 
of values is sampled randomly and used in each target vec-
tor in the present population. In this way, for small values, 
' exploitation' and large values' exploration' are maintained 
throughout the evolution process.

2.3 � Self‑adapting Control Parameters in Differential 
Evolution (jDE) [34]

It is one of the most efficient DE variants. jDE uses a self-
adaptive control technique to change the control parame-
ters. The control parameters are adjusted with the Evolu-
tion. Here, user needs not to assume the appropriate values, 

Best∕2∕bml ∶

(4)p
′ (k)

= pk
����

+ F.
(
pk
���1

− pk
���2

)
+ F.

(
pk
���3

− pk
���4

)
;

Current − to − best∕1∕bml ∶

(5)p
′ (k)

= pk + F.
(
pk
����

− pk
���1

)
+ F.

(
pk
���2

− pk
���3

)
;

Current − to − pbest∕1∕bml ∶

(6)p
′ (k)

= pk + F.
(
pk
����

− pk
)
+ F.

(
pk
���1

− pk
���2

)
.
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which are problem-dependent. This technique changes the 
control parameters F and cr during the run. The third control 
parameter Np , the number of members in a population is not 
changed during the run. The control parameters F and cr are 
adjusted during the evolution process, and both are applied 
at each level. The upper and lower value of F is 0.1 and 0.9, 
respectively. cr takes a value between (0,1). F and cr are 
evaluated using the following equations:

Value of ∅1 and ∅2 remain fixed, and it is 0.1. Superior 
values of these control parameters generate better individu-
als. This individual produces offspring and propagates these 
better parameter values. In this approach, multiple runs are 
not needed to adjust control parameters. Self-adaptive DE 
is more independent than DE.

2.4 � Success‑History‑Based Parameter Adaptation 
for Differential Evolution (SHADE) [35]

SHADE is a kind of adaptive DE. The origin of this algo-
rithm is JADE and uses the current − to − pbest∕1 muta-
tion strategy, an external archive, and adaptively controls 
the parameter values F and cr . It uses a historical memory 
of successful control parameter settings to guide the selec-
tion of future control parameter values. It uses a historical 
memory Mcr&MF that stores set of cr & F values which 
achieved a better result in the past. The SHADE approach 
maintains a historical memory with H entries for both DE 
control parameters. New cr & F pair is assessed directly by 
sampling the parameter space close to one of these stored 
pairs as per the following equations:

In any case, if the value of cr
i
 goes outside [0,1], replaced 

by the value 0 or 1, which is near the generated value. If 
the value of Fi > 1 , it is transformed to 1, and when Fi ≤ 0 , 
eqn. (x) is executed repeatedly to generate a legal value. The 
parameter p , which is used to adjust the greediness of the 
current-to-best/1 mutation strategy, is set for each solution 
in the population using the equation

(7)Fk
g+1

=

{
Fl + rnd ∗ Fu if rnd < ∅1

Fk
g
Otherwise

(8)C
r(k)

g+1
=

{
rnd if rnd < ∅2

Cr(k)
g

Otherwise
.

(9)cr
i
=

{
0, if Mcr ,rndi

=⟂

rndni
(
Mcr ,rndi

, 0.1
)
, otherwise

,

(10)Fi = rndci(
(
MF,rndi

, 0.1
)
.

(11)pi = rnd
[
pmin, 0.2

]
.

2.5 � Improving the Search Performance of SHADE 
Using Linear Population Size Reduction 
(LSHADE) [36]

L-SHADE is the extended version of SHADE with Linear 
Population Size Reduction (LPSR). It is a simple determin-
istic population resizing method that continuously reduces 
population size according to a linear function. LPSR method 
is a simplified, particular case of SVPS, which reduces the 
population linearly as a function of the number of fitness 
evaluations and requires only one parameter (initial popula-
tion sizes). In LSHADE, minimum size of the population is 
defined in advance. Reduction of population increases the 
algorithm's convergence speed and decreases the computa-
tional complexity. Excluding the population reduction pro-
cess, the search steps of LSHADE are precisely the same as 
SHADE. Population reduction is accomplished in the algo-
rithm using the formula

Whenever Np,g+1 < Np,g , then Np,g − Np,g+1 ; the number 
of population is deducted from the population.

2.6 � An Ensemble Sinusoidal Parameter Adaptation 
Incorporated with L‑SHADE (LSHADE‑EpSin) [37]

In the LSHADE-EpSin approach, a different parameter adap-
tation technique is used to select control parameters to per-
form better than the L-SHADE algorithm. Like LSHADE, 
it also uses DE∕current − to − pbest∕1 mutation strategy. 
The proposed algorithm uses a new ensemble sinusoidal 
approach to adapt the DE algorithm's scaling factor auto-
matically. This ensemble technique combines two sinusoidal 
formulas: (i) a non-adaptive sinusoidal decreasing adjust-
ment and (ii) an adaptive history-based sinusoidal increasing 
adjustment. These two strategies were used to generate scal-
ing factor for each solution of the population during the first 
half of the iteration process using the following equations:

freqn in Eq. (13) represents the frequency of sinusoidal 
function and freqni in Eq. (14) is an adaptive frequency 
estimated using an adaptive scheme. At every generation 
freqni,g is calculated using a Cauchy distribution. During 
the second half of the search process, F & cr is estimated 

(12)Np,g+1 =

[

round

(
Nmin
p

− N initl
p

maxnfes

)

∗ nfe + N initl
p

]

.

(13)Fi
g
=

1

2
∗

(

sin(2� ∗ freqn ∗ g + �) ∗
gmax − g

gmax

+ 1

)

(14)Fi
g
=

1

2
∗

(

sin
(
2� ∗ freqni,g ∗ g + �

)
∗

g

gmax

+ 1

)

;
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using Cauchy and normal distributions, respectively. This 
sinusoidal ensemble approach aims to find an effective bal-
ance between exploiting the already found best solutions and 
exploring non-visited regions. The Gaussian walks-based 
local search method is used to increase the exploitation abil-
ity of the process. In this method, a self-adaptive system is 
used to adapt the control settings during the search. A new 
ensemble of adaptive version sinusoidal techniques is used 
to adjust the scaling factor values automatically.

2.7 � Ensemble Sinusoidal Differential Covariance 
Matrix Adaptation with Euclidean 
Neighborhood (LSHADE‑cnEpSin) [38]

This algorithm is an enhanced version of LSHADE-EpSin. 
The modification is based on two main changes, like an 
ensemble of sinusoidal approaches based on performance 
adaptation and covariance matrix learning for the crossover 
operator. Non-adaptive sinusoidal decreasing adjustment 
and an adaptive sinusoidal increasing adjustment are used 
to adapt the scaling factor. In this method, a performance 
adaptation mechanism based on previous success selects the 
sinusoidal waves. To set up a satisfactory coordinate system 
and improve LSHADE-EpSin, covariance matrix learning 
with the Euclidean neighborhood is used for the crosso-
ver operator. This will tackle issues with high correlation 
among the variables. In this technique, the individuals are 
first sorted according to their function values, and the best 
individual, P, is marked. After that, the Euclidean distance 
is calculated between P and every other individual in the 
population. Finally, the individuals are sorted based on their 
Euclidean distance.

2.8 � LSHADE with Semi‑parameter Adaptation 
Hybrid with CMA‑ES (LSHADE‑SPACMA) [39]

It is a hybrid variant of LSHADE-SPA and modified CMA-
ES. LSHADE-SPA was proposed with a semi-parameter 
adaptation scheme to generate scaling factor. Two different 
strategies were adopted for estimation of F & cr. During the 
first half of the iteration process, F & cr are evaluated using 
the formulas given below

Mcr(i) is the position selected arbitrarily from the pool of 
successful mean values. rnd, here, is a random number 
between (0,1). During the second half of the search process, 
the estimation process of Cr does not change, and scaling 

(15)Fi = 0.45 + 0.1 ∗ rnd

(16)Cr(i) = rndn
(
Mcr(i), 0.1

)
;

factor is selected using Cauchy distribution as per the fol-
lowing equation:

� here denotes the standard deviation. After every iteration, 
Lehmer mean is evaluated using successful Fi values and 
one position of MF is updated. LSHADE-SPA and modified 
CMA-ES are hybridized and named LSHADE-SPACMA. 
The modified CMA-ES goes through the crossover operation 
to enhance the exploration capability. In this approach, both 
techniques work parallelly on the same population, and more 
solutions from the population will be allocated slowly to the 
algorithm with better performance.

2.9 � Enhanced LSHADE‑SPACMA Algorithm 
(ELSHADE‑SPACMA) [40]

An Enhanced LSHADE-SPACMA technique is the improved 
variant of LSHADE-SPACMA. In this approach, the p value 
of the DE∕current − to − pbest∕1 strategy responsible for 
the greediness of the mutation strategy is made dynamic. 
The larger value of p enhances the exploration, and smaller 
values will enhance the exploitation. p is calculated using 
the following equation:

pinitl and pmin symbolizes the initial and minimum value of 
the variable. Again, a directed mutation strategy has been 
added within the hybridization framework to improve the 
performance. Dual enhancement is done for better perfor-
mance improvement of LSHADE-SPACMA. First, 50% of 
each LSHADE-SPACMA and AGDE algorithm is integrated 
into a hybridized framework. In this process, the population 
is shared alternatively among the algorithms. The second 
adjustment is the evaluation of p according to the behavior 
of ELSHADE-SPACMA. Value of p starts with a bigger 
value to increase exploration and reduces linearly later on. 
This technique improves the explorative capability at the 
end of the search.

3 � Experimental Results and Discussion 
on IEEE CEC 2019 and CEC 2020 Functions

The selected algorithms are first tested with IEEE CEC 
2019 [41] function suite. The suite contains ten compli-
cated multimodal functions. Then, the IEEE CEC 2020 [42] 
bound-constrained functions are evaluated. This function set 
contains unimodal, basic, hybrid, and composite categories 

(17)Fi = rndc
(
MFi , �

)
,

(18)pg+1 =

[

round

(
pmin − pinitl

maxnfes

)

∗ nfe + pinitl

]

;



1147Comparative Performance Analysis of Differential Evolution Variants on Engineering Design…

1 3

functions. In this paper, the function set is assessed using 
dimension 20. Appendix-I represents the function sets 
used for the comparison. The termination criteria are set as 
D*10,000 function evaluations for all the comparison algo-
rithms during the IEEE function evaluation. The parameters 
of all the chosen algorithms were kept the same as advised 
in the respective original study. The results are collected as 
the average value of 30 independent runs. The experiment's 
device configuration consists of MATLAB version R2015a 
with an Intel i3 processor, 8 GB DDR-4 RAM, and operating 
system Windows10.

3.1 � Comparison Using IEEE CEC 2019 Functions

DE and its variants were used to examine the results, as 
shown in Table 2. The table shows the average (avg), stand-
ard deviation (sd), and best (bst) values calculated by the 
algorithms for each of the functions. "NA" represents a func-
tion that an algorithm cannot evaluate. An equivalent value 
denoted by the symbol ≈. SHADE, LSHADE-SPACMA, 
LSHADE-cnEpSin, and ELSHADE-SPACMA outperform 
comparison algorithms on 3, 1, 1, and 3 functions, respec-
tively, according to Table 2. SHADE calculates the minimal 
optimal value on F2, F3, and F5. LSHADE-SPACMA and 
LSHADE-cnEpSin determine the ideal value for functions 
F4 and F9. ELSHADE-SPACMA generates the minimum 
value for functions F7, F8, and F10. The function F1 can-
not be evaluated using the LSHADE-cnEpSin algorithm. On 
functions F1 and F6, just a few algorithms produce identi-
cal optimal values. SHADE and ELSHADE-SPACMA 
were created as the best-performing algorithms. DE and 
jDE appeared as the worst algorithms, since they generated 
maximum value on four functions.

3.2 � Comparison Using IEEE CEC 2020 Functions

DE and its variants were used to examine the results, as 
shown in Table 3. The same optimal value evaluated by 
many algorithms is an equivalent value denoted by the 
sign ≈. Table 3 show that DE, SHADE, LSHADE-EpSin, 
LSHADE-SPACMA, and LSHADE-cnEpSin outperform 
comparison algorithms on the 2, 3, 1, 1, and 1 function, 
respectively. DE determines the best value for the func-
tions F15 and F20. SHADE calculates the minimal optimal 
value on F12, F14, and F19. LSHADE-EpSin, LSHADE-
SPACMA, and LSHADE-cnEpSin, respectively, measure 
the best value for functions F13, F16, and F17. On functions 
F11 and F18, just a few algorithms produce identical optimal 
values. SHADE has been identified as the algorithm with 
the most significant results. On CEC 2020 functions, DE 
and LSHADE-EpSin appeared as the worst algorithms, since 
both of them generated maximum value on three functions.

4 � Description of Real‑World Problems 
Employed and Discussion on the Results

Total six engineering design problems are solved using the 
algorithms employed. Among the issues selected, one is 
unconstrained, and the rest are constrained. The termina-
tion criteria are set as D*10,000 function evaluations for 
all the comparison algorithms during the evaluation. The 
parameters of all the chosen algorithms were kept the same 
as advised in the respective original study. While solving 
constrained problems, the death penalty method [43] is used.

This simple and popular strategy simply rejects the 
population's unfeasible answers. There will never be any 
unfeasible solutions in the population in this circumstance. 
According to this process, if any constraint is violated, a 
penalty value is assigned, and later sum of all the penalty 
values is added or subtracted with the objective function. 
This strategy should perform well if a possible search space 
is convex or a reasonable portion of the entire search space. 
However, when the problem is extremely limited, the algo-
rithm will waste a lot of time identifying a small number of 
viable solutions. Furthermore, just evaluating points in the 
viable portion of the search space precludes superior solu-
tions from being found.

4.1 � Parameter Estimation for Frequency‑Modulated 
Sound Waves Problem

This problem is collected from CEC 2011 real-world opti-
mization problem suit [44]. Description of the problem and 
analysis of the results assessed are given below:

4.1.1 � Problem Definition

The frequency-modulated (FM) sound system is necessary 
for the present-day musical frameworks. The goal here is 
to produce a sound like the perfect sound naturally, and the 
highlights are extricated utilizing dissimilarity of highlights 
among integrated and goal sounds. This cycle of highlight 
extraction is followed, except if both integrated and target 
sounds become comparative. The issue is exceptionally 
convoluted and with multi-modular capacity having epista-
sis. The optimal value of objective function f (X∗) = 0 . A 
considerable number of researchers have already solved the 
problem. The mathematical expression for assessed sound 
y(t) and wanted sound y0(t) waves are given by

(19)y(t) = a1.sin(�1.t.� + a2.sin
(
�2.t.� + a3.sin

(
�3.t.�

))
)

(20)
y0(t) = (1.0).sin(5.0.t.� − 1.5.sin(4.8.t.� + 2.0.sin(4.9.t.�))).
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In this problem, � =
2Π

100
  and the parameters lie within 

the range [− 6.4, 6.35]. The fitness function is defined as 
the summation of square errors between the assessed sound 
and the wanted sound. The objective function of the problem 
is defined as

A diagram of the problem is given in Fig. 2a.

4.1.2 � Analysis of Result

Table 4 shows the results of the algorithms used to calcu-
late them. Table 4 reveals that most of the algorithms can 
determine the best ideal value. DE identifies the problem's 
minimal average, standard deviation, and best among all 
the comparison algorithms. The other two algorithms on 
the list, SaDE, and LSHADE, are ranked second and third. 
LSHADE-SPACMA calculates the problem's worst mean 
value.

4.2 � Car Side Impact Design Problem

This problem was initially proposed by Gu et al. [45]. A dia-
gram of the problem is given in Fig. 2b. Description of the 
problem and discussion on the evaluated results are given 
below:

4.2.1 � Problem Definition

The car is exposed to a side impact on the foundation of the 
European Enhanced Vehicle Safety Committee (EEVC) pro-
cedures. The objective is to minimize the car's total weight 
using eleven mixed variables while maintaining safety per-
formance according to the standard. These variables repre-
sent the thickness and material of critical parts of the vehi-
cle. The 8th and 9th variables are discrete, and these are 
material design variables, while the rest are continuous and 
represent thickness design variables.

The symbols a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11 are 
used here to represent the variables thickness of B-pillar 
inner, the thickness of B-pillar reinforcement, the thick-
ness of floor side inner, the thickness of cross members, the 
thickness of door beam, the thickness of door beltline rein-
forcement, the thickness of roof rail, the material of B-pillar 
inner, the material of floor side inner, barrier height, and bar-
rier hitting position, respectively. The problem is subjected 
to ten inequality constraints. The car side impact design is 
considered a confirmed case of a mechanical optimization 
problem with mixed discrete and continuous design vari-
ables. This problem can be mathematically described as

(21)f (X) =

100∑

t=0

(
y(t) − y0(t)

)2
.

Objective function

subject to:

where

(22)a =
{
a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11

}
.

(23)
Minf (a) = 1.98 + 4.90a1 + 6.67a2 + 6.98a3

+ 4.01a4 + 1.78a5 + 2.73a7,

(24)
h1(a) = 1.16 − 0.3717a2a4 − 0.00931a2a10

− 0.484a3a9 + 0.01343a6a10 ≤ 1

(25)

h2(a) = 0.261 − 0.0159a1a2 − 0.188a1a8 − 0.019a2a7

+ 0.0144a3a5 + 0.0008757a5a10 + 0.080405a6a9

+ 0.00139a8a11 + 0.00001575a10a11 ≤ 0.32,

h3(a) = 0.214 + 0.00817a5 − 0.131a1a8

− 0.0704a1a9 + 0.03099a2a6−

(26)

0.018a2a7 + 0.0208a3a8 + 0.121a3a9

− 0.00364a5a6 + 0.0007715a5a10

− 0.0005354a6a10 + 0.00121a8a11 ≤ 0.32,

h4(a) = 0.074 − 0.061a2 − 0.163a3a8 + 0.001232a3a10 − 0.166a7a9

(27)+0.227a2
2
≤ 0.32,

(28)
h5(a) = 28.98 + 3.818a3 − 4.2a1a2 + 0.0207a5a10

+ 6.63a6a9 − 7.7a7a8 + 0.32a9a10 ≤ 32,

(29)

h6(a) = 33.86 + 2.95a3 + 0.1792a10 − 5.05a1a2

− 11.0a2a8 − 0.0215a5a10 − 9.98a7a8

+ 22.0a8a9 ≤ 32,

(30)
h7(a) = 46.36 − 9.9a2 − 12.9a1a8 + 0.1107a3a10 ≤ 32,

(31)
h8(a) = 4.72 − 0.5a4 − 0.19a2a3 − 0.0122a4a10

+ 0.009325a6a10 + 0.000191a2
11

≤ 4,

(32)

h9(a) = 10.58 − 0.674a1a2 − 1.95a2a8 + 0.02054a3a10

− 0.0198a4a10 + 0.028a6a10 ≤ 9.9,

(33)

h10(a) = 16.45 − 0.489a3a7 − 0.843a5a6 + 0.0432a9a10

− 0.0556a9a11 − 0.000786a2
11

≤ 15.7,
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Fig. 2   Diagram of the real-world problems
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4.2.2 � Analysis of Results

Table 5 shows the results of the comparison algorithms' cal-
culations. Table 5 reveals that LSHADE-EpSin is capable of 
finding the smallest best value. On the problem, LSHADE-
cnEpSin determines the second minimum optimal value. 
LSHADE-EpSin determines the issue's minimal average 
value and the best value among all the comparison methods. 
Other algorithms, however, found a lower standard deviation 
value. Different algorithms rated 2nd and 3rd are DE and 
LSHADE and ELSHADE-SPACMA. SaDE calculates the 
problem's worst mean value.

4.3 � Multiple Disk Clutch Brake Design Problem

It comes from the category of a mechanical engineering 
design problem. Figure 2c represents the diagram of the 

0.5 ≤ ai ≤ 1.5, i = 1, 2, 3, 4, 5, 6, 7, a8, a9 ∈ (0.192, 0.345),

−30 ≤ a10, a11 ≤ 30.

problem. The problem is described in [29]. Details of the 
problem and analysis of the results assessed by different 
algorithms are given below:

4.3.1 � Problem Definition

The minimization of the mass of multiple disk clutch brake 
is the prime objective of the problem. This can be achieved 
by optimizing five decision variables, namely inner radius 
( x1) , outer radius ( x2) , disk thickness ( x3) , the force of actua-
tors ( x4) , and the number of frictional surfaces ( x5) . It is 
a constrained problem and contains eight nonlinear con-
straints. The mathematical formulation of the problem is 
given below.

Objective function

Constraints

(34)Minf (x) = �
(
x2
2
− x2

1

)
x3
(
x5 + 1

)
�.

(35)h1(x) = −pmax + prz ≤ 0,

Table 4   Comparison of results 
on the parameter estimation for 
frequency-modulated sound 
waves problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation 
time (seconds)

Optimal value

DE 0 0 0 1.8978e + 02 0
jDE 9.37021e−01 2.51343 7.11378e−17 2.2937e+02
SaDE 1.36053e−03 6.46447e−03 0 4.1959e+02
SHADE 2.39056 3.22852 0 1.7953e+02
LSHADE 1.18685 2.48267 0 2.1719e+02
LSHADE-EpSin 3.90314 4.61850 9.45145e−04 2.2417e+02
LSHADE-SPACMA 1.35825e+01 5.77936 0 2.3020e+02
LSHADE-cnEpSin 8.58850 4.64689 1.40708 2.4162e+02
ELSHADE-SPACMA 4.90410 5.64013 0 2.2765e+02

Table 5   Comparison of results 
on the car side impact design 
problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation 
time (seconds)

Optimal value

DE 2.28429e+01 5.35960e−15 2.28429e+01 4.2466e+02 2.189634e+01
jDE 2.28429e+01 1.94790e−10 2.28429e+01 3.6223e+02
SaDE 2.28429e+01 3.91906e−08 2.28429e+01 7.3100e+02
SHADE 2.28429e+01 7.52199e−15 2.28429e+01 2.7731e+02
LSHADE 2.28429e+01 6.11801e−15 2.28429e+01 3.4284e+02
LSHADE-EpSin 2.18963e+01 2.84921 1.55150e+01 3.8264e+02
LSHADE-SPACMA 2.28429e+01 6.29335e−15 2.28429e−15 4.0453e+02
LSHADE-cnEpSin 2.26907e+01 1.61958 1.65571e+01 3.8240e+02
ELSHADE-SPACMA 2.28429e+01 6.11801e−15 2.28429e+01 3.4728e+02
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where

A = �(x2
2
− x

2

1
),

p
rz
=

x4

A
,

(36)h2(x) = przVsr − Vsr,maxpmax ≤ 0,

(37)h3(x) = ΔR + x1 − x2 ≤ 0,

(38)h4(x) = −Lmax + (x5 + 1)
(
x3 + �

)
≤ 0,

(39)h5(x) = sMs −Mh ≤ 0,

(40)h6(x) = T ≥ 0,

(41)h7(x) = −Vsr,max + Vsr ≤ 0,

(42)h8(x) = T − Tmax ≤ 0,

Mh =
2

3
�x4x5

x3
2
− x3

1

x2
2
− x2

1

,

� =
Πn

30

rad

s
,

Vsr =
ΠRsrn

30
,

Rsr =
2

3

x3
2
− x3

1

x2
2
x2
1

,

T =
Iz�

Mh +Mf

,

Variable range

4.3.2 � Analysis of Result

Table 6 shows the results provided by the comparison algo-
rithms. Table 6 shows that, except for LSHADE-SPACMA 
and LSHADE-cnEpSin, all algorithms discover the same 
value as average ideal value, standard deviation value, and 
best value. On this problem, LSHADE-cnEpSin is the worst 
performer of the compared algorithms.

4.4 � Weight Minimization of a Speed Reducer 
Problem

The issue is related to the Mechanical Engineering disci-
pline. A diagram of the problem is given in Fig. 2d.

4.4.1 � Problem Definition

The notched is used as an independent element to reduce or 
increase the speed, and a firm covering is used to enclose 
them. When this unit is used to minimize any device's speed, 
it is called a speed reducer. Reducer is widely used in tur-
bines, rolling mills to reduce speed. The parameters required 
to optimize this problem are the gear's b-face width, z-num-
ber of pinning teeth, m-teeth module, l1-length of the shaft-1 

ΔR = 20, Lmax = 30,� = 0.6,

Vsr,max = 10, � = 0.5, s = 1.5,

Tmax = 15, n = 250, Iz = 55

Ms = 40,Mf = 3, andpmax = 1.

60 ≤ x1 ≤ 80, 90 ≤ x2 ≤ 110, 1 ≤ x3 ≤ 3, 0 ≤ x4 ≤ 1000, 2 ≤ x5 ≤ 9.

Table 6   Comparison of results 
on the multiple disk clutch 
brake design problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation 
time (seconds)

Optimal value

DE 2.35242e–01 1.41150e–16 2.35242e–01 1.57862e+02 2.352424e–01
jDE 2.35242e–01 1.41150e–16 2.35242e–01 2.02500e+02
SaDE 2.35242e–01 1.41150e–16 2.35242e–01 3.69844e+02
SHADE 2.35242e–01 1.41150e–16 2.35242e–01 1.53062e+02
LSHADE 2.35242e–01 1.41150e–16 2.35242e–01 1.84641e+02
LSHADE-EpSin 2.35242e–01 1.41150e–16 2.35242e–01 1.91125e+02
LSHADE-SPACMA 2.42347e–01 2.76493e–02 2.35242e–01 1.92797e+02
LSHADE-cnEpSin 4.84572e–01 1.05304e–01 3.11188e–01 2.00047e+02
ELSHADE-SPACMA 2.35242e–01 1.41150e–16 2.35242e–01 1.96078e+02
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between bearing, l2-length of the shaft-2 between bearing, 
d1 - diameter of shaft-1, and d2 - diameter of shaft-2. Here, the 
problem's design variables are represented by the position 
vectors of the algorithm in the following manner:

Face width of the gear (b) = x1
Teeth module (m) = x2
Number of pinning teeth (z) = x3
Length of shaft-1 between bearing (l1)= x4
Length of shaft-2 between bearing (l2)= x5
Diameter of shaft-1 (d1)  = x6
Diameter of shaft-1 (d2)  = x7.
The problem is found in [29]. The mathematical repre-

sentation of the problem is
Objective function

(43)

Min.f (x) =0.7854x2
2
x1

(
14.9334x3 + 3.3333x2

3
− 43.0934

)

+ 0.7854
(
x4x

2

6
+ x5x

2

7

)
+ 7.477

(
x
3

7
+ x

3

6

)

− 1.508
(
x
2

7
+ x

2

6

)

(44)h1(x) = x1x
2

2
x3 + 27 ≤ 0,

(45)h2(x) = −(1)x2
2
x2
3
+ 397.5 ≤ 0,

(46)h3(x) = −x2x
4

2
x3x

−3
4

+ 1.93 ≤ 0,

(47)h4(x) = −x2x
4

7
x3x

−3
5

+ 1.93 ≤ 0,

(48)h5(x) = 10x−3
6

√
16 ⋅ 91 × 106 +

(
745x4x

−1
2
x
−1
3

)2
− 1100 ≤ 0,

(49)
h6(x) = 10x−3

7

√
157.5 × 10

6 +
(
745x5x

−1
2
x−1
3

)2
− 850 ≤ 0,

(50)h7(x) = x2x3 − 40 ≤ 0,

Variable range

4.4.2 � Analysis of Result

Table 7 shows the estimated results from the comparison 
algorithms. Examining Table 7 shows that all algorithms, 
except LSHADE-cnEpSin and LSHADE-EPSin, find the 
same value as average ideal value, standard deviation value, 
and best value as average optimal value, standard deviation 
value, and best value. LSHADE-cnEpSin can determine 
the optimal value, which is lower than the value found in 
the literature. The average and best values determined by 
LSHADE-cnEpSin are lower than those determined by the 
other algorithms used in this study. LSHADE-EpSin is the 
worst contrast algorithms in terms of average and standard 
deviation values.

4.5 � Welded Beam Design Problem

This is a design problem from the mechanical engineering 
discipline. Figure 2e shows a diagram of the problem.

(51)h8(x) = −x1x
−1
2

+ 5 ≤ 0,

(52)h9(x) = x1x
−1
2

− 12 ≤ 0,

(53)h10(x) = 1.5x6 − x4 + 1.9 ≤ 0,

(54)h11(x) = 1.1x7 − x5 + 1.9 ≤ 0.

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5, 7.3 ≤ x4, x5 ≤ 8.3.

Table 7   Comparison of results on the weight minimization of a speed reducer problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation time (seconds) Optimal value

DE 2.99442e+03 0 2.99442e+03 2.12390e+02 2.9944e + 03
jDE 2.99442e+03 0 2.99442e+03 2.52094e+02
SaDE 2.99442e+03 0 2.99442e+03 4.93062e+02
SHADE 2.99442e+03 0 2.99442e+03 1.924844e+02
LSHADE 2.99442e+03 0 2.99442e+03 2.28797e+02
LSHADE-EpSin 3.01072e+03 8.92779e+01 2.99442e+03 2.47641e+02
LSHADE-SPACMA 2.99442e+03 0 2.99442e+03 2.53031e+02
LSHADE-cnEpSin 2.82398e+03 1.13335e+01 2.80147e+03 2.66656e+02
ELSHADE-SPACMA 2.99442e+03 0 2.99442e+03 2.62484e+02
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4.5.1 � Problem Definition

The minimization of the fabrication cost of the welded beam 
is the main objective of the problem. The problem comprises 
five constraints and four variables. Limitations are shear 
stress (�) , bending stress within the beam (θ), buckling load 
(Pc) , and end deflection of the beam (�) . The variables to be 
optimized here are the height of the bar (t) , the thickness of 
the weld (h), the thickness of the bar (b), and the length of the 
clamped bar (l).h, l, t, and b in the problem are represented by 
x1 , x2 , x3 , and x4. The problem is described in the Mechanical 
engineering category of the literature [29]. The mathemati-
cal formulation of the problem is.

Objective function

subject to.
h1(x) = x1 − x4 ≤ 0 , (56)

where

(55)Min.f (x) = 0.04811x3x4
{
x2 + 14

}
+ 1010471x2

1
x2

(57)h2(x) = �(x) − �max ≤ 0,

(58)h3(x) = P ≤ Pc(x),

(59)h4(x) = �max ≥ �(x),

(60)h5(x) = �(x) − �max ≤ 0,

R =

�
x
2

2

4
+

�
x1 + x3

2

�2

, J = 2
x
2

2

4
+

�
2��

x1+x3

2

��√
2x1x2

�

,

σ(x) =
6PL

x4x
2

3

, δ(x) =
6PL3

Ex2
3
x4

,Pc(x) =
4.013Ex3x

3

4

6L2

(

1 −
x3

2L

√
E

4G

)

,

where

4.5.2 � Analysis of Result

Results calculated by the comparison algorithms are pre-
sented in Table 8. Table 8 reveals that the average value and 
the best value evaluated by most employed algorithms are 
the same. LSHADE-cnEpSin is not suitable for this prob-
lem. Though other algorithms except LSHADE-EpSin and 
LSHADE-cnEpSin generate the same average value and best 
value, their standard deviation value differs. The minimum 
standard deviation value designates the algorithm's robust-
ness in finding the solution. SaDE, DE, and LSHADE-
SPACMA are ranked as 1st, 2nd, and 3rd algorithms based 
on generated standard deviation values. The performance of 
LSHADE-EpSin is recorded as the worst on this problem.

4.6 � Robot Gripper Problem

This problem was first modeled by Osyczka et al. [46]. It is a 
design problem from the discipline Mechanical Engineering. 
Diagram of the problem are given in Fig. 2f, g.

4.6.1 � Problem Definition

This problem has seven decision variables denoted by 
x =

[
a, b, c, e, f , I, �

]
 where, a, b, c, e, f , I, are dimensions of 

the gripper, and � is the angle between c and b shown in 
Fig. 2g. The objective function of the problem is the absolute 
value of the difference between the maximum and minimum 

L = 14,P = 6000,E = 30 × 16,G = 12 × 10
6

�max = 30, 000, �max = 0.25, �max = 13600,

0.1 ≤ x3, x2 ≤ 10, 0.125 ≤ x1 ≤ 2, 0.1 ≤ x4 ≤ 2.

Table 8   Comparison of results 
on the welded beam design 
problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation time 
(seconds)

Optimal value

DE 1.67021 1.93398e–16 1.67021 1.26031e+02 1.67021e+00
jDE 1.67021 1.10100e–08 1.67021 1.53297e+02
SaDE 1.67021 1.88951e–16 1.67021 2.72844e+02
SHADE 1.67021 2.25840e–16 1.67021 1.18000e+02
LSHADE 1.67021 2.18182e–16 1.67021 1.36906e+02
LSHADE-EpSin 1.69763 1.66363e–02 1.67473 1.54141e+02
LSHADE-SPACMA 1.67021 1.97744e–16 1.67021 1.53266e+02
LSHADE-cnEpSin NA NA NA NA
ELSHADE-SPACMA 1.67021 2.14251e–16 1.67021 1.51109e+02
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force generated by the robot. The mathematical formulation 
of the robot gripper problem is shown below:

subject to

where

(61)f (x) = |
|maxFK(x, z) − minFK(x, z)

|
|

(62)g1(x) = y
(
x, zmax

)
− Ymin ≤ 0

(63)g2(x) = y
(
x, zmax

)
≤ 0

(64)g3(x) = Ymax − y(x, 0) ≤ 0

(65)g4(x) = y(x, 0) − YG ≤ 0

(66)g5(x) = I2 + e2 − (a + b)2 ≤ 0

(67)g6(x) = b2 − (a − e)2 −
(
I − zmax

)2
≤ 0

(68)g7(x) = zmax − I ≤ 0,

� = ArcCos

(
g2 + a2 − b2

g × 2b

)

+ �; g2 − e2

= (z − I)2;� = ArcTan

(
e

1 − z

)

� = ArcCos

(
g2 + b2 − a2

g × 2b

)

− �; y(x, z)

= 2(c + e + f × sin(� + �))

Fk =

(
sin(� + �) × b × p

2c × cos�

)

;Ymin = 50;Ymax = 100;

YG = 150;zmax = 100;p = 100

4.6.2 � Analysis of Result

The optimal value of this problem is 2.5287918415. Numeri-
cal results evaluated by the algorithms are given in Table 9. 
LSHADE records the average value close to the optimal 
value found in the literature. The standard deviation value 
calculated by SHADE is minimum among the algorithms. 
LSHADE-EpSin algorithm evaluates the best optimal 
value. LSHADE-SPACMA is not suitable for this problem. 
SHADE and ELSHADE-SPACMA are ranked as 2nd and 
3rd, respectively, on this problem. LSHADE-cnEpSin is the 
worst algorithms in terms of results among the compared 
algorithms.

5 � Statistical Analysis

Statistical test of the evaluated results is performed using 
Friedman's rank test of results on IEEE CEC 2019 and IEEE 
2020 functions. The Wilcoxon signed-rank test is executed 
based on the algorithms evaluating real-world problems 
employed. Friedman's test and Wilcoxon signed-rank test 
fall into the non-parametric statistical hypothesis test cate-
gory and compare two related samples, matched samples, or 
repeated measurements on a single sample to assess whether 
their population mean ranks differ (i.e., it is a paired dif-
ference test). Tables 10 and 11 illustrate the outcomes of 
Friedman's test, and Table 12 demonstrates the results of the 
Wilcoxon signed-rank test. Analysis of the data in Table 10 
exposes that SHADE, ELSHADE-SPACMA, and LSHADE-
EpSin can be ranked as 1st, 2nd, and 3rd, respectively. 
Similarly, the analysis of Table 11 reveals that SHADE, 
LSHADE, and ELSHADE-SPACMA are the algorithms that 

10 ≤ f , a, b ≤ 150;0 ≤ e ≤ 50;100 ≤ l ≤ 300;

100 ≤ c ≤ 200;1 ≤ � ≤ 3.14.

Table 9   Comparison of results 
on the robot gripper problem

Bold numbers in the table indicate superior values

Algorithms Mean Sd Best Evaluation time 
(seconds)

Optimal value

DE 2.62965 1.56533e–01 2.52681 8.49294e+03 2.52879e+00
jDE 0 0 0 9.75948e+03
SaDE 2.56782 6.39773e–02 2.52681 9.02325e+03
SHADE 2.52681 3.19622e–14 2.52681 8.69750e+03
LSHADE 2.52790 5.92604e–03 2.52681 8.59072e+03
LSHADE-EpSin 2.65886 1.62913e–01 2.52739 9.20495e+03
LSHADE-SPACMA NA NA NA NA
LSHADE-cnEpSin 2.82731 2.75806e–01 2.14118 8.92586e+03
ELSHADE-SPACMA 2.52681 3.94040e–14 2.52681 8.45197e+03
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can be ranked as 1st, 2nd, and 3rd, respectively. Therefore, 
the performance of SHADE and ELSHADE-SPACMA are 
consistent with the IEEE functions employed in this study.

Table 12 displays the results of the Wilcoxon signed-rank 
test on real-world problems. It can be seen from the results 
that DE is the best algorithm in terms of the minimum rank 
obtained by the algorithm. ELSHADE-SPACMA and SaDE 
are the algorithms ranked as 2nd and 3rd. Evaluating the 
mean final rank, it can be concluded that SHADE is the best 
algorithm and ELSHADE-SPACMA is the 2nd best algo-
rithm among the algorithms employed here for comparison.

6 � Run‑Time Analyses of the Algorithms 
in Real‑World Problems

The total time taken by every algorithm to evaluate the 
mean, standard deviation, and best value within 30 inde-
pendent runs on a particular problem is shown as the algo-
rithm's run time. The run time of a problem depends on 
the algorithm's complexity, the number of dimensions, and 

the complexity of the problem. The six real-world issues 
evaluated in this study have 6, 11, 5, 7, 4, and 7 dimen-
sions, respectively. Analyzing the runtimes being assessed 
in Tables 6, 7, 8 and 9 exposes that SHADE evaluates the 
first five out of six problems in less run time than other algo-
rithms. ELSHADE-SPACMA optimizes the 6th problem in 
a minimum run time than the compared algorithms. The 
second problem (car side impact design) has the maximum 
dimension among the real-world problems employed. Thus, 
the evaluation time of this problem is more. Due to the prob-
lem complication evaluation time of the last problem (robot 
gripper) is greater than all the problems.      

7 � Conclusion

Numerous optimization algorithms are available in the lit-
erature. Among them, considering the efficacy of DE, the 
researchers have modified it extensively. Several variants 
of DE have won the CEC competitions. These CEC-win-
ning variants are regarded as strong algorithms to solve 

Table 11   Result of Friedman's rank test on IEEE CEC 2020 functions

Bold numbers in the table indicate superior values

Algorithm Mean rank Rank sum Final rank P value

DE 4.9 49 5 P value (0.000 < 0.01) indicates that Ho is rejected at 1% level of significance. i.e., 
there is a significant difference between the performances of different methods at 
a 1% level of significance

jDE 6.1 61 9
SaDE 5.65 56.5 7
SHADE 3.5 35 1
LSHADE 4.05 40.5 2
LSHADE-EpSin 5.85 58.5 8
LSHADE-SPACMA 4.95 49.5 6
LSHADE-cnEpSin 4.7 47 4
ELSHADE-SPACMA 4.3 43 3

Table 10   Result of Friedman's rank test on IEEE CEC 2019 functions

Bold numbers in the table indicate superior values

Algorithm Mean 
rank

Rank sum Final rank P value

DE 6.8 68 8 P value (0.000 < 0.01) indicates that Ho is rejected at 1% level of significance. i.e., 
there is a significant difference between the performances of different methods at 
a 1% level of significance

jDE 7.7 77 9
SaDE 5.8 58 7
SHADE 2.6 26 1
LSHADE 5.3 53 6
LSHADE-EpSin 3.5 35 3
LSHADE-SPACMA 4.2 42 4
LSHADE-cnEpSin 4.6 46 5
ELSHADE-SPACMA 3.2 32 2
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complicated problems. Comparison of performance within 
the CEC competition-winning variants of DE has never been 
done as per our knowledge. In this study, performance of DE 
and its eight CEC competition-winning variants is studied, 
evaluating IEEE CEC 2019 function suite, IEEE CEC 2020 
function suite, and one unconstrained and five constrained 
real-world engineering problems. The time taken by the 
algorithms for solving real-world problems is also assessed. 
Besides comparing the performance of the algorithms with 
numerical results, their performance is also analyzed statisti-
cally. Performance analysis exposes that SHADE is the best 
algorithm while solving CEC functions, and in five out of six 
real-world problems, it has been found the faster in calculat-
ing the result. On real-world problems, DE outperforms all 
its variants used here for comparison. ELSHADE-SPACMA 
emerged as a unique algorithm ranked 2nd or 3rd in every 
problem set. Evaluated optimal result in weight minimiza-
tion of a speed reducer design problem is recorded mini-
mum than the optimal value found in the literature. Finally, 
it can be concluded that among the compared algorithms, 
SHADE and ELSHADE-SPACMA can effectively solve 

complex problems and can be used to solve other problems 
from engineering and industry.
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