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Abstract 
Metals are indispensable engineered materials for day-to-day life. Researches focused on metallic surfaces with superlyophobicity 

(superhydrophobicity, superoleophobicity, underwater superoleophobicity and slippery characteristic) have attracted much attention 
recently. Nature is a magician that gives each organic life a unique advantage. Researchers have created a large number of biomimetic 
superlyophobic metallic surfaces through various approaches. These biomimetic superlyophobic metallic surfaces exhibit advantages in 
many applications, such as self-cleaning, corrosion resistance, anti-icing, and drag reduction. In this review, the specific fabrication and 
applications of biomimetic superlyophobic metallic surfaces were reported. The remaining challenges and future outlook of biomimetic 
superlyophobic metallic surfaces were preliminarily analyzed. It is hoped that the review will be essential for broadening the scope of 
potential applications of metals and providing a powerful reference for future research on metal-based advanced functional materials. 
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1  Introduction 

The existing organisms in nature need to conti-
nuously optimize themselves on the macro or micro 
scale to survive and develop, and the optimization me-
thods are worthy of our reference. Previous studies have 
found that surface microstructures of organisms lead to 
the formation of many special functions. Cockroaches 
are able to move freely through soil because of the 
presence of depressions and bristle structures on the 
surfaces[1]. Butterflies have colorful wings due to the 
existence of the pit-like multilayer film on the surfaces 
that cause interference of light waves[2]. Pangolins have 
high wear resistance resulting from their prismatic and 
laminated structures[3]. Dragonfly wings and tree leaves 
show anti-fatigue property because the surface of dra-
gonfly wings has tubular-like asymmetric hollow 
structures and the surface of leaves has irregular vein 
structures[4,5]. The functional and structural characteris-
tics of these organisms and solutions to their application 
in engineering technologies have become a hot topic in 
the field of biomimetic science research. 

Researchers have found that organisms such as 
lotus leaves have special wettability resulting from the 
microstructure on their surface[6,7]. As typical special 
wettability materials, superhydrophobic, superoleo-
phobic, underwater superoleophobic and slippery liquid- 
infused porous surfaces (collectively referred to as su-
perlyophobic surfaces) are the most widely studied in-
terfaces because of their excellent water- or oil-repellent 
ability in air or water[8–21]. Up to now, various super-
lyophobic surfaces have been reported and widely  
employed in many different fields, such as 
self-cleaning[22–30], anti-fouling[31–40], anti-fogging[41–47], 
anti-icing[48–54], corrosion resistance[55–62], drag reduc-
tion[63–70], microfluidics[71–78], lab-on-a-chip[79–83], cell 
engineering[84–90], micro-droplet manipulation[91–102], 
oil/water separation[103–116], guiding liquid sliding[117–123], 
water collection[124–128], surface-enhanced Raman scat-
tering[129–131] and super-buoyant micro-boats[132–136].  

Metals, widely used in construction, shipbuilding, 
bridges, electric power and other industries, are indis-
pensable engineered materials in our society[137]. On the 
other hand, problems such as corrosion and icing tend to 



 
Journal of Bionic Engineering (2020) Vol.17 No.1 

 

2 

occur while using metallic materials, resulting in poor 
performance of metallic equipment and even serious 
safety hazards. Superlyophobic surfaces can effectively 
delay corrosion and icing due to their water-repellent 
capacity, so the fabrication of superlyophobic metallic 
surfaces is of great significance in improving the prop-
erties of materials and expanding the application range 
of materials[138]. The article is composed of five sections 
to review the recent progress of biomimetic superlyo-
phobic metallic surfaces. The superlyophobic pheno-
menon in nature was briefly summarized in section 2. 
Section 3 is modeling and design. Sections 4 and 5 de-
scribed the preparation and applications of biomimetic 
superlyophobic metallic surfaces. In the end, challenges 
and future trends of biomimetic superlyophobic metallic 
surfaces were preliminarily discussed. 

2  Superlyophobic phenomenon in nature 

After billions of years of natural evolution, the 
animals and plants have evolved almost perfect micro-
structures which show charming functions. Taking 
wettability as an example, many typical functional 
natural materials have been reported (Table 1). The 
special surface functions of these materials can be ob-
served from the table. These findings will provide us 
unique strategies for future research on advanced func-
tional materials with special wettability. The following 
are some of the common surfaces of animals and plants 

with special wetting properties in nature. 
 

2.1  Lotus leaf 
In nature, lotus leaf is one of the typical superhy-

drophobic surfaces, as shown in Fig. 1a, representing a 
water contact angle greater than 150˚. Furthermore, it 
also shows an ultra-low adhesion of water, resulting in a 
fascinating self-cleaning capacity (Figs. 1b and 1c). In 
1997, Neinhuis et al.[7] first observed and studied the 
microstructure of the lotus leaf surface by means of 
Scanning Electron Microscopy (SEM). The surface of 
the lotus leaf was not smooth, and micron-sized mastoid 
structures and the hydrophobic waxy layer were ob-
served. In further research work, Barthlott et al.[166–168] 
found micron-sized mastoid structures and nanoscale 
structures randomly distributed on the lotus leaf surface, 
as shown in Figs. 1d–1f. When water fell on lotus leaves, 
microstructures greatly reduced the actual contact area 
between the droplet and the lotus surface.  

 
2.2  Springtail 

Werner et al.[160,169–172] reported the most typical 
examples of superoleophobicity in natural species, and 
investigated micro-nanoscale structures of different 
species of springtails (Fig. 2). The surface of springtails 
has highly ordered structures which make them possible 
to survive in the environment. These structures make the 
springtail  skin  superoleophobic  and resistant to wetting  

 
Table 1  Typical natural materials with special wettability and properties 

Natural materials Functions Refs. 

Lotus leaf Superhydrophobicity, self-cleaning, low adhesion [139–141] 

Salvinia Superhydrophobicity, air-retention [142] 

Rice leaf Superhydrophobicity, anisotropic wetting, low drag [143,144] 

Rose petal Superhydrophobicity, structural color, high adhesion [145,146] 

Butterfly wing Superhydrophobicity, structural color, antireflection, directional adhesion, antifogging [2,147–150] 

Cicada wing Superhydrophobicity, antireflection [151,152] 

Gecko foot Superhydrophobicity, high adhesive, reversible adhesive [153–155] 

Water strider leg Superhydrophobicity, water-repellent, antifogging [156,157] 

Mosquito compound eye Superhydrophobicity, antifogging [44,158] 

Springtail Superoleophobicity [159,160] 

Snail shell Superoleophobicity, self-cleaning [23] 

Fish scale Underwater superoleophobicity [161,162] 

Striped fish Underwater superoleophobicity, directional adhesion [163] 

Nacre Underwater superoleophobicity, mechanical property, strength, toughness [164] 

Shark skin Underwater superoleophobicity, low drag, antifouling [165] 
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Fig. 1  Superhydrophobic lotus leaf surface. (a) Macroscopic 
appearance of the surface; (b) and (c) self-cleaning property; (d–f) 
SEM photographs of the lotus leaf surface at different mul-
tiples[166] (Copyright 2009 Elsevier). 
 

 
Fig. 2  Surfaces of different types of superoleophobic springtails. 
(a–c) Vertagopus arboreus and SEM images of its surface; (d–f) 
Kalaphorura burmeisteri and SEM images of its surface; (g–i) D. 
ornata and SEM images of its surface[170] (Copyright 2013 
Springer). 
 
by both polar and non-polar liquids including water, 
methanol, ethanol, hexadecane, and tridecane instead of 
dodecane and hexane. Researchers have recently re-
ported chemical components of the cuticle surface of 
Tetrodontophora bielanensis[172]. They observed that the 
stratum corneum region was composed of three different 
layers of matter, that is, the inner layer of the stratum 
corneum was comprised of porous layered chitin, and 
the stratum corneum structure consisted of proteins such 
as glycine, tyrosine and serine, the top layer comprised 
lipids such as hydrocarbon acids, esters, steroids and 
terpenoids. These findings provide new concepts for the 
construction of superoleophobic surfaces that do not 
contain fluorine-containing materials. 

2.3  Striped fish and shark 
Jiang et al.[163] reported anisotropic underwater 

superoleophobicity on the surface of the striped fish skin 
(Fig. 3a). Oil droplets in water environment rolled freely 
from head to tail, but faced difficulty in the reverse  
direction  resulting  from  the  presence  of  the  direc-
tional hook-and-thorn structures on the surface (Fig. 3b  
and Fig. 3c). The anisotropic underwater superoleopho-
bicity of the striped fish skin prevented oil from accu-
mulating on its head, thus the fish could survive in 
oil-contaminated seawater. Bhushan et al.[23,173,174] re-
ported that shark skin had underwater superoleophobic-
ity, and was covered with the toothed scale structures 
(Figs. 3d and 3e) with grooves and ribs. Since the 
grooves were arranged parallel to the water flowing 
direction, the resistance of sharks when swimming was 
weakened by the decrease of the eddy current. Therefore, 
the presence of these structures could help to increase 
swimming speed of sharks[175]. 

Superhydrophobic, superoleophobic and underwa-
ter superoleophobic properties exhibited by various 
organisms in nature provide an important basis for fur-
ther research on the applications. The easiest way to 
obtain multi-functional and man-made materials is to 
imitate nature, and then combine and optimize two or 
more seemingly distinct concepts found in nature to 
create functional materials with excellent properties. In 
fact, nature has given birth to a number of plants, insects 
and animals that are capable of repelling water, and even 
repel polar and non-polar liquids with lower surface 
tension. Research on bionics is still in its infancy, but 
this bio-inspired research has already become one of the 
hotspots demonstrating a very broad application pros-
pect. 

3  Modeling and design 

Wettability results from interfacial interactions 
between a liquid and a solid surface. A force balance 
between adhesion and cohesion determines the degree of 
wetting of a surface[176]. However, the asymmetric co-
hesion among such droplet molecules generates surface 
tension, resulting in a reduced interaction area when the 
droplet and the solid surface are brought together. Up to 
now, some unique wettability phenomena bring new 
challenges  to  the  traditional wettability theory, such as  
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Fig. 3  Underwater superoleophobic striped fish and shark surface. (a) Striped fish; (b) shark; (c) SEM images of striped fish skin sur-
face[163] (Copyright 2014 Wiley-VCH); (d) microstructure and its model of shark skin surface[23] (Copyright 2013 RSC). 

 

 
Fig. 4  Square-column two-scale structural model in which the 
cross-section of the square-column structure is a × a. (a) A 
two-scale micro- and nano-scale square column structure; (b) a 
top view of a periodic structure. 
 
Young’s equation, Wenzel model and Cassie mod-
el[177–180]. Therefore, in this section, we try to clarify 
some basic concepts to understand unique wettability. It 
is expected to provide theoretical reference for the de-
sign and research of functional materials with special 
wettability. 
 
3.1  Modeling and design of superhydrophobic 

property 
With the in-depth research of the structure of the 

lotus leaf, Jiang et al. found that the surface has micron- 
sized mastoid structures and nano-sized protrusion 
structures, which are key factors for achieving the su-
perhydrophobicity[6]. Subsequently, Patanker et al.[181] 
used the lotus leaf as an example to establish a two-scale 
structural model (Fig. 4). For the first-order micro-sized 
structure, the area of the square column is am × am and 

the height is Hm. The Cassie equation of the surface of 
the micro-sized structure is expressed as: 

cos (1 cos ) 1,m
C m eA                        (1) 

where θe is the contact angle of the smooth surface, m
C  

is the contact angle of the first-order micro-sized struc-
ture surface in the Cassie state, and Am is: 

2

1
.

[( / ) 1]m
m m

A
b a




                        (2) 

For the second-order nano-sized structure, the area 
of the square column is an × an and the height is Hn, then 
the Cassie equation of the surface of the nano-sized 
structure is expressed as: 

cos (1 cos ) 1,n m
C n CA                       (3) 

where n
C  is the contact angle of the second-order nano- 

sized structure surface in the Cassie state, and An is: 

2

1
.

[( / ) 1]n
n n

A
b a




                        (4) 

The above theoretical results show that for a 
double-scale structured surface, the contact angle of the 
droplet on the second-order structure is significantly 
increased compared to the first-order structure. Moreo-
ver, the characteristics of the double-scale structure help 
to keep the droplet in a stable Cassie state, making it 
easier to achieve the “Lotus Effect”. 



 
Lian et al.: Biomimetic Superlyophobic Metallic Surfaces: Focusing on Their Fabrication and Applications 

 

5

 
Fig. 5  Schematic diagram of the wetting behavior of liquids on 
two different structural surfaces. (a) A positive trapezoidal struc-
ture; (b) an inverted trapezoidal structure. 

 

 
Fig. 6  Schematic diagram of the wetting model of oil in an 
aqueous environment. (a) Young model; (b) Cassie model. 

 
3.2  Modeling and design of superoleophobic prop-

erty 
It is known that the highly ordered structures on the 

surface of springtails make their skins superoleophobic 
and resistant to wetting by oil. Since the surface tension 
of the oil is less than that of water, especially hexadecane, 
dodecane, etc., which have a surface tension in the range 
of 20 mN·m−1 – 30 mN·m−1. Therefore, to exclude this 
type of oil droplets, surface roughness and surface free 
energy must be more strictly controlled. According to 
Young’s equation, when the oil droplet is placed on a 
solid surface, the equation is as: 

so sa
o

ao

cos = ,
 





                     (5) 

where θo is the oil contact angle on the solid surface,  
and γsa, γso and γao are the surface tensions of solid–air, 
solid–oil and air–oil, respectively. From the Eq. 5, it is 
known that the oleophobic surface can be obtained only 
when γso > γsa. In addition, fluorine- or perfluorinated 

modifiers can further improve the oleophobicity of the 
surface[182]. 

Although the Cassie model can effectively evaluate 
the superoleophobicity of conventional structural sur-
faces, the Wenzel state on the surfaces will be formed for 
liquids with surface tensions below 30 mN·m−1. In re-
sponse to this problem, Tuteja et al.[183] designed the 
surface microstructure and proposed for the first time 
that the key to the preparation of the superoleophobic 
surface is the re-entrant texture. In order to qualitatively 
explain the importance of the re-entrant texture, the 
wetting behaviors of the liquid on the surface of the 
positive trapezoidal structure (structure angle ψ > 90˚) 
and the inverted trapezoidal structure (called re-entrant 
texture, structure angle ψ < 90˚) were analyzed (Fig. 5). 
The surface will produce a stable Cassie state only when 
θ > ψ[184–186]. The main reason is that if θ < ψ, the 
gas–liquid interface will produce downward traction 
under the action of capillary force, which will cause the 
liquid to penetrate into the solid microstructure to form a 
Wenzel state. Therefore, the well-designed re-entrant 
texture on the surface can form a stable superoleophobic 
property. 

 

3.3  Modeling and design of underwater superoleo-
phobic property 
When the fish scales are contact with the oil droplet, 

an oil–water–solid interface is formed with the partici-
pation of water trapped in the microstructural fish scales. 
This new composite interface shows underwater supe-
roleophobicity. Although Young’s equation was origi-
nally applied in air, it has been applied to an oil droplet 
on a solid surface under water. According to Young’s 
equation, we could get the following equation: 

oa o wa w
ow

ow

cos cos
cos ,

   





                 (6) 

where, γwa, γoa and γow are the surface tensions of  
water–air, oil–air and oil–water, respectively, θw is the 
water contact angle in air, θo is the oil contact angle in air, 
and θow is the oil contact angle in water (Fig. 6a). 
Through the Eq. 6, materials that are hydrophilic in air 
can be used to attempt to prepare underwater oleophobic 
surfaces. 

For a rough surface, the Cassie equation in the 
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water environment can be expressed as: 

ow owcos cos 1,C f f                       (7) 

where f is the ratio of the water–solid interface occupied 
by the solid surface, and ow

C  and θow are the underwater 
contact angles of the oil droplet on the structural and 
smooth surfaces, respectively. When the structural sur-
face is immersed in water, the water will fall into  
the microstructure, resulting in the formation of a  
water–oil–solid composite interface. The water that has 
fallen into the microstructure prevents the oil droplet 
from penetrating into the microstructure (Fig. 6b). 

 
3.4  Design of slippery liquid-infused surfaces 

It is known that superhydrophobic surfaces have 
problems such as poor mechanical stability and short life, 
which reduce their value in practical applications. In 
2011, Aizenberg et al.[187] reported for the first time a 
slippery liquid-infused surface by mimicking pitcher 
plants. The obtained surface has the advantages of 
self-repair and high pressure resistance, and effectively 
solves the issues encountered in the use of the superhy-
drophobic surface. 

The slippery liquid-infused surface mainly utilizes 
the lubricating liquid in the microstructure to resist the 
invasion of other liquids. To this end, the design of the 
surface must satisfy the following conditions: First, the 
infiltrated lubricating oil and the working liquid are 
incompatible. Second, the adsorption force of the lu-
bricating oil and the surface should be greater than the 
adsorption force of the working liquid and the surface. 
Last, there are a large number of micro-scale structures 
to increase the adsorption surface area and thus store 
more lubricant.  

In order to satisfy the second principle, Smith et 
al.[188] analyzed the surface energy. When there is a 
working liquid on the surface, the working liquid, the 
lubricating oil and the surface have three contact states. 
W1 means that the working fluid completely replaces the 
lubricating oil, W2 is partially replaced, and W3 indi-
cates that working fluid cannot replace lubricating oil, as 
shown in Fig. 7. The surface energy per unit area in the 
three states is: 

1 sw ,WE r                            (8) 

W1

W2

W3

Substrate

Working fluid

Lubricating oil

 
Fig. 7  Design principle of slippery liquid-infused surface. 

 

2 os sw ow( ) (1 ) ,WE r                     (9) 

3 ow os ,WE r                          (10) 

where γsw is the surface tension between the surface and 
the working liquid, γso is the surface tension between the 
surface and the lubricating oil, and γow is the surface 
tension between the lubricating oil and the working 
liquid. Therefore, the condition that the working fluid 
does not replace the lubricating oil is that the surface 
energy EW3 is the smallest: 

3 1 2, .W W WE E E                    (11) 

4  Preparation of biomimetic superlyophobic 
surfaces on metallic substrates 

The preparation of biomimetic superlyophobic 
surfaces on metal substrates is an integral part of the 
study on the wettability of solid surfaces. Two condi-
tions are usually required for the formation of biomi-
metic superlyophobic surfaces on metallic materials: one 
is that the surface has certain microstructure, and besides 
it has very low surface energy. Various methods have 
been proposed by researchers over the past two decades 
to prepare microstructures on metallic substrates with 
superlyophobicity, such as femto/pico/nanosecond laser 
processing method, electric spark machining method, 
electrochemical etching/deposition/anodization method, 
chemistry etching/deposition method, spray method and 
electrospinning method. Table 2 summaries these inno-
vate techniques applied to different surfaces.  

 
4.1  Superhydrophobic metallic surfaces 
(1) Femto/pico/nanosecond laser processing 

Kietzig et al.[236] produced  two-scale  roughness on  
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Table 2  Summary of various fabrication methods applied to different surfaces 

Wetting property Technique Advantage/disadvantage Material Morphology CA/SA Refs.

Superhydrophobicity 

Femtosecond 
laser processing 

High processing precision, stable microstructure and good 
surface quality, but high cost, low processing efficiency, high 

environment requirements, and difficult to apply to large-scale 
production 

Aluminum Nanoripple structures 153˚ [189]

Platinum 
Parallel micro-grooves 

and extensive nanostruc-
tures 

158˚ [190]

Nickel 
Microcolumn and nano-

particles 
161.3˚ [191]

Picosecond laser 
processing 

Higher production efficiency, stable microstructure, and con-
trollable microstructure, but still unsatisfactory economics, and 

no advantage in large-scale production 

Aluminum 
alloy 

Micro-gratings and cau-
liflower-like protrusions 

162˚ [192]

Nickel 
2D array micro-bumps 

with nano-ripples 
159.3˚ [193]

Nanosecond 
laser processing 

Low cost, high processing speed, low environment require-
ments, suitable to apply to large-scale production, but low 

quality surface, relatively poor controllability 

Copper 
Cotton-like nanostruc-

tures 
> 160˚ [194]

Nitinol alloy Grid pattern 154.4˚ [195]

316L stainless 
steel 

Gaussian micro hole 153.2˚ [196]

Electrical dis-
charge machin-

ing method 

Suitable for complex surface machining and high hardness 
metal processing, good anti-wear ability, high material utiliza-

tion and not limited to small areas, but relatively lower 
processing efficiency and precision 

Copper T-shaped grooves 152.5˚ [197]

Copper foil
Microscale craters and 

nanoparticles 
171˚ [198]

Titanium alloy
Randomly-distributed 
hemispherical features 

– [199]

Electrochemical 
etching 

Controlled, less hazardous, and more environmentally safe, but 
energy consumption 

Titanium 
Micro- and nano-scale 

structures 
162.2˚ [200]

Zinc 

Micro-scale pits, protru-
sions and numerous 
nano-scale dendrite 

structures 

165.3˚ [201]

Electrochemical 
deposition 

Fast, large-scale, low-cost and easily controlled, but weak 
binding force with substrate and energy consumption 

Copper mesh
Micro- and nano-scale 

structures 
154.1˚ [202]

Electrochemical 
anodization 

Fast, large-scale, and controlled, but energy consumption, 
limited to the process of specific metal (valve metal) materials, 
and usually uses fluorine or acid-alkaline solutions, which is 

highly polluting to the environment 

Titanium alloy Micro-pore structures 158.5˚ [203]

Copper 
Nanoneedle-like struc-

tures 169˚ [204]

Chemical etch-
ing 

Widely used in surface processing, convenient and easy to 
manipulate, but inaccurate to control morphology, somewhat 

hazardous, and not an environment−friendly method 

Stainless steel
Petal-like microstructure 

nano-scale structure 168˚ [205]

Aluminum 
Hydrangea-like mi-
cro/nano structures 161.3˚ [206]

Chemical depo-
sition 

Convenient and easy to manipulate, but somewhat high cost by 
using precious metals such as gold and silver 

Aluminum 
alloy 

Micron-sized pores and 
nano-sized fishbone-like 

dendrites 
159˚ [208]

Copper 
Micro-sized spherical 

particles and nano-sized 
protrusions 

156˚ [209]

Spraying me-
thod 

Simple, large area coverage and applicable for a variety of 
substrates, but unstable structure and hard to fine tune surface 

morphology 

Copper Silver thiolate particles 167.8˚ [210]

Aluminum 
alloy 

Micro-scale roughness 
and nanoparticles 162˚ [211]

Superoleophobicity 

Electrical dis-
charge machin-

ing method 

Suitable for complex surface machining and high hardness 
metal processing, good anti-wear ability, high material utiliza-

tion and not limited to small areas, but relatively lower 
processing efficiency and precision 

Al/Mg alloy
Micro-craters and  

terrace-like nanostruc-
tures 

– [212]

Electrochemical 
etching 

Controlled, less hazardous, and more environmentally safe, but 
energy consumption 

Zinc 
Micro- and nano-scale 

structures – [213]

Electrochemical 
deposition 

Fast, large-scale, low-cost and easily controlled, but weak 
binding force with substrate and energy consumption 

Ni/Cu 
Nano-Ni pyra-

mid/micro-Cu cone 
structures 

– [214]

Electrochemical 
anodization 

Fast, large-scale, and controlled, but energy consumption, 
limited to the process of specific metal (valve metal) materials, 
and usually uses fluorine or acid-alkaline solutions, which is 

highly polluting to the environment 

Titanium alloy
Micro-scale protrusions 

and nano-scale structures 
– [215]

Magnesium 
alloy 

Micro/nanoscale caulif-
lower-like cluster binary 

structure 
– [216]

Chemical etch-
ing 

Widely used in surface processing, convenient and easy to 
manipulate, but inaccurate to control morphology, somewhat 

hazardous, and not an environment−friendly method 

Aluminum 
Microstep and nanoreti-

cula structures 
– [217]

Al-Mg alloy
Labyrinth-like micro-
structures and twisty 

nanoflakes 
– [218]
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Table 2  Continued 

Wetting property Technique Advantage/disadvantage Material Morphology CA/SA Refs.

 

Chemical depo-
sition 

Simple, large area coverage and applicable for a variety of 
substrates, but unstable structure and hard to fine tune surface 

morphology  
Stainless steel

Micro/nano-scale origa-
mi-ball-like structures 

– [219]

Spraying me-
thod 

Simple, large area coverage and applicable for a variety of 
substrates, but unstable structure and hard to fine tune surface 

morphology 
Carbon steel

Micro- and nano-scale 
structures 

– [220]

Underwater supero-
leophobicity 

Femtosecond 
laser processing 

High processing precision, stable microstructure and good 
surface quality, but high cost, low processing efficiency, high 

environment requirements, and difficult to apply to large-scale 
production 

Copper 
Micro- and nano-scale 

structures 
– [221]

Stainless steel
Micro-cavities and nano-

particles 
– [222]

Electrochemical 
etching 

Controlled, less hazardous, and more environmentally safe, but 
energy consumption  

Copper Curled plate-like structure – [223]

Electrochemical 
deposition 

Fast, large-scale, low-cost and easily controlled, but weak 
binding force with substrate and energy consumption 

Copper mesh
Micro-nano-sized small 

breast 
– [224]

Electrochemical 
anodization 

Fast, large-scale, and controlled, but energy consumption, 
limited to the process of specific metal (valve metal) materials, 
and usually uses fluorine or acid-alkaline solutions, which is 

highly polluting to the environment 

Titanium 
Pinecone-like microscale 

protrusions and nano-
sheets 

– [225]

Copper mesh
Layered cauliflower-like 

structure 
– [226]

Chemical etch-
ing 

Widely used in surface processing and easy to manipulate, but 
somewhat hazardous, and not an environment-friendly method

Copper foils
Dandelion-like micro-

structures 
– [227]

Spraying me-
thod 

Simple, large area coverage and applicable for a variety of 
substrates, but unstable structure and hard to fine tune surface 

morphology 

Copper Cauliflower shape – [228]

Stainless steel
Micro- and nano-scale 

structures 
– [229]

Slippery liquid- 
infused surfaces 

Femtosecond 
laser processing 

High processing precision, stable microstructure and good 
surface quality, but high cost, low processing efficiency, high 

environment requirements, and difficult to apply to large-scale 
production 

Titanium Spike structures – [230]

316L 2B 
stainless steel

An uneven relief with 
numerous grain bounda-

ries 
2˚ [231]

Nanosecond 
laser processing 

Low cost, high processing speed, low environment require-
ments,  suitable to apply to large-scale production, but low 

quality surface, relatively poor controllability 
Carbon steel

Stacked micro/nano 
structures 

2.5˚ [232]

Electrochemical 
etching 

Controlled, less hazardous, and more environmentally safe, but 
energy consumption 

Zinc 
Needle-like and flake 

nanostructures 
10˚ [233]

Electrochemical 
deposition 

Fast, large-scale, low-cost and easily controlled, but weak 
binding force with substrate and energy consumption 

Titanium Dendritic structure 8˚ [234]

Electrochemical 
etching and 
oxidation Fast, large-scale, low-cost and easily controlled, but energy 

consumption and multiple steps 

Aluminum 
Micron-sized stepped 

structure and nano-sized 
holes 

< 5˚ [128]

Electrochemical  
deposition and 

anodizing 
Cu/Zn alloy

Needle-like structure with 
the porous feature 

11.3˚ [235]

CA = contact angle, SA = sliding angle. Water CA is used to quantitatively compare among superhydrophobic surfaces. For superoleophobic surfaces and underwater 
superoleophobic surfaces, the types of oils used by researchers to measure oil CAs in air or under water are varied, so we have not summarized them. In addition, the 
water SA is the main characteristic for slippery liquid-infused surfaces. 

 
six metallic surfaces by the femtosecond laser treatment. 
The structured metallic surfaces initially showed su-
perhydrophilic behavior and the surfaces were com-
pletely wetted. These surfaces gradually transformed 
from superhydrophilic to superhydrophobic state. By 
controlling laser processing parameters within a rea-
sonable range, the water contact angle could be higher 
than 150˚. Long et al.[237] constructed microstructures on 
aluminum surfaces by a picosecond laser processing 
method, and analyzed the mechanism of transition from 
superhydrophilicity to superhydrophobicity of micro-
structured surfaces under different environmental con-
ditions. The obtained surfaces exhibited superhydrophi-

licity immediately. However, the contact angle of water 
with the surfaces increased as time passed and even-
tually became superhydrophobic. Moreover, storage 
conditions had a great influence on this transition 
process. When the samples were stored in CO2, O2 and 
N2 environments, the wettability transition was inhibited. 
In contrast, the transition was accelerated in organic-rich 
air. Our group[238] reported a simple two-step method to 
realize the creation of bio-inspired superhydrophobic 
surfaces on aluminum alloy samples by the nanosecond 
laser ablation. Many irregular micron-sized structures 
and nanostructures were observed on such surfaces  
(Figs.  8a  and  8b).  The  water  contact  angle  with  the  
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Fig. 8  (a) and (b) SEM images of aluminum alloy surface treated 
by the nanosecond laser with a scan spacing of 10 μm; (c) contact 
angle evolution of the fabricated surface before and after 
low-temperature annealing[238] (Copyright 2019 Elsevier). 
 

 
Fig. 9  Superhydrophobic aluminum alloy surface obtained using 
low-speed wire electrical discharge machining. (a) Schematic 
illustration to fabricate microstructures by wire electrical dis-
charge machining; (b) SEM images of the machined surface with 
microstructures; (c) optical photograph of dyed droplets on the 
constructed aluminum alloy surface[239] (Copyright 2012 ACS). 
 
ablated surface was 0˚ in the beginning and increased to 
153.1˚ following annealing of the samples with low 
temperature (Fig. 8c). When the water droplet fell on the 
ablated surface treated by low-temperature annealing, it 
could bounce up and did not sit on the surface during the 
whole process, demonstrating a good superhydrophobic 
property of ablated surface after low-temperature an-
nealing. 

 
(2) Electrical discharge machining method 

Chung et al.[239] reported a low-speed wire cut 
electrical discharge machining method for the construc-
tion of superhydrophobic aluminum alloy surfaces.  
The array groove structures having the wavelength of  
200 μm – 500 μm were obtained on the surfaces of the 
aluminum alloy by program controlling the running 
track of the wire (Fig. 9a), and the surfaces of the groove 
structures were also covered with the pit-like structures 
with a size of about several micrometers, thereby 
forming the micro-nanosacle structures (Fig. 9b). The 

static contact angle between the water drop and the 
surface was 156˚ (Fig. 9c) and the contact angle hyste-
resis reached only 3˚. Our group[240] employed a single- 
step high-speed wire electrical discharge machining 
method to fabricate superhydrophobic aluminum alloy 
surface. Rectangular sub-millimeter-scale trenches were 
processed on the surface of an aluminum alloy sample, 
and craters and bumps were found to be distributing 
uniformly over the surface of the rectangular trenches 
with porous nanostructures. The surface exhibited su-
perhydrophobicity with a water contact angle of 158˚. 

 
(3) Electrochemical etching/deposition/anodization 

Xu et al.[58] generated microstructures on a mag-
nesium alloy surface using electrochemical etching 
technology, and then achieved superhydrophobic prop-
erty by fluorosilane modification. There was a layered 
roughness on the magnesium alloy surface, and the 
contact angle and rolling angle of a water droplet were 
165.2˚ and 2˚ respectively. The effects of the processing 
time and unit area removal on wettability were studied. 
Additionally, the superhydrophobic surface had good 
corrosion resistance and durability. Liu et al.[241] fabri-
cated superhydrophobic surfaces with the mi-
cron/nanoscale structures on Mg-Sn-Zn alloy by elec-
trochemical deposition technology. By controlling the 
electrodeposition time, it can be observed that the 
maximum contact angle between the water droplet and 
the surface was as high as 160.4˚ ± 0.7˚. The superhy-
drophobic surface could also significantly improve the 
corrosion resistance of the substrates. Peng et al.[242] 
produced a layered alumina pyramid rough structure on 
the surface of aluminum alloy by an electrochemical 
anodization method, which had excellent superhydro-
phobicity after low surface energy modification. Com-
pared to the superhydrophobic surface treated by stearic 
acid, superhydrophobic surface modified by fluorosilane 
showed better chemical stability. 

 
(4) Chemical etching/deposition 

Qian et al.[243] roughened aluminum, copper and 
zinc surfaces by chemical etching. The surface of the 
etched metal showed superhydrophobicity following 
fluorosilane modification. The water contact angle of the 
water droplet was larger than 150˚, and the rolling angle 
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of an 8 μL water droplet was less than 10˚. Choi et al.[244] 
used three different types of alkaline chemical etching 
processes to fabricate micro-nanostructured aluminum 
surfaces. The surfaces produced acicular microstructures 
or micron-sized porous and nano-scale flake structures, 
the difference in the microstructures depended on the 
used chemical solution. After the hydrophobic treatment, 
the contact angle of deionized water with the etched 
aluminum surfaces was more than 150˚ and the rolling 
angle was less than 5˚. Song et al.[245] proposed a 
chemical deposition method to prepare superhydro-
phobic surfaces on aluminum substrates. First, they 
immersed the aluminum plates into an aqueous solution 
of CuSO4 and NaCl, and then modified with fluorosilane 
to decrease the surface energy. Pores, pore walls, den-
drites, leaves and granular micro/nano-scale structures 
were observed on the constructed superhydrophobic 
surfaces with copper film, and the water contact angle 
and the sliding angle were 162.71˚ and 0.51˚, respec-
tively. Qi et al.[246] successfully applied silver nanopar-
ticles to the surface of stainless steel needles by chem-
ical substitution reaction using AgNO3 solution. The 
surface of the stainless steel needle formed porous  
micro/nanoscale structures. After modification with long 
chain thiol molecules, the water contact angle could 
reach 152˚. Furthermore, the superhydrophobic stainless 
steel needles exhibited good antibacterial property. 

 
(5) Spraying method  

Li et al.[247] sprayed the stearate particles formed by 
the reaction of inorganic salts with sodium stearate onto 
a stainless steel substrate to prepare a colored superhy-
drophobic stainless steel surface. The colorful superhy-
drophobic coating also maintained excellent chemical 
stability under acid and alkaline conditions, and retained a 
high resistance to corrosion. Guo et al.[248] used a smooth 
stainless steel mesh as a substrate (Figs. 10a and 10b) and 
sprayed synthesized acrylic polymer onto the surface  
to obtain microsphere structures with different scales 
(Figs. 10c and 10d). The untreated stainless steel mesh 
displayed hydrophobicity and lipophilicity, while the 
sprayed one presented superhydrophobicity and super-
lipophilicity with a water contact angle of 153˚ and an 
oil contact angle of 0˚ (Figs. 10e and 10f). Results 
showed  that  various  water-soluble  droplets  (milk,  tea,  

 
Fig. 10  Superhydrophobic stainless steel mesh obtained by 
spraying a coating. (a) and (b) SEM images of a smooth stainless 
steel mesh; (c) and (d) SEM images of a superhydrophobic 
stainless steel mesh; (e) and (f) wettability of stainless steel 
meshes before and after the spraying treatment; (g) various 
droplets on the superhydrophobic stainless steel mesh[248] (Copy-
right 2018 Springer). 

 
coffee, etc.) all exhibited superlyophobicity (Fig. 10g). 
Moreover, the prepared stainless steel mesh was capable 
of separating mixed oil and water (n-hexane, isooctane, 
gas ether, kerosene and vegetable oil). 

 
4.2  Superoleophobic metallic surfaces 

At present, although superhydrophobic surfaces 
have great application prospects in the fields of self- 
cleaning, drag reduction and oil–water separation[8,10], 
they have not achieved extensive practical applications. 
The main reason is that ordinary superhydrophobic 
surfaces do not have the resistance to oil wetting, and the 
surfaces will lose the superhydrophobicity once conta-
minated by oil[12,13]. Therefore, it is urgent to have a need 
to resist both water- and oil-wetting surfaces. It has been 
proved that the special re-entrant surface curvature and 
the further lowering of the surface free energy are  
necessary to produce a superoleophobic surface[183,184]. 
The following is an introduction to the recent develop-
ments in the fabrication of biomimetic superoleophobic 
metallic surfaces. 

 
(1) Electrical discharge machining method 

Weisensee et al.[249] employed micro electrical 
discharge machining to fabricate five different micro- 
mushroom re-entrant structures on a low carbon steel 
surface. The water droplets on the surfaces formed 
nearly perfect spheres with the contact angle between 
146˚ and 162˚ and contact angle hysteresis between 19˚ 
and  35˚.  The  contact  angles  of the oil  droplet with  the  
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Fig. 11  Superoleophobic aluminum alloy surface obtained by 
high-speed wire electrical discharge machining method. (a) and (b) 
SEM images of the machined aluminum alloy surface with 
three-level composite structures, and the inset of (b) shows the 
droplets of water (right), glycerol (middle) and ethylene glycol 
(left) on the surface[250] (Copyright 2015 Elsevier). 

 

 
Fig. 12  Superoleophobic titanium alloy surface processed by 
electrochemical etching. (a) and (b) SEM images of the supe-
roleophobic surface at two multiples; (c) cross-sectional SEM 
image of superoleophobic surface; (d) photograph of different 
droplets on the superoleophobic surface[251] (Copyright 2013 
ACS). 

 
fabricated surfaces were in the range 106˚ – 152˚, dis-
playing the (super)oleophobicity. Our group[250] used a 
high-speed wire electrical discharge machining method 
to fabricate sub-millimeter-scale structures on aluminum 
alloy surfaces (Figs. 11a and 11b). The fabricated 
V-shaped groove arrays with a hierarchical structure 
showed good superhydrophobicity and superoleopho-
bicity following immersion in solution (Fig. 11c) with 
the contact angles of droplets of water, glycerol and 
ethylene glycol higher than 150˚. The obtained surfaces 
still maintained good superoleophobicity after peel and 
mechanical tests (Fig. 11d). In addition, the obvious 
anisotropic sliding property was obtained on the sur-
face. 

(2) Electrochemical etching/deposition/anodization 
Lu et al.[251] prepared superhydrophobic and supe-

roleophobic titanium surfaces by electrochemical etch-
ing. The fabricated superoleophobic surfaces had micro- 
scale bump and void structures (Fig. 12a) and nano-scale 
needle-like structures (Figs. 12b and 12c). The contact 
angles of water, glycerol, and hexadecane droplets were 
all greater than 150˚ (Fig. 12d) and the sliding angle 
were only 1˚ – 2˚. Moreover, they investigated the ef-
fects of current density, electrochemical corrosion time, 
electrolyte temperature and the strength of electrolyte on 
the wettabilities of water, glycerin and hexadecane. Sun 
et al.[215] successfully fabricated superhydrophobic and 
superoleophobic surfaces on titanium alloy substrates 
through electrochemical anodization and fluorosilane 
modification. The contact angles between water, glycerin 
and hexadecane with the prepared titanium alloy surfaces 
were 166.4˚ ± 1.8˚, 158.4˚ ± 2.1˚ and 152.5˚ ± 1.9˚ re-
spectively, and the rolling angles of the same were all 
less than 10˚. In order to obtain the best superhydro-
phobicity and superoleophobicity, the relationship be-
tween reaction time and surface wettability was further 
analyzed.  

 
(3) Chemical etching/deposition 

Yang et al.[252] etched the aluminum surface with 
hydrochloric acid, and then treated the surface with 
hydrothermal method to obtain micro-nanoscale com-
posite structures. The aluminum surface with the 
re-entrant structures was obtained by varying etching 
conditions. The surface exhibited superoleophobicity 
after modification with fluorosilane. Lim et al.[253] first 
polished the surface of aluminum, and etched the surface 
with hydrochloric acid to achieve micro-nanoscale 
structures. Results showed that the surface of aluminum 
displayed superhydrophobicity to diiodomethane and 
hexadecane by applying a low-surface-energy material 
to the surface. Zhao et al.[254] prepared micro-nanoscale 
array rod patterns on copper surface by immersing 
copper in a mixture of sodium hydroxide and ammo-
nium persulfate, and performed surface energy modifi-
cation using a low surface energy material to generate 
superoleophobicity. Ou et al.[255] prepared the supero-
leophobic surfaces having a micro-nanoscale structure 
on the copper substrates by acid and alkali etching. 
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Fig. 13  Superoleophobic copper surface obtained by spray coating. (a) and (b) SEM images of the coating containing fluorinated silica 
and fluorinated resin with a ratio of 1:4; (c) optical images of water and hexadecane droplets sit on the original, superhydrophobic, and 
superoleophobic surfaces of copper[256] (Copyright 2014 Elsevier). 
 

 

Fig. 14  Superoleophobic stainless steel mesh surface prepared by 
electrospinning. (a) SEM image of a polymethyl methacrylate 
bonded to the stainless steel mesh; (b) different oil droplets on its 
surface[258] (Copyright 2012 Wiley-VCH). 
 
(4) Spraying method  

Ge et al.[256] sprayed synthetic silicon fluoride and 
fluoropolymer onto a copper substrate, and obtained 
different microstructures and wettabilities by changing 
ratios. When the ratio of silicon fluoride and fluoropo-
lymer was 1:1, the surface had insignificant micro- 
nanoscale structures, exhibiting superhydrophobic and 
oleophobic properties. However, a large number of micro-  
convex and granular nanoscale structures were gener-
ated on the surface by setting this ratio to 1:4, showing 
superhydrophobic and superoleophobic properties  
(Fig. 13). Results showed that the surface also exhibited 
an enhanced corrosion resistance. Tang et al.[257] pre-
pared wear-resistant, superhydrophobic and superoleo-
phobic coatings by applying a mixture of polyurethane 
(PU)/molybdenum disulfide (MoS2) onto a variety of 
substrates including copper, glass, paper, stainless steel, 
cloth and copper mesh. The contact angle of water with 
the PU/55.6% MoS2 coating featured with mastoid 
structures was 157˚, resulting in superhydrophobicity on 
the surface. Both superhydrophobicity and superoleo-
phobicity occurred when the coating was modified by a 

chemical method. Results also indicated that the 
PU/55.6% MoS2 coating had good wear and abrasion 
resistance. 

 
(5) Electrospinning 

Tuteja et al.[258] combined polymethyl methacrylate 
onto stainless steel mesh by electrospinning to form a 
double-scale re-entrant structure (Fig. 14a). The surface 
exhibited superoleophobicity with the n-heptane contact 
angle of 155˚ (Fig. 14b). On the double-scale re-entrant 
surface, the reduction in solid–liquid contact area di-
rectly resulted in an ultra-low contact angle hysteresis. 
In fact, they examined the surface near the three-phase 
contact line, and found the solid–liquid contact area was 
reduced due to the trapped air in the micro-nanoscale 
structures. Based on the extremely low contact angle 
hysteresis, n-heptane droplets could easily slide down 
and bounce off the surface. In further research work, 
Tuteja et al.[259] fabricated a superhydrophobic and su-
peroleophobic surface on stainless steel mesh by elec-
trospinning using a mixture of fluorinated polyhedral 
oligomeric silsesquioxane and PDMS. The contact an-
gles of almost all liquids including organic and inorganic 
concentrated acids, alkali solvents with the surface are 
greater than 150˚, easily rolling and bouncing off the 
surface. The electrospun coating remained unchanged 
even after prolonged exposure to various concentrated 
and concentrated bases. 

 
4.3  Underwater superoleophobic metallic surfaces 

In the preceding section, we have summarized the 
progress in biomimetic superoleophobic metallic sur-
faces in air. Recently, inspired by fish scales, underwater  
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Fig. 15  Underwater superoleophobic surfaces obtained by 
high-speed wire electrical discharge machining. (a) Oil contact 
angle in water to the fabricated aluminum alloy surface; (b) un-
derwater oil droplet guidance; (c) underwater anti-oil strider; (d) 
self-cleaning anti-oil ability of surface[263] (Copyright 2017 
Springer). 

 
superoleophobic surfaces have attracted a great deal of 
attention due to their broad application prospects in the 
fields of oil droplet manipulation, anti-biological ad-
hesion, oil–water separation and self-cleaning[12–14].  
It is well-known that the hydrophilic chemical compo-
sition and micro-nano structure are the key to the  
preparation of underwater superoleophobic surfac-
es[17,27,34,46,60,121,162,164]. This part will focus on the recent 
developments in biomimetic superoleophobic metallic 
surfaces in the water environment. 

 
(1) Femto/nanosecond laser processing 

Yong et al.[260] used the femtosecond laser to ablate 
the titanium surface to form micro-nanoscale structures. 
The structured titanium surface demonstrated superhy-
drophilic behavior with a high contact angle and low 
rolling angle of petroleum ether, hexadecane, diesel, 
liquid paraffin, crude oil, and chloroform in an aqueous 
environment, showing underwater superoleophobicity. 
However, under dark conditions, superhydrophobicity 
and underwater superoleophilicity were obtained, and 
the surface was restored to underwater superoleopho-
bicity following ultraviolet (UV) irradiation. Ye et al.[261] 
used the femtosecond laser to drill the titanium foil to 
obtain an array microporous surface with underwater 
superoleophobic property. Separation of eight typical 
oil-water mixtures could be realized by using a simple 
filter device without any modification, with an effi-
ciency of over 99%. After 40 separation cycles and the 

application of corrosive medium, the surface still had 
high separation efficiency. Our group[262] reported a 
simple method for commercially fabricating mechani-
cally durable surfaces with underwater superoleophobic 
behavior via the nanosecond laser on common engi-
neering metals. The unique features including under-
water oil-repellent property, possibility of commercial 
fabrication and mechanical durability indicated potential 
utilization of the laser-ablated stainless steel wire mesh 
to remove oil from water. 

 
(2) Electrical discharge machining method 

Our group[263] has recently used a method of 
high-speed wire electrical discharge machining to ef-
fectively construct curved surfaces of two- and 
three-dimensional shapes having underwater supero-
leophobicity on light alloys. Extreme underwater supe-
roleophobicity was observed on the structured surfaces 
immersed in ethanol representing a high oil contact an-
gle. In addition, a proof of concept was conducted in the 
applications, such as underwater oil droplet guidance, 
underwater anti-oil strider and self-cleaning anti-oil 
ability of surface (Fig. 15). In further research, our 
group[264] reported a two-step method to fabricate un-
derwater superoleophobic surface on an aluminum alloy 
inspired by fish scales: high-speed wire electrical dis-
charge machining and boiling water treatment. The  
micro-nanoscale structures and hydroxyl groups were 
observed on the aluminum alloy surface and the fabri-
cated surface were capable of preventing contact with oil 
droplets when immersed into water. Furthermore, the 
tribological properties of the aluminum alloy surfaces 
with underwater superoleophobic property in water were 
studied, and results showed a reduced friction coefficient 
as compared to the polished aluminum alloy surface, 
showing a good underwater tribological performance. 

 
(3) Electrochemical etching/deposition/anodization 

Wang et al.[265] successfully prepared the surface of 
underwater superoleophobic titanium alloy by electro-
chemical etching technology. The prepared titanium 
alloy surface had good underwater superoleophobic 
performance. The contact angle and sliding angle of 
methylene chloride in aqueous environment were 158.9˚ 
± 1.7˚ and 6.4˚ ± 1.4˚, respectively. Besides, the effects 
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of corrosion time on surface wettability was studied, and 
the mechanism of the micro-nanoscale structure formed 
on the titanium alloy surface was carefully analyzed. 
Hou et al.[266] prepared a nickel-coated underwater su-
peroleophobic stainless steel mesh by electrodeposition 
from a deep eutectic solvent, a mixture of choline chlo-
ride and ethylene glycol. It was found that the nickel 
nanoparticles were uniformly distributed on the stainless 
steel mesh, and the resulting pore size were capable of 
changing with the deposition time and the applied cur-
rent density, exhibiting superhydrophilicity and under-
water superoleophobicity with low adhesion to oil. The 
modified stainless steel mesh could be used to separate 
oil from water, including viscous oils like crude oil  
and silicone oil. Moreover, separation of various 
oil–in–water emulsions could be achieved by using the 
stainless steel mesh with a small pore size. Zhou et al.[226] 
prepared CuWO4@Cu2O film on a copper mesh surface 
by electrochemical anodization. The surface had cau-
liflower-like structures, exhibiting superhydrophilicity 
and underwater superoleophobicity. Results also indi-
cated that the treated copper mesh demonstrated high 
efficiency in separation of oil from water. 

 
(4) Chemical etching/deposition 

Ma et al.[267] first polished X100 pipeline steel and 
then etched the surface with HCl solution. The micro-
structures generated by corrosion plus the inorganic 
coating with high surface energy obtained during the 
etching process induced a sharp transition of the X100 
pipeline steel from underwater oleophilic to oleophobic 
state. By varying the surface morphology, the X100 
pipeline steel displayed underwater superoleophobic 
property, resulting in an oil contact angle of 163˚ in 
aqueous environment. Nishimoto et al.[268] prepared a 
rough titanium dioxide (TiO2) surface by acid treatment 
of titanium plate and titanium mesh. After UV light 
irradiation, the surfaces were superhydrophilic and un-
derwater superoleophobic. Results showed that the 
rough titanium mesh also had efficient oil/water separa-
tion performance. Li et al.[269] treated a stainless steel 
mesh by coating it with a nanoflake honeycomb network 
through NiOOH seeding for growth on the substrate in 
the process of chemical bath deposition. This obtained 
stainless steel mesh exhibited excellent superhydrophilic  

 
Fig. 16  Underwater superoleophobic stainless steel mesh ob-
tained by chemical deposition. (a) Photograph of the oil droplet on 
stainless steel mesh in water environment; (b)–(d) SEM images of 
underwater superoleophobic stainless steel mesh[269] (Copyright 
2015 RSC). 

 
and underwater superoleophobic properties. The contact 
angle of the water droplet in air was 0˚, the contact angle 
of the oil droplet in water was 152˚, and the NiOOH 
nanoflake honeycomb structures were produced on the 
stainless steel mesh surface (Fig. 16). 

 
(5) Spraying method  

Li et al.[270] sprayed the mixture of palygorskite and 
polyurethane onto the surface of copper mesh to form the 
single fiber structures with the width of about 100 nm on 
the surface, and the treated copper mesh presented  
underwater superoleophobicity. The effectiveness of 
oil/water separation of the surface was studied by grav-
ity driving device, and the obtained copper mesh showed 
an efficiency of 99.6% to remove kerosene from water. 
Gunatilake et al.[271] sprayed a stainless steel mesh with 
hydrothermally synthesized titanium dioxide nanofibers. 
The contact angle of water with the treated stainless steel 
mesh was 2˚, the contact angle of oil in aqueous envi-
ronment with the treated surface was 162˚, and the 
oil/water separation experiment was carried out based on 
this property. 

 
4.4  Slippery liquid-infused metallic surfaces 
(1) Femtosecond laser processing 

Doll et al.[272] used femtosecond laser to construct 
several different structures on the surface of medical 
titanium alloy, and then injected five different perfluo-
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ropolyurethane lubricants onto the structured surfaces. It 
was found that the convex structures were combined 
with medium viscosity lubricants (143 AZ and GPL 104) 
to obtain slippery liquid-infused metallic surfaces with 
low contact angle hysteresis. Experimental results 
showed that such surfaces could inhibit bacterial adhe-
sion, and still exhibited strong antibacterial and slippery 
properties after being exposed to air for a long time. 

 
(2) Electrochemical anodization 

Wang et al.[273] prepared slippery liquid-infused 
metallic surfaces by means of electrochemical anodiza-
tion. In the experiment, the polished aluminum was 
employed to be working electrode, and stainless steel as 
the reversible electrode. A voltage (80 V) was applied 
between both electrodes, and the process of anodic 
oxidation was set at 30 s, 60 s and 120 s respectively. 
The aluminum samples were modified with fluorosilane 
after anodizing, and then injected into lubricant to obtain 
the slippery property. Results showed that the prepared 
slippery liquid-infused surfaces showed excellent inhi-

bitory properties against anaerobic bacteria either stati-
cally and dynamically. 

 
(3) Chemical etching 

Wang et al.[274] created a superhydrophobic coating 
by applying acid and hydrogen peroxide to etch a steel 
substrate, and then injected FC-70 into the rough struc-
ture to obtain a slippery liquid-infused porous surface. 
The fabricated surface is capable of repelling coffee, 
water, kerosene and even hexane, exhibiting excellent 
lyophobic behavior. It was observed that the fluidity of 
different liquids on the treated surface and the kinematic 
viscosity were inversely related (Fig. 17). Yang et al.[275] 
reported a simple method to design a slippery liquid- 
infused porous surface. HCl etching and boiling water 
treatments were employed on the aluminum substrate to 
construct surface microstructures followed by injecting  
a fluorinated lubricant into the microstructures. The 
treated surface showed efficient liquid repellency to wa-
ter, diiodomethane, hexadecane, dodecane and ethanol. 
Gao  et al.[276]  etched  the steel  surface  with  the  sulfuric  
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Fig. 17  Slippery liquid-infused porous steel surface obtained after chemical etching. (a–d) A 50 μL droplet and the contact angles of 
hexane, kerosene, water and coffee with slippery liquid-infused porous surface; (e) schematic of structure of the slippery surface; (f) the 
relation between the kinematic viscosity and traveling speed[274] (Copyright 2016 Elsevier).           
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acid and hydrogen peroxide solution, and the surface was 
superhydrophobic after the fluorosilane modification. On 
this basis, a slippery liquid-infused porous surface was 
obtained after injecting perfluoropolyether into the sur-
face. The contact angle of the water droplet with the 
surface was 115.6˚, and the rolling angle was 2.27˚. 

In addition to the above preparation methods, 
sol–gel method, layer-by-layer self-assembly method 
and dip-coating method are also employed to obtain the 
superlyophobic property for metallic materials. Lu et 
al.[277] used sol–gel method to achieve superlyophobicity 
by immersing the aluminum surface into a mixture of 
zinc nitrate and hexamethylenetetramine. When the 
molar ratio between zinc nitrate and hexamethylenete-
tramine was 1:1, the surface exhibited superhydropho-
bicity with a water contact angle of 154.8˚ and a contact 
angle hysteresis of 3˚. Hou et al.[278] employed layer- 
by-layer self-assembly method to obtain an underwater 
superoleophobic stainless steel mesh realizing the se-
paration of different oil/water mixtures. Jo et al.[279] 
attached titanium dioxide nanoparticles to a stainless 
steel mesh by using dip-coating method to obtain a su-
perhydrophilic and underwater superoleophobic surface 
after treated with acid and titanium dioxide, providing a 
treated surface to separate oil from water. 

To sum up, the ever-growing demand encourages 
researchers to develop a number of methods to fabricate 
superlyophobic metallic surfaces. Some of the prepara-
tion methods have a quite mature processing mechanism 
and have been widely applied, achieving economic and 
social benefits. In general, researchers have been im-
proving the methods for preparing superlyophobic me-
tallic surfaces aiming to achieve high efficiency, envi-
ronmental protection, low cost and suitability for indu-
strialization. 

5  Applications of biomimetic superlyophobic 
metallic surfaces 

The preparation technology and applications of 
biomimetic superlyophobic metallic surfaces have at-
tracted extensive attention. Furthermore, researchers 
have continued their investigation into more attractive 
applications based on the nature of superlyophobic sur-
faces against liquid wetting. In recent years, biomimetic 
superlyophobic metallic surfaces have been widely used 

for various applications including self-cleaning, anti- 
icing, corrosion resistance, and drag reduction. The 
following is a brief introduction to several potential 
applications. 

 
5.1  Self-cleaning 

Although the lotus grows in the mud all year round, 
no mud can cling to the surface of its leaves. This feature 
results from its superhydrophobic surface that has low 
adhesion property. Specifically, water droplets roll off 
immediately upon contact with the surface, and the 
rolling droplets take away the attached dust particles. 
This property is called self-cleaning performance (“Lo-
tus Effect”). Jiang et al.[6] conducted an experimental 
investigation into the lotus leaf surface and found that 
the presence of micro-nanoscale structures and stratum 
corneum wax crystals is critical to the formation of su-
perhydrophobicity. 

Latthe et al.[280] prepared the superhydrophobic 
steel surface by creating rough structure and lowering its 
surface energy. The water droplet was spherical on the 
surface with a contact angle of 164˚. As the water droplet 
slid off the surface at an angle of 9˚, dust particles were 
immediately picked up and removed under the action of 
water droplet rolling, demonstrating a self-cleaning 
effect. Our group[238] reported a laser ablated aluminum 
alloy surface with superhydrophobicity, and studied the 
self-cleaning property of the flat and superhydrophobic 
aluminum alloy surfaces. The iron powders could not be 
removed when water droplets were released onto the flat 
surface (Figs. 18a−18d). However, they were taken 
away following releasing water droplets onto the su-
perhydrophobic surface, displaying a good self-cleaning 
performance (Figs. 18e−18h).  

Liu et al.[281] proposed a simple method to prepare 
gel films on metallic substrates. The thickness of the gel 
film on the surface of the matrix was about 30 nm. After 
the injection of lubricating oil, the droplets could roll off 
the surface easily due to its slippery performance. In 
addition, the droplets could remove dust particles away 
when the surface was slightly tilted, showing a good 
self-cleaning property. 

 
5.2  Anti-icing 

Icing often occurs in daily life, leading to wet roads,  
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Fig. 18  Experimental study on the self-cleaning property of the 
(a−d) flat and (e−h) superhydrophobic aluminum alloy surfac-
es[238] (Copyright 2019 Elsevier). 

 

 
Fig. 19  Images of time-lapse threshold of frost formation 
(frost-covered areas displayed in white) on several aluminium 
surfaces. (a) Smooth aluminum surface; (b) modified (low surface 
energy) smooth aluminum surface; (c) infused (perfluorinated 
lubricants) smooth aluminum surface; (d) modified and infused 
smooth aluminum surface; (e) modified polypyrrole porous 
coating surface; (f) slippery liquid-infused porous surface. ~99% 
of all control surfaces excluding the lubricant-infused polypyrrole 
coating are coated with frost after 100 minutes of freezing, and 
frost coverage was controlled only at 20% of the area[52] (Copy-
right 2012 ACS). 

 
attenuated signals, power outages of electronic products, 
and metal tube bursts. The most serious problem icing 
causes is that an aircraft engine may suddenly turn off, 
posing a serious threat to human life. Compared to 
conventional de-icing methods, the superlyophobic 
surfaces provide a relatively simple and effective strat-
egy. Since the superlyophobic surfaces have a low roll-
ing or sliding angle, the amount of water adhesion on the 
surface is reduced, and the generation of ice crystals can 
be delayed. The adhesion of ice crystals to the surface 

can also be reduced to some extent. 
Boinovich et al.[282] treated the surface by chemical 

etching on a stainless steel surface and then grafted a 
layer of siloxane to obtain excellent icing resistance. 
This coating surface had strong mechanical properties 
and maintained a high water contact angle after repeated 
ice-icing tests. The fundamental of the good hydropho-
bicity was due to the presence of the porous structures 
and the two-dimensional polysiloxane structures on  
the surface. Outdoor experiments showed that even in 
low-humidity environments, this low-surface energy 
coating surface could effectively prevent ice from ad-
hering to the surface, exhibiting excellent anti-icing 
property. 

Aizenberg et al.[52] used electrochemical method to 
deposit polypyrrole porous coating on the surface of 
aluminum alloy. The injection of perfluoroalkyl ether 
resulted in slippery liquid-infused porous surface. Icing 
performances of various aluminium surfaces at different 
time conditions (Fig. 19) were compared. The icy area of 
the slippery liquid-infused porous surface was still small 
after 100 min, exhibiting excellent delayed icing per-
formance, while the ice adhesion was reduced by 
one/two orders of magnitude. Zhang et al.[61] prepared 
two films on AZ31 magnesium alloy, the dense bottom 
film was used as an anti-corrosion layer, and the porous 
top film was injected a lubricant, and the obtained slip-
pery liquid-infused porous surface had a small sliding 
angle to water. Moreover, the slippery surface provided 
long-lasting anti-icing property for magnesium alloy 
substrate, significantly better than superhydrophobic 
film. 

 
5.3  Corrosion resistance 

As a matter of fact, many surfaces are gradually 
deteriorated by corrosion in the actual environment, 
especially in the industrial field where metals are widely 
used. Research shows that the annual corrosion-related 
cost accounts for about 3% of the world’s GDP. Al-
though paints and chromium-containing compounds are 
used as anti-corrosion coatings, their harmful impacts on 
human health and the environment discourage the 
widespread use of materials in everyday life and industry. 
Indeed, superhydrophobic coatings are an effective 
method   to   solve   corrosion   problems.   Immersion   of  
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Fig. 20  Corrosion resistance of the superhydrophobic seedpod. (a) Digital photos of the seedpod and water droplets on its surface; (b) and 
(c) SEM images of a sphere-sea-like loose network on Cu-thiolate treated TiO2/AZ91D and water droplets on the surface; (d) reversible 
wettability transition on the treated AZ91D between superhydrophobicity and superhydrophilicity; (e) Tafel polarization curves of flat 
AZ91D (a1), TiO2/AZ91D (a2), Cu/TiO2/AZ91D (a3) and superhydrophobic AZ91D (a4); (f) corrosion current density obtained after each 
conversion cycle[283] (Copyright 2017 Wiley-VCH). 

 
superhydrophobic surfaces in a corrosive solution can 
entrap air between the rough structure and the liquid 
forming a natural barrier, which is capable of preventing 
the substrate coming into contact with the corrosive ions, 
thereby achieving a corrosion resistance effect. 

Liu et al.[283] reported the superhydrophobicity of a 
lotus seedpod (Fig. 20a) and produced a protective 
coating on the AZ91D magnesium alloy surface, which 
had a strong synergistic effect of superhydrophobicity 
(Fig. 20c). In the experiment, in situ hydrothermal syn-
thesis technique was employed to paint AZ91D with 
titanium dioxide film, and then a superhydrophobic 
layer was formed on the substrate by the sonication 
assisted electroless plating and the self-assembled 
n-dodecanethiol compact monolayer (Fig. 20b). The 

superhydrophobicity effectively prevented direct contact 
between corrosive ions and the substrate (Fig. 20e). It 
was worth noting that it was easy to control two extreme 
wetting behaviors and corrosion resistance by removing 
the hydrophobic substance at high temperature of 350 ̊ C 
and achieving modification at room temperature  
(Figs. 20d and 20f). 

Zhang et al.[60] successfully obtained an underwater 
superoleophobic coating by solution-casting method 
using MPS (methacryloxy propyl trimethoxy si-
lane)-SiO2/PNIPAM (N-isopropylacrylamide) mixed 
nanoparticles and epoxy resin. Epoxy resin acted as an 
intermediate layer between the mixed nanoparticles and 
the matrix, improving the robustness and corrosion  
resistance   of   the  coating.  The   obtained   coating   had  
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Fig. 21  Experimental study on drag reduction performance of superhydrophobic surface and cross-section of channel laminar flow under 
different boundary conditions. (a) Comparison of superhydrophobic and untreated tubes, the left tube is superhydrophobic; (b) no slip 
water–solid interface; (c) water–air interface; (d) water–air–solid composite interface[67] (Copyright 2009 ACS). 

 
excellent underwater superoleophobicity and still exhi-
bited high stability in an acid-base environment. Besides, 
due to the presence of high density PNIPAM polymers, 
the coating was resistant to bacterial adhesion, thereby 
reducing microbial corrosion of the coating. 

Wang et al.[284] made a rough aluminum oxide film 
on the aluminum foil surface by electrochemical ano-
dization. Then the fluorination of the rough layer and 
infiltration with lubricant resulted in slippery liquid 
infused porous surfaces. The prepared slippery surface 
could not only effectively reduce the adhesion of 
heat-resistant anaerobic bacteria, but also inhibit the 
corrosion of the substrate by corrosive media. Tuo et 
al.[285] prepared the flower-like microstructures on the 
aluminum foil by chemical etching and hydrothermal 
reaction. After modification with fluorosilane, the sur-
face became superhydrophobic. Then the slippery liquid 
infused porous surface was achieved by injecting a lu-
bricant into the surface. The sliding angle of the water 
droplets with the slippery surface was 3˚. Furthermore, 
in terms of the corrosion current density, the slippery 
surface showed about two orders of magnitude lower as 
compared to the untreated and superhydrophobic alu-
minum foil surfaces. The impedance spectrum illu-
strated that the impedance semicircle diameter of the 
slippery surface was about 200 kΩ·cm2, indicating that 
the prepared slippery surface had excellent corrosion 

resistance. 
 

5.4  Drag reduction 
When an object moves, the surrounding medium 

will have a certain frictional resistance. For example, the 
resistance generated by a flowing liquid in oil pipelines 
is almost all frictional resistance. The frictional resis-
tances of the submarine and torpedo in the water account 
for about 80% of the total resistance, even if the vessel 
sailing on the water and the aircraft flying in the air, the 
proportions are also up to 50%. Therefore, it is of great 
significance to reduce the frictional resistance as  
much as possible for saving energy and increasing trav-
eling speed. In addition, with the rapid development of  
Micro-Electro-Mechanical System (MEMS), the internal 
structures of the surface are generally on the micrometer 
or even nanometer scale. Relatively speaking, the fric-
tional resistance of the solid–liquid interface is also am-
plified, which has become a major factor restricting the 
development of electronic devices. 

A solid–gas interface can be usually observed when 
superhydrophobic surfaces are immersed in an aqueous 
environment[286]. The flowing water is accelerated at  
the water–air boundary, which is known as surface 
slip[287–290]. Superhydrophobic surfaces are considered a 
better alternative to traditional bubble drag reduction 
methods. Shirtcliffe et al.[67] proposed a method for 
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generating uniform superhydrophobic nanobelt struc-
tures inside a circular copper tube. A drag reduction 
experimental study was performed on the surface, and 
the flow behavior of the fluid was tested using two 
copper tubes. In this experiment, the fluid preferentially 
flowed through the superhydrophobic tube, indicating 
that the superhydrophobic tube wall had a lower fric-
tional resistance (Fig. 21a). Typically, a liquid on a solid 
surface demonstrates laminar flow, while the velocity 
curve in a circular tube is parabolic (Fig. 21b) and the 
maximum flow is at the midpoint of the channel. In that 
case, the frictional resistance between solid–liquid in-
terfaces is transferred to a much lower frictional resis-
tance between the liquid and the air (Fig. 21c). If the 
channel wall is superhydrophobic, a layer of air will be 
observed in the wall, making the friction between  
the liquid and the channel wall be very similar to the 
fluid–air interface, exhibiting a piston-like flow rate 
distribution (Fig. 21d).  

The liquid-floating gyro rotor has the advantages of 
small size, low cost and high precision. In the rotor  
gyroscope, the rotor speed has a great influence on  
the detection accuracy. Zhang et al.[291] prepared the  
nano-scale line pyramid structures on the ferromagnetic 
rotor surface by electrochemical anodization. After 
modification with fluorosilane, the contact angle of the 
rotor surface to 3# white oil could reach 156˚, indicating 
superoleophobic performance. The superoleophobicity 
of the rotor surface could be used to reduce the resistance 
in flowing liquid (3# white oil). The test results showed 
that in the case of normal driving, the speed of the su-
peroleophobic rotor could reach 3200 rpm, while the 
speed of the untreated rotor could only reach 2860 rpm, 
and the rotational speed increased by about 11.9%. 
Therefore, a rotor with superoleophobicity could in-
crease its rotational speed to a certain extent, thereby 
improving the performance of the gyro system. 

As was previously stated, superlyophobic metallic 
surfaces have provided a variety of functions and at-
tracted a lot of attention. However, these functional 
surfaces encounter various harsh environmental factors 
(such as corrosion and wear) in practical applications, 
causing the surface microstructures to be severely 
damaged. It imparts anti-wear and corrosion properties 
to the superlyophobic metallic surfaces, which can im-

prove the service life of the material and ensure the more 
significant value in practical applications. 

6  Summary and outlook  

In recent years, with the rapid development of 
human society, researchers have begun deeply investi-
gating the structure and superlyophobic property of 
various biological surfaces in nature using advanced 
testing methods, and successfully replicated these 
structures and their corresponding functions with ad-
vanced processing equipment. In this article, we re-
viewed recent achievements of biomimetic superlyo-
phobic metallic surfaces and discussed applications  
of biomimetic superlyophobic metallic surfaces in 
self-cleaning, corrosion resistance, anti-icing, and drag 
reduction. But even so, there are still many problems for 
the biomimetic superlyophobic metallic surfaces to be 
solved: 

(1) From the perspective of matrix materials, only 
conventional metallic substrates were focused including 
aluminum, copper, stainless steel, titanium and their 
alloys. Methods to achieve superlyophobicity on the 
surface of new metallic materials, such as super steel, 
shock-resistant fire-resistant steel, aluminum-lithium 
alloy, medical alloy, shape memory alloy, metallic por-
ous materials, hydrogen storage alloy, shock absorbing 
alloy, metallic glass, metal matrix composite materials, 
etc., become a promising area for the research of su-
perlyophobic metallic surfaces.  

(2) In terms of preparation methods, as described 
above, various processing techniques have been pro-
posed to construct microstructures on superlyophobic 
metallic materials, on the other hand, there are some 
disadvantages related to these techniques. A large 
amount of strong acid and alkali are involved in the 
electrochemical etching/anodizing and chemical etching 
methods, and the spraying method also uses a volatile 
organic solvent, posing a potential hazard to operators 
health when commercial production is realized. What is 
more, an oxidizing acid solution used in the electro-
chemical anodizing process, a strong acid/alkali or a 
heavy metal salt solution employed in the electrochem-
ical etching and chemical etching methods and an or-
ganic solvent handled during the spraying, sol–gel, and 
layer-by-layer self-assembly process all have a negative 
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environmental impact. Moreover, the femto/picosecond 
laser processing and electrospinning methods are ex-
pensive and inefficient. The chemical deposition method 
mainly deposits a large amount of precious metals such 
as gold and silver on the surface of metallic materials, 
which significantly increases the production cost. In  
the spraying, electrospinning, sol–gel, layer-by-layer 
self-assembly and dip-coating methods, since the ob-
tained superlyophobic coatings on the metallic materials 
are mainly mechanically combined, the bonding strength 
with the surface is low. Compared with these methods, 
the nanosecond laser processing and electrical discharge 
machining methods have the advantages of simple 
process, high efficiency, low cost, mechanical durability 
and without using acid-base solution, and are expected 
to be practically applied earlier. 

(3) In practical applications, shortcomings such as 
poor material stability in the preparation process affect 
the wide application of the biomimetic superlyophobic 
metallic surface. Furthermore, the environmental con-
ditions at which the superlyophobic metallic surface is 
used are usually complicated and varied, and the corro-
sion resistance, wear resistance and failure resistance  
of the materials should be considered comprehensively. 
Additionally, the difficulty in large-area and high- 
efficiency manufacturing of biomimetic superlyophobic 
metallic surfaces is also a tough challenge faced in 
practical applications.  
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