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Abstract 

Thanks to its excellent mechanical properties, magnesium alloys have many potential applications in the aerospace and other fields. 
However, failure to adequately solve corrosion problems of magnesium alloy becomes one of the factors restricting its wide use in many 
industrial fields. Inspired by nature, researchers designed and fabricated bio-inspired water-repellent (superhydrophobic and slippery 
liquid-infused porous surface) surfaces with special wetting properties by exploring the surface microstructures of plants and animals such 
as lotus leaf and nepenthes pitcher, exhibiting excellent corrosion-resistant performance. This article summarizes the research progress on 
corrosion resistance of magnesium alloys with bio-inspired water-repellent properties in recent years. It mainly introduces the corrosion 
reasons, types of corrosion of magnesium alloys, and the preparation of magnesium alloys with bio-inspired water-repellent properties to 
improve corrosion resistance. In particular, it is widely used and effective to construct water-repellent and anti-corrosion coating on the 
surface of magnesium alloy by surface treatment. It is hoped that the research in this review can broaden the application range of mag-
nesium alloys and provide a powerful reference for the future research on corrosion resistance of magnesium alloys. 
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1  Introduction 

Magnesium alloy has the advantages of light 
weight, high specific strength and specific rigidity, good 
shock absorption performance, excellent electrical and 
thermal conductivity, and is easy to cut and renewa-
ble[1–6]. It is recognized as the most promising light-
weight and green engineering material, and has many 
potential applications and increasingly positive devel-
opment prospects in the fields of aerospace, transporta-
tion, electronic devices, biomedicine, and our daily 
life[7–11]. Magnesium and its alloys are expected to be-
come alternative materials for other traditional metals by 
virtue of abundant resources and many excellent prop-
erties[12–15]. 

The positive prospect of magnesium alloy as a 
structural material, however, is in distinct contrast to the 
situation it has been facing nowadays[16]. One of the 
reasons is the corrosion problem of magnesium[17,18]. As 
a matter of fact, the chemical properties of magnesium 
are very active, and its standard electrode potential is 

−2.37 V, which is lower than that of Fe, Zn, Al and other 
metal elements[19,20]. It is very easy to form galvanic 
corrosion with impurity elements or the second phase[21]. 
Moreover, magnesium alloy products are also easily 
oxidized during processing and use[22–24], and thus the 
loose and porous surface oxide film is difficult to form 
stable and effective protection for the alloy[25,26]. It is 
obvious that poor corrosion resistance has become a 
bottleneck restricting the potential of magnesium al-
loys[27]. Therefore, improving the corrosion resistance of 
magnesium alloys is not only extremely important in 
practical applications but can offer significant economic 
returns[28,29]. 

At present, the main methods to improve the cor-
rosion resistance and extend the service life of magne-
sium alloys include micro-alloying[30–32], microstructure 
control[33,34], surface treatment[35,36] and preparation of 
functional coatings[37]. The widely used and effective 
method is to construct a coating with anti-corrosion 
performance on the surface of magnesium alloy through 
surface treatment[38,39]. Bio-inspired water-repellent 
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surfaces with its unique interface characteristics and 
advantages have become a new idea to solve the corro-
sion problems of metal materials[40,41]. The bio-inspired 
water-repellent surfaces introduced in this article are 
divided into superhydrophobic surfaces and Slippery 
Liquid-Infused Porous Surfaces (SLIPSs)[42,43]. The 
fabrication of magnesium-based bio-inspired wa-
ter-repellent surface helps to construct a function on the 
substrate of magnesium alloy, improving the corrosion 
resistance of magnesium alloy in an effective man-
ner[44–46]. The fabricated bio-inspired water-repellent 
surfaces can effectively cut off the direct contact of 
corrosion medium such as humid air and erosion solu-
tion to the magnesium alloy substrate and reduce the 
corrosion[47–49]. 

This article summarizes the research progress of 
corrosion resistance of magnesium alloys in five parts 
covering factors which affect corrosion and different 
types of corrosion, basic principle of wettability and 
practical applications of the bio-inspired water-repellent 
surface in corrosion resistance of magnesium alloys and 
highlights the development of corrosion resistance of 
bio-inspired water-repellent magnesium alloys as well as 
scientific problems. 

2  Corrosion of magnesium alloy 

2.1  Influencing factors of magnesium alloy corrosion 
Magnesium alloys are prone to electrochemical 

reactions under the corrosion environment of simulated 
seawater. The reaction process is as follows[50,51]: 

2 2 2Mg(s) 2H O(aq) Mg(OH) (s) ,H           (1) 

where the electrolyte is a NaCl aqueous solution, Cl− is a 
corrosive medium, and the Mg2+ produced by the anode 
reaction will react with Cl−. The reaction equation is: 

2
2Mg 2Cl MgCl .                     (2) 

In practical applications, there are many factors that 
affect the corrosion of magnesium alloys: alloy ele-
ments[52–54], secondary phase size and distribution[55,56], 
grain size[57–59], crystal orientation and texture 
strength[60,61], crystal defects[62,63], and environmental 
factors[64–66] (Fig. 1). The corrosion of magnesium alloys 
is mostly galvanic corrosion, and the α-Mg substrate is 
mainly corroded. Therefore, the corrosion resistance of 

the substrate is the key to determining the corrosion 
behavior of the entire alloy. Researchers analyzed the 
factors affecting the corrosion of magnesium alloy, and 
improved the corrosion resistance of magnesium alloy 
by a number of measures including adding alloy ele-
ments[67–71], reducing the size of the second phase and 
making the distribution uniform[72–76], refining the 
grains[77–81], changing the crystal orientation and texture 
strength[82–86] as well as reducing crystal defects[87–89] 
(Fig. 2). Table 1 summarizes some of factors which 
affect the corrosion resistance of magnesium alloy. 

Adding alloy elements may change the chemical 
components of magnesium alloy directly or indirectly 
and drive change in its form of organization, and the 
second phase size and distribution, consequently im-
proving the corrosion resistance behavior of magnesium 
alloy[90,91]. On the other hand, grain size of magnesium 
alloy can be reduced by alloying[92] and plastic defor-
mation[93], so that mechanical properties of alloys can be 
improved effectively. Thus, fine grain strengthening is 
one of the key ways to improve the mechanical proper-
ties of magnesium alloy, and changing the grain size will 
create an important impact on corrosion resistance of 
magnesium alloy[94,95]. The presence of alloying ele-
ments will lead to the appearance of a second phase in 
the magnesium alloy. The second phase is usually a 
compound of Mg and Al[96,97], Zn[98], rare earth and other 
metal elements[99,100], and its electrochemical stability is 
higher than that of the matrix phase. Therefore,  
the corrosion  behavior  of magnesium  alloys is  mainly 
 

 
Fig. 1  Main factors influencing corrosion of magnesium alloy[2]. 
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Fig. 2  Morphology of the surface of the salt spray test sample: (a – c) Mg0.5Zn0.2Ca, (d – f) Mg0.5Zn0.2Ge[73]. 

 
Table 1  Some of factors influencing corrosion resistance of magnesium alloy 

Influencing factors Technology Material Functions Corrosion types Refs.
Alloying element Hot-rolling Mg-xSn-1Zn-0.5Ca Good corrosion resistance and mechanical prop-

erties 
Galvanic corrosion [67]

Direct-chill casting Mg-0.5Zn alloy Mg-Zn-Ca possessed the highest corrosion 
resistance 

Pitting corrosion [68]

High pressure casting 
technology 

Mg-Ga alloy Good corrosion resistance. Galvanic corrosion [69]

Second phase size and 
distribution 

Screw rolling Mg alloy The corrosion rate of the magnesium alloy screw 
rolled at 300 ℃ is the lowest 

Galvanic corrosion [72]

Casting and hot-rolling AM60 alloy AM60+1In alloy has the strongest corrosion 
resistance 

Total corrosion [73]

Casting and extrusion Mg-Sm-Zn-Zr alloy The corrosion resistance is increased by 3 times. Galvanic corrosion [75]

Grain size Hot-rolling Mg-1Ca alloy Refinement of the structure significantly reduces 
the corrosion rate 

Local corrosion [78]

Rolling and annealing AZ61 alloy Reduced grain size and improved corrosion 
resistance 

Galvanic corrosion [80] 

Hot-rolling Mg-4Li-1Ca alloy Improved alloy strength and corrosion resistance Total corrosion [81] 

Crystal orientation and 
texture strength 

Rolling Mg-5Li-1Al alloy The corrosion resistance of the alloy is improved. Hydrogen induced 
cracking 

[82] 

Cut AZ31 Mg alloy Improve the corrosion resistance. Hydrogen induced 
cracking 

[85] 

Directional solidifica-
tion 

Mg-4wt% Zn alloy Improved alloy corrosion resistance. Pitting corrosion [86] 

Crystal defect 
 

Cast and extrusion AZ91D magnesium 
alloy 

Improved alloy corrosion resistance. Galvanic corrosion [87]

Compressive defor-
mation  

Mg-Y alloy Improved the electrochemical corrosion perfor-
mance. 

Pitting corrosion [88] 

Pre-stretch AZ31 alloy Improved corrosion resistance Hydrogen induced 
cracking 

[89] 

 
micro-galvanic corrosion because of the potential dif-
ference between the second phase and the sub-
strate[101,102]. Although the second phase is generally not 
corroded, the type, content, morphology and distribution 
of the second phase can affect the corrosion of the 
magnesium matrix, so the second phase plays a vital role 

in the corrosion of magnesium alloys[103,104]. However, 
there are also a few opinions that the increase of grain 
boundary area will reduce the corrosion resistance of 
magnesium alloy, and a small number of crystal defects 
inside the magnesium alloy can provide strong driving 
force for corrosion reaction, and hence make the surface 
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form a thin and dense Mg(OH)2 corrosion protection 
film, thus delaying the corrosion process and improving 
the corrosion resistance[105]. 
 
2.2  Corrosion types of magnesium alloy 

The corrosion process of magnesium alloy can be 
classified from different perspectives. According to 
different corrosion environments, it can be divided into 
natural corrosion and industrial environment medium 
corrosion. By the type of corrosive media, it is divided 
into atmospheric corrosion, water corrosion and soil 
corrosion. When it comes to the mechanism of corrosion 
process, corrosion occurs by chemical corrosion and 
electrochemical corrosion. According to the type of 
corrosion morphology, it can be divided into total cor-
rosion and local corrosion. Local corrosion also includes 
galvanic corrosion[106,107], pitting corrosion[108], stress 
corrosion[109–111], fatigue corrosion, intergranular corro-
sion and hydrogen induced cracking (Fig. 3)[112]. 

Magnesium alloy is widely used as a kind of light 
metal structure material while poor corrosion resistance 
becomes its worst disadvantage. Corrosion often occurs 
in the hidden parts which are not easy to be detected, 
which will reduce the strength, plasticity and toughness 
of magnesium alloy, and then lead to the failure of 
structural materials. For instance, “catastrophic corro-
sion”, such as bridge fracture, oil and gas pipeline ex-
plosion, will bring huge economic loss and even per-
sonal harm. It is of great significance to study the factors 
affecting the corrosion of magnesium alloy for control-
ling the corrosion behavior of alloy and effectively 
avoiding or reducing the occurrence of corrosion. 

3  Basic principle of wettability 

3.1  Theoretical study on wettability of superhydro   
phobic surfaces 
Neinhuis[113] and Barthlott[114] carried out a large 

amount of research on water-repellent plant and found 
that there were micron-grade raised rough structures and 
wax layer on the surface of the plant. Feng et al.[115] 
researched the “Lotus-Effect” and explored that the true 
secret of the superhydrophobic effect of the lotus leaf 
surface was the micro-nano composite structure on the 
lotus leaf surface. The bumps of the two sizes were 
compounded with each other, so that the surface of the 

lotus leaf had good hydrophobic property[116]. Re-
searchers fabricated bio-inspired water-repellent surface 
with superhydrophobic property by mimicking the mi-
cro-nano papilla structure of lotus leave (Fig. 4). In ad-
dition, they defined the superhydrophobic surface and 
identified two key factors to obtain the surface: one is to 
construct a complex micro/nano rough structure, and the 
other is to modify the surface with low surface energy 
materials[117,118]. 

For the qualitative analysis of the wettability of 
liquid drops on solid surfaces, the size of contact angle 
(CA) of water drops is an important indicator to deter-
mine the wettability of the surface. Wettability can be 
divided into four types according to the CA: superhy-
drophilic surfaces (CA ≤ 5˚), hydrophilic surfaces (5˚ ≤ 
CA ≤ 90˚), and hydrophobic surfaces (90˚ ≤ CA ≤ 150˚), 
and superhydrophobic surfaces (CA ≥ 150˚)[119–121]. 

The Wenzel model and Cassie-Baxter model are 
commonly used to analyze and explain the mechanism 
of solid superhydrophobic surfaces with different adhe-
sion behaviors[122–124], as shown in Fig. 5a. Wenzel in-
troduced the γ dimensionless surface roughness factor as 
a modification of the Young’s equation[125]: 

SV SL

LV

( )cos = = cos ,'   
  


                (3) 

where γ is the ratio of the actual surface area to the ap-
parent area. As the value of γ is greater than 1, the sur-
face roughness structure has a strengthening effect on 
the wettability. 

The Cassie-Baxter model is similar to the wetting 
state of water droplets on the surface of lotus leaves in 
nature[126], and exhibits a surface characteristic of low 
adhesion, as shown in Fig. 5b. When the surface com-
posite contact reaches equilibrium, the applicable solid 
surface wetting equation is deduced from the thermo-
dynamic angle[127, 128]: 

1 1 2 2cos = cos + cos ,f f                     (4) 

where ƒ1 and ƒ2 represent the area fraction of solid-liquid 
and liquid-gas interface contact at the solid interface, θ1 
and θ2 represent the intrinsic contact angles of the sol-
id-liquid and liquid-gas interface. For liquid-gas-solid 
three-phase compound interface equilibrium, that is,  
θ2 = 180˚, ƒ1+ƒ2=1, substituting into Eq. (4) can deduce: 
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Fig. 3  Corrosion types of magnesium alloy. 

 

 
Fig. 4  (a) Superhydrophobic lotus leaf surface, (b) and (c) SEM 
photographs of the lotus leaf surface at different magnifica-
tion[117]. 
 

1 1cos = (cos +1) 1.f                        (5) 

When the solid surface roughness increases, it is 
beneficial to increase the contact area between the liquid 
and the air film at the liquid-solid contact interface. 
Some scholars have found that during the preparation of 
superhydrophobic surfaces of magnesium alloys, the 
corrosion resistance of the Cassie state (low adhesion) 
on the superhydrophobic surface is better than that of the  

(a)

 
(b)

 
Fig. 5  Schematic diagram of wetting condition. (a) Wenzel model; 
(b) Cassie model. 
 

Wenzel state (high adhesion) on the superhydrophobic 
surface. High-adhesion superhydrophobic surfaces have 
a larger contact area with liquids than low-adhesion 
superhydrophobic surfaces[129]. A large amount of air 
present on the low-adhesion superhydrophobic surfaces 
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(Cassie state) acts as an air cushion, which can prevent 
the corrosion solution from directly eroding the magne-
sium alloy[130] (Fig. 6). 

 
3.2  Theoretical study on wettability of SLIPSs 

Inspired by pitcher plants in nature (Figs. 7a–7e), 
bio-inspired slippery surface means the surface with 
certain lubrication effect achieved by lubricating liquid 
filling[131]. The new bio-inspired surface has emerged in 
recent years and exhibited special surface wettability, so 
it is a derivative exploration of superhydrophobic sur-
faces. Wong et al.[132] first proposed “SLIPS” in 2011, 
and gave three criteria for designing SLIPS: first, lu-
bricating oil can penetrate into the rough structure of 
solid-phase substrate to wet the solid-phase substrate, 
and realize the solid combination of the two. Second, in 
order not to be replaced by other liquids, the solid phase 
substrate should be wetted by lubricating oil preferen-
tially. Third, the lubricating oil and the tested liquid must 
not be mutually soluble (Fig. 7f). 

Aiming to meet the second principle, the lubricant 
and solid-phase substrate must be matched in physical 
and chemical properties so as to form a solid working 
system. Moreover, the lubricating oil is not compatible 
with the test liquid. The surface energy of the sol-
id-liquid interface is Ea when the test liquid thoroughly 
wets the solid substrate. When the test liquid floats on 
the top and the lubricant completely wets the solid phase 
substrate, the surface energy of the solid-liquid interface 
is Eα. When no test liquid floats on the top and the lub-
ricant thoroughly wets the solid substrate, the surface 
energy of the solid-liquid interface is Eβ. In order to 
ensure that the solid phase substrate is preferentially 
wetted by the lubricating oil, and the lubricating oil 
stored in the microstructure is not replaced by the test 
liquid, ∆Eα = Ea − Eα > 0 and ∆Eβ = Ea − Eβ > 0 must be 
met. 

Preston et al.[133] and Anand et al.[134] focused on 
the first and second principles and analyzed the charac-
teristics of porous substrates filled with lubricating oil 
with different surface energies. In summing up the failed 
design cases, it was found that there were five types of 
failures caused by the interaction between the oil layer 
and the test liquid (Fig. 8): first, the surface energy of the  
oil layer was too low, the “cloaks”  phenomenon  of  the  

(a)

Cassie state (low adhesion)  

 
Fig. 6  (a) Cassie state; (b) Wenzel state[130]. 

 

 
Fig. 7  (a – e) nepenthes pitcher and peristome morphology[131]; (f) 
schematic illustration of fabricating the SLIPS[132]. 
 
wrapped test liquid occurred, resulting in the gradual 
loss of oil layer. Second, the surface energy of the lu-
bricating oil was high, and the test liquid could not 
condense into droplets and slide down. Third, the  
oil layer  failed  to  completely  wet  the  rough substrate 
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(a) (b)

(c) (d) (e)

 
Fig. 8   Five failure types of SLIPS surface: (a) cloak phenomenon; (b) external media spread on SLIPS surface; (c) partial infusion of 
lubricant into porous substrate; (d) penetration of external liquid into substrate; (e) miscibility of lubricant and external liquid[133]. 
 
surface. Fourth, part of the oil layer was replaced by the 
test liquid. Fifth, the oil layer was miscible with the test 
liquid. In short, the SLIPS design must satisfy the fol-
lowing 5 formulas: 

The oil layer will not “cloak” the test liquid: 

ol(v) lv lo ov 0.S                           (6) 

The test liquid cannot be completely spread on the 
surface of the oil layer: 

lo(v) ov lo lv 0.S                            (7) 

The oil layer can completely wet the substrate: 

os(v) sv os ov ov .S = > R                         (8) 

The oil layer can still spread on the surface of the 
substrate in the test liquid environment: 

os(l) ls os lo lo .S = > R                             (9) 

The oil layer and the test liquid are not miscible: 

   lo 0,>                                       (10) 

where S is the spreading coefficient, γ is the surface 
tension, s, o, v, l are the solid substrate, lubricating oil, 
gas environment and test liquid respectively, R is the 
roughness index. 

4  Preparation technology of magnesi-
um-based bio-inspired superhydropho-
bic surface 

Bio-inspired superhydrophobic surfaces have 

gradually become a new idea to solve the problem of 
poor corrosion resistance of metal materials due to their 
unique interface characteristics and advantages[135–137]. 
The existence of superhydrophobic coating can effec-
tively cut off the direct contact of corrosive media such 
as humid air and corrosive solution to the magnesium 
alloy substrate, thereby improving the corrosion re-
sistance of magnesium alloy and expanding its applica-
tions in the industrial field. In the past decades, re-
searchers have proposed various methods to prepare 
magnesium alloys with superhydrophobic property, such 
as hydrothermal method[138,139], laser processing meth-
od[130,140], micro-arc oxidation[141–143], electrochemical 
deposition[144–148], anodic oxidation[149–151], dipping 
method[152–154], chemical etching[155,156], and solution 
deposition method[157–159] (Fig. 9). Table 2 summarizes 
the innovative technologies applied to the surface pro-
cessing of magnesium alloys. 

 
4.1  Hydrothermal method 

Hydrothermal treatment is achieved by placing the 
precursor in an autoclave and making it react at high 
temperature and pressure conditions. The equipment 
required for this treatment is simple and easy to operate, 
and the energy-efficient and low-cost process can occur 
at high temperature and pressure conditions and be  
used in a wide range of applications. Besides, the na-
noscale materials treated by this process exhibit high 
purity, crystallinity and dispersibility and are  
controllable  in  morphology[192].  Li et al.[193] prepared a 
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Table 2  Summary on the processing methods of superhydrophobic magnesium alloys for corrosion resistance 
Technique Advantage/disadvantage Material Morphology CA SA Refs.

Micro-arc 
oxidation 

Clean and pollution-free, simple 
process, uniform and hard film layer, 
high adhesion/porous surface, elec-

trolyte is easy to penetrate, requiring 
composite packaging treatment 

Wrought magnesium 
alloy MA8 

Nanocomposite layer with multimodal 
roughness ≥160˚ - [141]

Mg-Li alloy Porous oxide coating 163˚ ± 2˚ - [142]

MA8 alloy Nanocomposite layer with multimodal 
roughness 

166.0˚ ± 
3.0˚ 

5.2˚ ± 
3.3˚ [143]

Mg-Mn-Ce alloy Multi-scale coarse structure 153.7˚±3.2˚ 7˚ [129]

AZ31 alloy Flake-like structure 151.21˚ - [160]

AZ31 alloy Pores, island-structure and volcano-like 
structure 151.5˚ - [161]

Hydrothermal 
method 

Coating structure is dense/poor con-
ditions, not suitable for large-scale 

production preparation 

AZ31B alloy Intersected lamellar magnesium hy-
droxide 159˚ - [162]

ZK60 alloy 

Mammillaria-herrerae-like micro-
spheres, carnation-like microclusters 
and carnation-petal-like nano-slices 

with hierarchical biomimetic mi-
cro/nanostructures 

158.5˚ 2˚ [163]

AZ31 alloy Curved hexagonal platelets 163.7˚±2.9˚ <1˚ [164]

AZ31B Mg alloy Clinochrysotile-like magnesium silicate 
nanotubes 155˚ 5˚ [165]

Dipping method 

Simple operation, high efficiency, 
large-scale preparation/ environmen-
tal pollution, high cost of waste liquid 

treatment 

Magnesium alloy 
AZ31 Core/shell structure 153˚ - [152]

AZ31B alloy Nano-sheeted structure 167.3˚±2.1˚ 2.7˚ ± 
0.8˚ [153]

AZ31 alloy Nano- and microsheets 158˚±2˚ - [154]

AZ31 alloy White and bulges spots 162˚±3.4˚ 5˚ ± 0.6˚ [166]

AZ31 alloy Nanosheets 153˚±2˚ 7˚ [167]

AZ31 alloy Rough petal-like, micro/nanoscale 
structure 160˚ - [168]

Spraying 
method 

Large-area preparation, suitable for a 
variety of substrates, simple opera-

tion, low cost/uneven coating 

AZ61 Mg Network structure 156.8˚ - [169]

AZ31B alloy Micrometer and nanometer scale binary 
structures 155˚ - [170]

AZ31B Mg alloy Irregular structures with accumulated 
SiO2 nanoparticles 151.8˚ 5.1˚ [171]

AZ31 magnesium 
alloy Micron scale mastoid structure 161˚ 4˚ [172]

Composite 
method 

Excellent film performance, easy to 
control/requires multiple processes, 

the process is complex and cannot be 
generated in large quantities 

NZ30K alloy Silica film 151˚ - [173]
AZ31 alloy Micron-sized spherical structure 165.5˚±3.6˚ 4˚±0.6˚ [174]
AZ91 alloy Micro-nano hierarchical structure 159˚ - [175]
AZ31 alloy Flower cluster-like 163˚ - [176]

AZ31 magnesium 
alloy Carbon nanofiber 145˚–150˚ 7˚ ± 2˚ [177]

AZ61 magnesium 
alloy Nodular structure 156.5˚ 2˚ [178]

Electrochemical 
deposition 

Fast, large scale, low cost, easy to 
control, low energy consump-

tion/weak substrate binding, heavy 
metal pollution, and harsh conditions 

Mg alloy AZ61 Nanometer scale cavities and mastoids 165.2˚ 2˚ [179]

AZ91D alloy Hierarchical flowerlike structures 167.3˚±1.3˚ 1˚ [180]
Mg-Sn-Zn (TZ51) 

alloy 
Uniformly micro/nano binary strip and 

flower-like structure 160.4˚±0.7˚ - [181]

Mg alloy Flower-like 154.3˚±3.1˚ 5.6˚±0.8˚ [182]
AZ31 alloy Micro-nano hierarchical structures 156.6˚ - [183]

AZ31 Mg alloy Some spherical clusters in micrometer 
scale 155.2˚±1.5˚ 6.0˚±0.5˚ [184]

Chemical etch-
ing 

Simple equipment, easy opera-
tion/pollution of the environment, 
high cost of waste liquid treatment 

AZ31B alloy Micro-flowers 152.65˚ 5˚ [155]

Mg-Li alloy Peonylike micronanoscale hierarchical 
structures 160˚ <5˚ [156]

AZ31 alloy Nano-vertical plate pattern 152˚ - [185]

AZ31 alloy Nubby cluster with binary mi-
cro-nanometer scale 142˚ 5˚ [186]

Laser pro-
cessing 

High precision, stable structure, good 
surface quality/high cost, low effi-
ciency, not large-scale production 

AZ31 alloy Micro-scale papillary-like pits 158.2˚ - [130]

Mg-9Al-1Zn alloy Wavy surface morphology 158.8˚±2˚ - [140]
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Anodic oxidation 

One-time film formation, strong adhesion, 
excellent abrasion resistance, low 

cost/environmental pollution, large brit-
tleness, porous, difficult to process com-

plex workpieces 

TZ51 magnesium 
alloy Pits and crack 163˚ - [149] 

AZ31 Mg alloy Micro- and nano-scale 
binary structures 153˚ - [150] 

AZ91D alloy Filamentous structure >150˚ - [151] 

Solution deposi-
tion 

Easy operation, low cost, large-scale 
preparation/polluting the environment, 

high cost of waste liquid treatment 

AZ31 alloy Plate structure 150.5˚ - [157] 

AZ31 alloy 
Flake-like morphology 
with nano-sized thick-

ness 
151.5˚ - [158] 

AZ31 alloy Foamed tremella 153˚ 4˚ [159] 

Conversion 
coating 

Simple operation, low cost/environmental 
pollution, high cost of waste liquid treat-

ment, uneven and brittle film, porous, easy 
to form cracks 

AZ31B alloy Island-like platforms 157˚ - [187] 

Mg-Zn-Ca alloy Lump-like mi-
cro-clusters 159˚ - [188] 

AZ91D alloy Microspheres 160.19˚ 1.5˚ [189] 

Wire electrical 
discharge ma-

chining (WEDM) 

Low cost, high efficiency, high removal 
efficiency of electro-corrosion prod-

ucts/relatively large electrode wire vibra-
tion, low accuracy of the machined surface, 

and serious material waste 

AZ91D magnesium 

Big etching pits, mi-
cro/nanopits, debris 
particles, pores and 

microcracks 

146˚–150˚ - [190] 

AZ31B magnesium 
alloy 

Micro-/nano petal-like 
structure 151˚± 0.5˚ 4˚± 0.5˚ [191] 

CA = contact angle, SA = sliding angle, - indicates no mention. 
 

 
Fig. 9  Schematic diagram of various methods for preparing 
superhydrophobic surface[188]. 
 
superhydrophobic coating with chemical stability and 
durability on the surface of AZ31 magnesium alloy by 
hydrothermal synthesis method. The static water contact 
angle was 156.7˚, and the superhydrophobicity could be 
maintained for more than one year when exposed to air. 
In addition, the superhydrophobic coating in 3.5 wt% 
NaCl solution had good corrosion resistance. Zhang et 
al.[194] prepared a Mg(OH)2/Mg-Al composite coating 
on the AZ31 alloy substrate by co-deposition and hy-
drothermal methods. The surface was modified by stea-
ric acid, and the maximum static contact angle was 
153.5˚, and the superhydrophobic surface showed good 
stability in electrochemical test, hydrogen evolution test 
and immersion test, significantly improving the corro-
sion resistance of AZ31 alloy (Fig. 10). But even so, this 

technique requires to be carried out at high temperature 
and pressure conditions, and therefore equipment must 
meet a number of strict requirements, which inhibits the 
development and application of the hydrothermal 
method in more fields. Moreover, it is not feasible for 
mass production due to poor preparation conditions and 
technical difficulties[195,196]. 

 
4.2  Electrochemical deposition method 

Electrochemical deposition is a simple and efficient 
method to prepare superhydrophobic surfaces on mag-
nesium alloy, which relies on the reduction reaction of 
cathode to deposit metal or composite layer on  
the   surface  of  material[197–199].  Cui et al.[200]  prepared 
 

 
Fig. 10  SEM morphology of the sample after 14 days of immer-
sion test. (a) AZ31; (b) LDH coating; (c) LDH/SA1 coating; (d) 
SEM morphology and contact angle (inset) of LDH/SA1 coat-
ing[194]. 
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superhydrophobic micro-arc oxidation/zinc stearate 
(MAO/ZnSA) coating with micro plate-like structure on 
Mg-4Li-1Ca alloy by electrochemical deposition 
method, and the static contact angle was 153.5˚ ± 0.5˚. 
The superhydrophobicity of the MAO/ZnSA composite 
coating effectively sealed the surface of MAO, and 
hence prevented the contact between the corrosion so-
lution and the substrate, significantly enhancing the 
corrosion resistance of the Mg-4Li-1Ca alloy (Fig. 11). 
Li and Kang[201] prepared superhydrophobic a coating on 
AZ31 magnesium alloy by electrochemical deposition 
and surface modification. The static contact angle and 
sliding angle were 156.2˚ ± 0.6˚ and 1.0˚. Superhydro-
phobic coatings showed excellent corrosion resistance 
and chemical stability when immersed in 3.5 wt% NaCl 
solution and corrosive liquids. After 900 mm and  
1100 mm mechanical wear tests, the coating maintained 
superhydrophobic property and corrosion resistance. 

The process can be achieved by employing compact 
equipment and simple process flow in a short cycle with 
high metal deposition rate, and is feasible for mass 
production because it is a low-cost, energy-efficient and 
easy-to-control method. On the other hand, the film 
obtained by this process shows weak cohesion strength 
with the substrate, and in addition to this, heavy metal 
pollution and adverse manufacturing conditions are 
unavoidable problems during processing[202,203]. 
 
4.3  Micro-arc oxidation 

Micro-arc oxidation (MAO), also known as mi-
cro-plasma oxidation or anodic activation deposition, is 
a surface modification technology that produces ceramic 
coatings on metal surfaces. By controlling the micro-arc 
oxidation electrical parameters and the electrolyte sys-
tem, coatings with different morphologies and structures 
could be prepared.  The  prepared  ceramic  coating  had 
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Fig. 11  SEM morphology and CA (inset) of the sample before immersion test. (a) Mg-4Li-1Ca, (b) MAO, (c) MAO/ZnSA coating. 
Macrograph, scanning electron microscope and energy spectrum of the sample after the 85-hour immersion test. (d – f) Mg-4Li-1Ca,  
(g – i) MAO, (j – l) MAO/ZnSA coating[200]. 
 
 
 



Xu et al.: Research Progress on Corrosion Resistance of Magnesium Alloys with 
Bio-inspired Water-repellent Properties: A Review 

 

745
 

the advantages of high hardness, good wear resistance 
and strong corrosion resistance[204,205]. Zhang et al.[206] 
prepared a superhydrophobic coating on the surface of 
Mg-1Li-1Ca alloy by MAO and stearic acid modifica-
tion, and the static contact angle was 155.5˚ (Fig. 12a). 
In the potentiodynamic polarization, EIS, and 3.5 wt% 
NaCl solution immersion tests, the MAO/SA-7h coating 
showed excellent corrosion resistance and the corrosion 
current density was significantly reduced (Figs.12b – 
12e). Liu and Xu[207] prepared an AZ31 magnesium 
alloy superhydrophobic coating in a stearic acid ethanol 
solution using a two-step method of MAO and super-
hydrophobic treatment. The static contact angle of the 
surface was 156.96˚. Compared with the AZ31 alloy 

substrate, the corrosion current density of the superhy-
drophobic AZ31 alloy was reduced by several orders of 
magnitude, the amount of hydrogen evolution was 
greatly reduced, and the corrosion resistance was obvi-
ously improved. 
 
4.4  Spraying method 

Spraying method is a technology that the coating 
particles impact the alloy substrate at high speed and 
then deposit on the alloy surface by aerodynamic force. 
Li et al.[208] sprayed a fluorine-free suspension on a 
magnesium alloy substrate to prepare a strong superhy-
drophobic coating, and the contact angle and sliding 
angle  were  159.5˚ and 3.8˚  (Fig. 13a).  After  a   series 

 

 
Fig. 12  (a) SEM morphology and CA (inset) of MAO/SA7h coating; (b) hydrogen evolution volume and (c) the corresponding enlarged 
view; (d) hydrogen evolution rates and (e) the corresponding enlarged view. (I) Mg-1Li-1Ca substrate; (II) MAO coating and (III) 
MAO/SA 0.5h, MAO/SA 1h, MAO/SA 3h, MAO/SA 7h coatings (IV–VI)[206]. 
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of mechanical damage tests and exposure to harsh en-
vironmental conditions, the coating still maintained 
good superhydrophobicity. In addition, the coating ex-
hibited excellent self-cleaning performance and corro-
sion resistance in air and oil (Fig. 13b), and self-healing 
resistance to O2 plasma etching (Figs. 13c and 13d).  
Shi et al.[209] prepared a polyphenylene sul-
fide-polytetrafluoroethylene/SiO2 (PPS-PTFE/SiO2) 
coating on the AZ31 magnesium alloy by spraying. The 
morphology, composition, contact angle, abrasion be-
havior and corrosion performance of the composite 
coating were tested by scanning electron microscopy, 
infrared spectroscopy, contact angle test, abrasive paper 
wear, and electrochemical tests. The static contact angle 
of PPS-PTFE/SiO2 coating was in the range of 
(152˚–145.5˚) ± 0.3˚, and the sliding angle was less than 
5˚. PPS-PTFE/SiO2 coating had good abrasion re-
sistance and excellent corrosion resistance. This process 
is an environmentally friendly and easy-to-use means of 
preparing large area coating on different types of sub-
strates with low cost. However, uneven coating occurs 

during the spraying process, and hazards exist that pose 
a potential danger to operators’ health[210,211]. 
 
4.5  Dipping method 

The superhydrophobic surface can be obtained di-
rectly by immersing the magnesium alloy into the solu-
tion, so the surface that used this method does not need 
to be modified with low surface energy materials again, 
which is beneficial to the rapid and large-scale produc-
tion of superhydrophobic surfaces[212]. Xun et al.[213] 
prepared a coating with low adhesion and superhydro-
phobic properties on the surface of AZ31B alloy by a 
two-step in-situ dipping method. The coating had good 
mechanical stability and ultra-low water adhesion, 
which gave AZ31B alloy excellent corrosion resistance 
(Fig. 14). In addition, compared with the AZ31B sub-
strate, the coating had anti-bioadhesion properties, 
which greatly reduced the adhesion of biomolecules 
(proteins, bacteria and cells). Ishizaki et al.[214] prepared 
myristic acid modified micro/nano structure on the sur-
face of AZ31 alloy by one-step dipping method, and the  
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Fig. 13  (a) SEM morphology and rolling angle (inset) of EP+PDMS@SiO2 coating, (b) potential polarization curves of magnesium alloy 
substrate and EP+PDMS@SiO2 coating, (c) self-healing cycles of superhydrophobic coating, (d) XPS analysis of EP+PDMS@SiO2 
coating during self-healing[208]. 
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Fig. 14  SEM morphology of the LAS-Mg superhydrophobic coating during its preparation. (a) process flow diagram, (b) AZ31B substrate, 
(c) pre-immersed AZ31B, (d) MnO2-coated AZ31B, (e) LAS Mg[213]. 
 
static contact angle of the surface was more than 150˚. 
The superhydrophobic samples were immersed into 
solutions of pH 4, 7 and 10 for 12 h, and the average 
static contact angles were 90˚ ± 2˚, 119˚ ± 2˚, and 138˚ ± 
2˚, indicating that superhydrophobic coatings had cer-
tain chemical stability. Besides, the superhydrophobic 
coatings showed good corrosion resistance in electro-
chemical test. 
 
4.6  Chemical etching 

Chemical etching method is a manufacturing pro-
cess that uses strong acid, strong base or concentrated 
salt solution to remove materials from magnesium alloys 
to produce rough micro/nano structures[215,216]. Feng et 
al.[217] prepared a superhydrophobic coating on the sur-
face of AZ91 magnesium alloy by using sulfuric acid 
etching, AgNO3 treatment, and dodecyl mercaptan 
modification. The water contact angle and sliding angle 
were 154˚ and 5˚. Electrochemical experiments showed 
that superhydrophobic surfaces had good corrosion re-
sistance. Wang et al.[218] used chemical etching to gen-
erate nano-scale three-dimensional porous structures on 

the surface of AZ31 magnesium alloy (Fig. 15e), and 
made the surface superhydrophobic by oleic acid modi-
fication to obtain a coating with a static water contact 
angle of 155˚ (Figs. 15b and 15d). The air cushion effect 
in the superhydrophobic coating effectively isolated the 
contact between the corrosive medium and the substrate 
(Fig. 15c), resulting in improved corrosion resistance of 
the magnesium alloy substrate. After 6 months of stor-
age in the air, it still demonstrated a good superhydro-
phobicity (Fig. 15f). Advantages of this process are that 
it is easy and simple and doesn’t require complicated 
equipment for etching, and capable of producing surface 
textures with good controllability without applying 
current and voltage. However, waste stream generated 
from the process poses dangers to the environment and 
witnesses high chemical disposal costs[219,220]. 

 
4.7  Wire electrical discharge machining 

Wire Electrical Discharge Machining (WEDM) is 
one of the nontraditional machining processes for re-
moving the material from the workpiece surface by us-
ing a continuous moving wire electrode which is usually  
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Fig. 15  (a) Static contact angle of magnesium alloy surface, (b) static contact angle of superhydrophobic coating, (c) superhydrophobic 
diagram, (d) superhydrophobic coating, (e) a 3D profile scanning image of superhydrophobic coating, (f) effect of changes in air storage 
time on contact angle [218]. 
 
made of copper or molybdenum as a machining tool 
electrode to establish a discharge channel via the appli-
cation of impulse voltage between positive and negative 
electrodes of the workpiece and the wire electrode 
backed by the pulsed power supply of the machine tool. 
Making use of the instantaneous high temperature in-
duced in the discharge channel by collisions of charged 
particles, the material on the surface melts and vaporizes, 
resulting in removal of material from the work-
piece[221,222]. Xu et al.[190] studied the influence of the 
number of power tubes on the performance of a work-
piece surface by machining an AZ91D magnesium alloy 
using a high-speed wire electrical discharge machine 
(WEDM-HS). The results showed that the surface treated 
by WEDM-HS was covered with a carbon layer and 
exhibited high hydrophobicity (the contact angle range 
between 146˚ and 150˚). Moreover, an increase in the 
number of power tubes caused the micro-pits and cracks 
on the surface of the magnesium alloy to be reduced and 
resulted in improved corrosion resistance. Qiu et al.[191] 
fabricated a superhydrophobic surface with micro-nano 
petal-like structure on an AZ31B magnesium alloy by 
combining WEDM-HS process and surface modification 
method, with a contact angle and a sliding angle of 151˚ 
± 0.5˚ and 4˚ ± 0.5˚, respectively (Fig. 16). The experi-
mental results indicated that the superhydrophobic sur-
face exhibited excellent corrosion resistance and wear 

resistance, and the corrosion current density decreased by 
almost an order of magnitude. During the friction-wear 
test, the superhydrophobic surface demonstrated a lower 
coefficient of friction. WEDM is a low-cost and highly 
efficient option for manufacturing as well as has high 
efficiency in removing electro-corrosion products while 
violent vibration of the electrode wire, low accuracy of 
the machined surface and serious material waste are 
problems to be addressed[223,224]. 

 
4.8  Composite method 

The composite method is essentially a combination 
of two or more processing methods to obtain a mi-
cro-nano structure superhydrophobic coating on the 
surface of the magnesium alloy[225–227]. The two or more 
methods are used together in order to combine best 
properties and make the prepared coatings easy to con-
trol and exhibit stronger superhydrophobicity and dura-
bility than those fabricated by a single processing 
method. Zang et al.[228] prepared a bio-inspired lotus 
seed-like superhydrophobic coating on the surface of 
AZ91D alloy by a combination of hydrothermal syn-
thesis and sonication assisted electroless plating. The 
static water contact angle was 153.9˚ ± 2.7˚, and the 
sliding angle was less than 5˚. The superhydrophobic 
coating had good corrosion resistance, which could  
effectively isolate the corrosion solution and protect the 



Xu et al.: Research Progress on Corrosion Resistance of Magnesium Alloys with 
Bio-inspired Water-repellent Properties: A Review 

 

749

 

 
Fig. 16  Scanning electron microscope morphologies and water contact angle (inset) of (a) the bare magnesium alloy, (b – d) the 
high-speed wire electrical discharge machining (HS-WEDM) surface, and (e – h) the HS-WEDM/stearic acid composite surface[191]. 
 
magnesium alloy substrate. Superhydrophobic coatings 
showed thermally induced reversible wetting transitions 
between superhydrophilic and superhydrophobic states, 
and had excellent fatigue resistance (Fig. 17). Ding et 
al.[229] prepared an anti-corrosion coating with super-
hydrophobic and self-repairing on the surface of AZ31B 
magnesium alloy by hydrothermal synthesis and spray-
ing. The static water contact angle of the composite 
coating was 163˚. The chemical test, immersion method 
and scanning vibrating electrode method were used to 
study the corrosion resistance of the coating. Compared 
with Layer Double Hydroxides (LDHs) coatings, su-
perhydrophobic composite coatings had good corrosion 
resistance, durability and self-healing properties, which 
is of great significance for expanding the potential ap-
plications of magnesium alloys. 

5  Preparation technology of magnesi-
um-based SLIPS 

In practical applications, it is found that the su-
perhydrophobic property of superhydrophobic coating is 
not stable, which will lead to the failure of superhydro-
phobic coating under high temperature, high pressure or 
surface damage[230]. Based on the bio-inspired principle, 
the researchers studied the special surface properties of 
the pitcher’s mouth area, and synthesized a SLIPS by 
injecting a low-surface-energy lubricant into the mi-
cro/nano-structured substrate[231–233]. SLIPS lubricants 
can effectively isolate the corrosion of the substrate by 
the corrosive medium. Especially in the liquid, the lub-
ricants and the aqueous solution are incompatible with 
each other, and can be stored for a long time, which has a 

long-term protection potential for the substrate to reduce 
corrosion[234–236]. Table 3 summarizes the innovative 
technologies applied to the surface processing of mag-
nesium alloys. 

SLIPS repels liquids based on the lubricating fluid 
layer and solid substrate with special microstructure. 
The solid substrate with special microstructure firmly 
locks the lubricating liquid layer, and the 
low-surface-energy lubricating liquid layer has a repel-
lent effect on the liquids. The liquids have a larger con-
tact angle and smaller contact angle hysteresis on the 
SLIPS[245]. 

Jiang et al.[238]  used  plasma  electrolytic  oxidation 
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Fig. 17 (a) SEM morphology of the superhydrophobic coating 
after heating; (b) wettability process of superhydrophobic coating; 
(c) contact angle measurements after a transition period, (d) 
schematic diagram of the wettability transition of a superhydro-
phobic coating[228]. 
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Table 3  Summary on the processing methods of SLIPS on magnesium alloys for corrosion resistance 
Technique Advantage/disadvantage Material CA CAH Refs. 

Hydrothermal meth-
od 

Coating structure is dense/ poor conditions, 
not suitable for large-scale production prepa-

ration 

AZ31B magnesium alloy 123.1˚ 2.7˚ [237] 
AZ91D magnesium alloy 121˚ - [238] 

AZ31B magnesium alloy 122˚ 12˚ [239] 

AZ31 magnesium alloy 105˚ 3˚ [240] 

AZ31B Mg alloy 115˚ - [241] 

Anodic treatment Simple operation, low cost /environmental 
pollution, high cost of waste liquid treatment Magnesium alloy 117˚ 8˚ [242] 

Spraying method 
Large-area preparation, suitable for a variety 

of substrates, simple operation, low 
cost/uneven coating 

Magnesium alloy AZ31B ≤110˚ ≤10˚ [243] 

AZ31B magnesium alloy 106˚ ± 1.0˚ - [244] 
CA = contact angle, CAH = contact angle hysteresis, - indicates no mention. 
 

method and hydrothermal method to generate 
MgAl-LDH coating on the surface of AZ91D alloy, and 
chemically modified and injected lubricant to prepare 
PEO-LDH-SLIPS. In the immersion test and electro-
chemical test, the PEO-LDH-SLIPS showed long-term 
water-repellency and self-healing ability of surface 
damage. The water-repellency and self-healing proper-
ties made the AZ91D magnesium alloy have excellent 
corrosion resistance (Fig. 17). Zhang et al.[239] used a 
hydrothermal method to form a barrier layer on the 
surface of AZ31B alloy, chemically modified and in-
jected lubricant to prepare a double-layer anti-icing and 
corrosion resistant SLIPS. Compared with superhydro-
phobic coatings, SLIPSs had smaller rolling angles, 
long-lasting corrosion resistance and anti-icing perfor-
mance. Zhang et al.[242] anodized the magnesium alloy in 
the choline chloride-ethylene glycol based deep eutectic 
solvent, changed the external anode current density, and 
formed a conversion film with porous network  and 
jagged nanorod arrays on the surface of the magnesium 
alloy. After surface modification and injection of lubri-
cating oil, superhydrophobic surface and SLIPSs were 
obtained. In the electrochemical test, superhydrophobic 
surface and SLIPSs exhibited better corrosion re-
sistance. 

6  Summary and outlook 

The corrosion resistance of magnesium alloy is 
extremely poor, which severely restricts its application 
range in different fields. Improving the corrosion re-
sistance of magnesium alloy has become an urgent 
problem that needs to be solved. This article summarizes 
the research progress on corrosion resistance of magne-
sium alloys with bio-inspired water-repellent properties 

in recent years. By analyzing the factors and types of 
corrosion affecting magnesium alloys, based on the 
bio-inspired principle, the superhydrophobic surface and 
SLIPS are prepared on the surface of magnesium alloy to 
improve the corrosion resistance of magnesium alloy. 
Nevertheless, during the preparation and application of 
the magnesium-based bio-inspired water-repellent sur-
faces, there are still many problems to be solved: 

(1) The bio-inspired superhydrophobic surface of 
magnesium alloy has gradually become a new idea to 
solve the problem of poor corrosion resistance of mag-
nesium alloy due to its unique interface characteristics 
and advantages. As mentioned earlier, various pro-
cessing technologies for constructing superhydrophobic 
coatings on the surface of magnesium alloys have been 
proposed, but these technologies still face some prob-
lems that need to be solved urgently. For example, the 
micro-arc oxidation method causes high power con-
sumption, produces a porous surface, and requires a 
composite packaging treatment. The hydrothermal 
method has poor preparation conditions and is not suit-
able for large-scale production. Volatile organic solvents 
are used in spraying method, which is harmful to human 
body and creates uneven coating. The preparation pro-
cess of the composite method is complex and unsuitable 
for mass production. In the electrochemical deposition 
method, the adhesion between the film and the substrate 
is weak and the heavy metal pollution will occur.  
The dipping method/chemical etching method/solution 
deposition/conversion coating all can pollute the  
environment and the cost of waste liquid treatment  
is high. Laser processing technology is costly and inef-
ficient. The surface accuracy of WEDM is low and  
the  material  waste  is  serious.  The   anodized  film   is 
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SLIPS
failure

 
Fig. 18  Schematic protection mechanism for the smart anticorrosion system on Mg alloy[238]. 

 
brittle and porous, making it difficult to process complex 
workpieces. 

(2) Superhydrophobic coating has a wide applica-
tion in the fields of improving corrosion resistance of 
magnesium alloys due to its unique properties. On the 
other hand, some issues still need to be addressed such as 
high manufacturing cost and limited large-scale pro-
duction. Furthermore, low-surface-energy modifiers 
used during manufacturing are expensive, and fluo-
rine-containing substances such as fluoroalkyl silanes 
and fluoroacrylic copolymers pose significant risks to 
human health and the environment. In addition, it is 
found in the practical application of the superhydro-
phobic coating that its superhydrophobicity was not 
stable and failed at high temperatures and pressures, or 
on damaged surface. It is thus considered to be of great 
significance to develop environmentally friendly, 
cost-effective and efficient modifiers and to design 
simple but effective manufacturing process ensuring 
superhydrophobic coating with self-healing perfor-
mance on the surface of magnesium alloys can be ob-
tained. 

(3) Compared with the superhydrophobic surface, 
SLIPS has more excellent corrosion resistance and du-
rability, but there are still some problems in the prepa-

ration process of SLIPS. The microstructure of the sub-
strate surface is too simple to store lubricant adequately, 
and the processing technology is unsuitable for 
large-scale preparation because of its complex opera-
tions and long cycle time. Besides, problems such as 
expensive lubricant, volatile lubricant and poor durabil-
ity still need to be solved. To solve this problem and 
extend the service life and create greater value of SLIPS 
in practical applications, researchers have tried to pro-
duce regular-shaped nanostructures by increasing the 
complexity of the surface microstructure, and have 
considered replacing liquid lubricants by solid ones. So 
far, there are few studies on the preparation of SLIPSs 
magnesium alloys, which needs to be further promoted 
and studied. 

(4) Both superhydrophobic surface and SLIPS can 
effectively improve the corrosion resistance of magne-
sium alloy and extend its service life, making it possible 
to speed up production and use of magnesium alloy in 
various fields, but there are some problems that still have 
not been solved. Since the environment in practical ap-
plications is complex and diverse, the corrosion re-
sistance of magnesium alloys is more demanding. Es-
pecially in biomedical and industrial production, the 
corrosion resistance and biocompatibility of magnesium 
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alloys need to be considered comprehensively. There-
fore, the application research and development tech-
nology of magnesium alloy with multi-functional needs 
to be urgently proposed. 
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