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Abstract

Diseases caused by Sclerotinia sclerotiorum (Lib) de Bary are difficult to control and cause increasing losses of horticultural
crops worldwide. Reasons of this phenomenon are various: (i) the specialization of crop production that causes the accumulation
of the pathogen in the soil; (ii) the lack of a safe and efficient method of soil fumigation; (iii) the specific life cycle of
S. sclerotiorum with survival structures (sclerotia), resistant to chemical and biological degradation. Sclerotinia diseases depend
on many environmental factors which determine sclerotia survival and ascospores dissemination, because plants are mainly
infected by air-borne ascospores from carpogenic germination of sclerotia. Due to the lack of effective synthetic agents for
eradication of S. sclerortiorum from soil considerable interest has been focused on biological control, especially the selection of
microorganisms with mycoparasitic activity towards . sclerotiorum sclerotia, that can decrease their number in the soil. In this
work we review reports on the use of different antagonistic fungi and bacteria in the control of S. sclerotiorum and discuss the

suppressive effect of organic amendments against this soil-borne pathogen.
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Introduction

Sclerotinia sclerotiorum (Lib.) de Bary [syn. Whetzelina
sclerotiorum (Lib) Korf and Dumont 1972 (phylum
Ascomycota)] is an ubiquitous pathogen of many plants be-
longing to the families Solanaceae, Cruciferae, Umbelliferae,
Composite, Chenopodiaceae and Leguminosae (Kohn 1979;
Willets and Wong 1980; Boland and Hall 1994), which was
first reported from sunflower in 1861 (Purdy 1979). The fun-
gus infects leaves, flowers, fruits and stems of the host plants,
inducing diseases that can develop during the vegetation pe-
riod or at the post-harvest stage, and cause severe losses to
economically important crops in temperate regions of the
world, mainly bean, carrot, pea, lettuce, mustard, canola, lentil
and sunflower (Fernando et al. 2004; Clarkson et al. 2004; Del
Rio et al. 2007). For example, in one major rapeseed cultiva-
tion area of China, S. sclerotiorum was reported to infect al-
most 4 to 7 million ha annually (Ni et al. 2014). The fungus
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overwinters in the soil or on crop debris as sclerotia, i.e. struc-
tures resistant to physical, chemical and biological degrada-
tion (Bolton et al. 2006).

Diseases caused by S. sclerotiorum are difficult to control
because the long term persistence of sclerotia in the soil and
the production of air-borne ascospores. Management of
S. sclerotiorum occurs at several stages of crop development.
Successful disease control usually requires implementation
and integration of multiple methods. The environmentally
least harmful are cultural practices that reduce the number of
sclerotia in the soil. However, in many cases, especially for
high value crops or highly specialized farms these methods are
insufficient. Fungicides play the most important role in suc-
cessful and effective white mold management (Mueller et al.
2002a; Vieira et al. 2003; Paula Junior et al. 2009; Derbyshire
and Denton-Giles 2016). For instance, soil fumigation with
metham-sodium decreased the amount of resting propagules
(Ben-Yephet et al. 1986). Fungicides applied during the
bloom period are effective in inhibiting infection by asco-
spores in fields with a history of diseases caused by
S. sclerotiorum. Several chemical agents registered in the
USA, Canada, Australia, Europe and China are available to
this purpose. Their active ingredients are: boscalid, fluazinam,
fluxapyroxad, pyraclostrobin, penthiopyrad, picoxystrobin,

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s42161-018-0023-0&domain=pdf
mailto:Beata.Kowalska@inhort.pl

J Plant Pathol (2018) 100:1-12

prothioconazole, prothioconazole and trifloxystrobin,
tetraconazole, thiophanate methyl (Matheron and Porchas
2004; Bradley et al. 2006; Zhou et al. 2014a, 2014b; Wang
etal. 2015; Derbyshire and Denton-Giles 2016). The effective
control of S. sclerotiorum requires application of fungicides
during sensitive time frames, the number of treatments de-
pending on the length of the crop vegetation period and on
how long flowers or petals are available for infection by asco-
spores (Heffer Link and Johnson 2007). More applications are
needed for plants with longer bloom periods. Although some
foliar-applied herbicides containing lactofen as the active in-
gredient have efficacy against S. sclerotiorum, their use may
result in crop damage and yield reduction (Heffer Link and
Johnson 2007). The use of fungicides to control sclerotinia
stem rot of oilseed rape was reviewed by Derbyshire and
Denton-Giles (2016).

The best way to limit pesticide application would be the use
of cultivars resistant to S. sclerotiorum. However, due to the
specific character of the diseases caused by this pathogen,
breeding programs had a limited success so far (Yanar and
Miller 2003; Otto-Hanson et al. 2011; Barbetti et al. 2014;
Uloth et al. 2014). One promising way to obtain
S. sclerotiorum resistant plants is the implementation of ge-
netic engineering strategies by the use of host-induced gene
silencing methods (HIGS) (Andrade et al. 2016). Studies with
transgenic plants with increased level of resistance to
S. sclerotiorum have also been conducted (Liu et al. 2015).

In the absence of resistant cultivars and environmentally
friendly methods for the eradication of S. sclerotiorum from
soils, research on biological methods was initiated, among
which the application of antagonistic microorganisms and or-
ganic amendments, as discussed in the present review.

Pathogen biology

Sclerotia formation S. sclerotiorum is capable of reproducing
both asexually (myceliogenic germination of sclerotia) and
sexually (carpogenic germination of sclerotia) (Aldrich-
Wolfe et al. 2015). On diseased plants, the fungus forms a
white fluffy mycelium (white mold) and, after several days,
it produces survival structures: the sclerotia (Ordonez-
Valencia et al. 2014). These are black, melanized structures
of different size which, depending on the host, range from a
few millimeters (bean) to a few centimeters (sunflower) in
length (Bolton et al. 2006). Sclerotia can germinate
myceliogenically or carpogenically (Williams and Stelfox
1980); in the first case forming hyphae, in the second produc-
ing apothecia and, subsequently, ascospores.

Sclerotia are built from two (Willets and Wong 1971) or
three (Arseniuk and Macewicz 1994) layers: rind, cortex and
medulla each made up of a thick layers of hyphal aggregates.
The outer ring is composed of cells whose walls contain the
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black compound melanin (Butler et al. 2009). This is a mac-
romolecule composed of various types of phenolic or indolic
monomers that protects fungi from harsh environmental con-
ditions, i.e visible or ultraviolet light, toxic metals or lytic
enzymes, and antagonistic microorganisms (Butler and Day
1998). S. sclerotiorum melanin is extraordinarily resistant to
chemical degradation. The inner part of the sclerotium, the
medulla, is embedded in a fibrillar matrix composed of carbo-
hydrates and proteins (Le Tourneau 1979).

The morphogenesis of S. sclerotiorum sclerotia was de-
scribed by Ordonez-Valencia et al. (2014). The first step of
sclerotial formation (sclerotial primordial) was observed by
these authors after four days of fungal growth in Petri dishes,
when mycelium completely covers the surface of the medium.
The aggregation of aerial hyphae was observed at the edge of
plates, probably as a response to the limited nutrient availabil-
ity. Next, during the development stage, the hyphae coalesced
and became compacted. During the maturation period, the
surface of the sclerotia became pigmented, due to melanin
production in the ring cells, and acquired a rough texture.
The described steps of sclerotia formation were observed on
agar medium in laboratory conditions. It is possible that sim-
ilar processes take place on diseased plants. However, it can-
not be excluded that some differences may occur, depending
on the environmental conditions and plant species.

The most important factor stimulating sclerotia formation is
nutrient limitation. It was found that the vegetative growth of
S. sclerotiorum was prolonged and sclerotium formation de-
layed in a medium continually supplemented to maintain a
high energy status (Christias and Lockwood 1973) and it
was also observed that under nutrient deprivation, carbohy-
drates and nitrogen were translocated to sites of sclerotial syn-
thesis (Cooke 1971). Townsend (1957) demonstrated that the
time of maturation of Sclerotium rolfsii sclerotia was related to
the time of depletion of carbohydrates in the growing media.
Rollins and Dickman (2001) showed that under neutral or
alkaline pH sclerotial formation is inhibited. In an earlier work
they described the role of 3°,5’-cyclic monophosphate (cAMP)
in the start of the phase from mycelial growth to sclerotia
formation (Rollins and Dickman 1998). The molecular basis
of sclerotiogenesis was described by Bolton et al. (2006).

Sclerotia survival Sclerotia have the capability of remaining
viable for long periods of time because they are resistant to
chemical and physically adverse conditions, as well as to bi-
ological degradation (Merriman 1976; Wu et al. 2008). Cook
et al. (1975) showed that 78% of the sclerotia survive for at
least three years when buried in uncultivated soil, while Cosic
et al. (2012) demonstrated that after three years, the percent-
age of viable sclerotia can be up to 100%. There are reports
that sclerotia can survive for up to 4-5 years (Adams and
Ayers 1979) and many studies show the effect of burial depth,
moisture and temperature on survival of S. sclerotiorum
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sclerotia in the soil (Moore 1949; Merriman et al. 1979;
Matheron and Porchas 2005; Wu et al. 2008; Duncan et al.
2006). Among these factors, the most detrimental one seems
to be flooding. Under this condition, sclerotia may decay
completely within 24-45 days (Moore 1949) or 14-21 days
(Matheron and Porchas 2005). Cosic et al. (2012) showed that
in the case of continuous flooding sclerotia buried in the soil at
5 cm depth were completely destroyed.

Sclerotia survival is strongly dependent on the depth at
which they are buried in the soil. Information on the survival
of sclerotia within the vertical soil profile is contradictory.
Cosic et al. (2012) showed that in undisturbed soil sclerotia
placed deeper (10-30 cm) stay alive longer than those in upper
soil (5 cm). Similar results were obtained by Cook et al.
(1975), who concluded that sclerotia from upper layers were
degraded faster than sclerotia placed deeper in the soil profile,
whereas Duncan et al. (2006) showed that the viability of
S. sclerotiorum sclerotia, buried at 0, 5 and 10 cm, decreased
with depth. This phenomenon occurred regardless of the
timing of sampling in the growing season.

Carpogenic germination - ascospore formation As mentioned
above sclerotia can germinate myceliogenically or
carpogenically (Williams and Stelfox 1980). In the first case,
the hyphae produced by sclerotia can directly infect plants. In
the second case, sclerotia produce apothecia and subsequently
ascospores. From each sclerotium, one or several apothecia
can emerge. An apothecium is a structure consisting of a stipe
topped with a discoid receptacle that bears a flat to concave
hymenial layer with rows of asci. Each ascus contains eight
hyaline, ellipsoid and binucleate ascospores (Kohn 1979).
Apothecia develop rapidly on sclerotia located at the surface
or near the surface of the soil.

Factors affecting carpogenic germination of S. sclerotiorum
have been described in many papers (Schwartz and Steadman
1978; Caesar and Pearson 1983; Dillard et al. 1995; Sun and
Yang 2000; Matheron and Porchas 2005; Wu and Subbarao
2008). The most important are moisture and temperature.
Favorable temperature conditions mostly range from 10 to
20°C. However, temperature requirements are dependent on
the origin of the S. sclerotiorum isolates and the temperature at
which the sclerotia are produced (Huang and Kozub 1991).
Sclerotia should be conditioned at low temperatures for some
time to overcome dormancy and germinate carpogenically
(Dillard et al. 1995). Those present in a dry environment are
unable to germinate carpogenically. Wu and Subbarao (2008)
observed that in a greenhouse, a 10- to 20-day dry period
completely inhibited carpogenic germination, whereas maxi-
mum carpogenic germination was observed in fully water-
saturated sclerotia (Nepal and del Rio Mendoza 2012).
Sclerotia buried in soil were fully water-saturated at different
times, depending on their size. Small, medium and large scle-
rotia were fully saturated within 5, 15 and 25 h, respectively

(Nepal and del Rio Mendoza 2012). No apothecia formation
was observed below 70 to 80% saturation. Clarkson et al.
(2004) showed that carpogenic germination of sclerotia oc-
curred between 5 and 25°C, but only when the soil water
potential was >-100kPa. Above 26°C no apothecia were pro-
duced. In formed apothecia, the maturation of asci takes about
72-84 h (Clarkson et al. 2004). Ascospore maturation is a
complex process that is influenced by multiple factors. Of all
the factors studied, the temperature influences the process of
ascus maturation significantly, the optimum temperature being
21°C. Apothecia discharge ascospores (about 2x10° per apo-
thecium) during a sudden decrease of atmospheric humidity or
pressure (Wu et al. 2007). The hyaline, unicellular ascospores
have thin walls and may survive for only a few days.

Disease development

Symptoms caused by S. sclerotiorum differ among host spe-
cies (Lumsden 1979; Morrall and Dueck 1982; Steadman
1983; Patterson and Grogan 1985; Kora et al. 2003;
McLaren et al. 2004). However, the most common symptoms,
as for example in lettuce or beans, are water-soaked irregular
spots and a characteristic white cotton-like mycelium present
on leaves, stems, fruits and petioles. Next appear secondary
symptoms such as water soaked lesions, wilting, bleaching
and shredding of plants. At later stages of disease develop-
ment, sclerotia are formed on the outer surface of affected
plant tissues which, together with the decomposed plants,
are transferred into the soil. Sclerotia may germinate and di-
rectly produce mycelium. The mycelium of S. sclerotiorum
may directly infect plants growing close to the sclerotium.
Diseases initiated by mycelium were observed in some vege-
tables such as carrots, lettuce, beans or sunflower (Steadman
1983; Hunter et al. 1984; Nelson et al. 1989; Kora et al. 2003).
In sunflower, myceliogenic germination can cause a serious
disease called sunflower wilt. In this case, infection occurs
through the roots and progresses up into the stem (Nelson
et al. 1989). Mueller et al. (2002b) demonstrated that the den-
sity of sclerotia in soil and the severity of infection decreased
after deep plowing.

It is very difficult to assess the number of sclerotia that may
be dangerous for any given crop. According to the Suzui and
Kobayashi (1972), 3.2 sclerotia per m? may cause 95% infec-
tion of kidney bean in the field whereas Schwartz and
Steadman (1978) showed that the minimum number of scle-
rotia to incite a moderately severe disease of dry edible bean
(Phaseolus vulgaris) is 0.2 sclerotia/kg of soil.

More common and dangerous for plants is the carpogenic
germination of S. sclerotiorum. Ascospores released by
apothecia can be disseminated by air currents over several
kilometers (Sedun and Brown 1987). Plants are primarily in-
fected by air-borne ascospores from carpogenic germination
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of sclerotia. For these reasons disease incidence is often spo-
radic and dependent on weather conditions favouring the pro-
duction of apothecia (Hudyncia et al. 2000).

S. sclerotiorum infection and mycelium development is
maximized in the presence of free water on the plant surface.
Ascospores can germinate on the surface of healthy tissue but
cannot infect plants without an exogenous nutrient source
(Bolton et al. 2006),which often is provided by senescing
leaves and petioles or juices flowing from the damaged plants
(Kora et al. 2003). Thus, flowering is a particularly dangerous
moment because senescing flowers serve as nutrient source
for the pathogen (Turkington and Morrall 1993; Almquist and
Wallenhammar 2015). Direct penetration of fungal hyphae
was observed through the cuticle within 12 h from inocula-
tion. The host cells were completely colonized by fungal my-
celium 48 h after inoculation leading to tissue collapse (Davar
et al. 2012). Upon establishment on the surface of plants, the
fungus secretes pathogenicity factors: cell-wall and plant tis-
sues degrading enzymes such as pectinases, cellulases, beta-
1,3-glucanases, xylanases and glycosidases (Cotton et al.
2003; Bolton et al. 2006). These enzymes facilitate penetra-
tion of the fungus inside the plant and maceration of tissues. In
the first step the main role is played by pectinases, because
pectins are the main component of cell walls. S. sclerotiorum
produces several forms of pectinases. Expression of genes
encoding the fungal lytic system is regulated by ambient pH.
Marciano et al. (1983) showed that an optimum production of
pectinolytic enzymes occured at pH 4-5.

Infection of plants by S. sclerotiorum causes also the secre-
tion of oxalic acid into plant tissues and pH reduction
(Guimaraes and Stotz 2004). Cotton et al. (2003) demonstrat-
ed that the secretion of polygalacturonases and a decrease of
pH are the results of oxalic acid production. Oxalic acid is
important for pathogenesis of S. sclerotiorum and sclerotia
formation (Cessna et al. 2000; Williams et al. 2011). Godoy
et al. (1990a) showed that a S. sclerotiorum mutant unable to
produce oxalic acid was also unable to produce sclerotia and
was non-pathogenic to plants. Oxalic acid can suppress the
oxidative burst of infected plants (Cessna et al. 2000), can
induce apoptotic-like programmed cell death (Williams et al.
2011) and is decomposed by oxalate oxidase, an enzyme that
has multiple impacts on plant cells (Wang et al. 2015).

Biological control

The activity of the biocontrol agents in the soil is affected by
many abiotic and biotic environmental factors, e.g. tempera-
ture, water potential, pH, pesticides, organic matter, soil mi-
croorganisms, plant species and so on, making these agents
usually less effective than synthetic pesticides. However, due
to the less harmful effect on the environment and the lack of
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the effective chemical methods, safer biological methods are
being sought.

Antagonistic microorganisms

Fungi S. sclerotiorum sclerotia are the most important survival
structures of the pathogen in the soil. So, considerable interest
has been focused on the selection of microorganisms which
can neutralize these structures in the soil (Jones and Watson
1969). Many fungi showed mycoparasitic activities towards
S. sclerotiorum. The results of these studies were described in
many papers and are summarized in Table 1. Particularly in-
tense studies were conducted with the parasitic fungus
Coniothyrium minitans (Huang and Hoes 1976; Turner and
Tribe 1976; McQuilken et al. 1995; Zeng et al. 2012b).
Contans® W@, a commercial formulation of C. minitans
(strain CON/M/91-08), is known for its capacity to reduce
the damage caused by S. sclerotiorum to several crops by
infecting and degrading sclerotia in the soil (McQuilken and
Chalton 2009). Target plants for treatment with C. minitans
are high value crops as peanuts, sunflowers, lettuce, cucum-
ber, beans and oilseed rape (EFSA 2016). Li et al. (2005)
showed that three applications of C. minitans conidia (5x10°
ml ™) to alfalfa blossoms effectively suppressed sclerotinia
pod rot in field conditions. The percentage of diseased pods
in the S. sclerotiorum- infested treatment was 64, 42 and 72%
and 38, 30 and 29% in the C. minitans treatment during three
consecutive years. By spraying a C. minitans spore suspen-
sion on bean plants during blooming, the incidence of white
mold was reduced by 56% (Huang et al. 2000). Also, incor-
poration of C. minitans in the top soil before planting of soy-
bean reduced the disease severity index (DSI) by 68% and the
number of sclerotia in the soil by 95.3% (Zeng et al. 2012a).

C. minitans produces a broad range of cell wall-degrading
enzymes such as chitinases and glucanases as well as second-
ary metabolites like macrosphelide A, benzofuranones and
chromanes (Tomprefa et al. 2011), that enhance colonization
and degradation of S. sclerotiorum sclerotia. Direct penetra-
tion of sclerotia, degradation and disintegration of sclero-
tial tissues by C. minitans was also demonstrated (Tu
1984; Bitsadze et al. 2015). This mycoparasitic activity
is affected by factors such as temperature and pH.
Colonization of sclerotia by C. minitans occurred very
fast and half of the sclerotia were infected during the first
week. After four weeks 100% of the sclerotia were colo-
nized (Zeng et al. 2012b). The optimum parameters for
C. minitans growth were 15-20°C and pH 4.5-5.6.

Fungi of the genus Trichoderma are used extensively as
biological control agents (BCAs) (Benitez et al. 2004;
Harman et al. 2004; Vinale et al. 2008; Druzhinina et al.
2011; Hermosa et al. 2012; Aleandri et al. 2015). Many ex-
periments conducted all over the world demonstrated parasit-
ism of S. sclerotiorum sclerotia and reduction of apothecia
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Table 1 Fungi showing

mycoparasitic and antagonistic Species

References

activity towards S. sclerotiorum
Alternaria alternata

Aspergillus niger
Aspergillus ustus

Coniothyrium minitans

Drechslera sp.
Epicoccum purpurascens
Fusarium graminearum
Fusarium heterosporum
Fusarium oxysporum
Gliocladium virens
Gliocladium roseum
Microsphaeropsis ochracea
Mpyrothecium verrucaria
Penicillium citrinum
Penicillium funiculosum
Penicillium pallidum

Sporidesmium sclerotivorum

Streptomyces lydicus
Talaromyces flavus
Teratosperma oligocladum
Trichoderma asperellum
Trichoderma hamatum

Trichoderma harzianum

Trichoderma atroviride
Trichoderma koningii
Trichoderma virens
Trichoderma stromatica

Ulocladium atrum

Inglis and Boland 1992
Rai and Saxena 1975
Rai and Saxena 1975

Tribe 1957; Huang and Hoes 1976; Turner and Tribe 1976;
Whipps and Budge 1990; Budge and Whipps 1991;
Trutmann et al. 1980; Tu 1984; Huang et al. 2000; Jones and
Whipps 2002; McQuilken et al. 2003, McQuilken and Chalton 2009;
Gerlagh et al. 2003;
Chitrampalam et al. 2008; Jones et al. 2011; Zeng et al. 2012b;
Bitsadze et al. 2015; Jones et al. 2015

Inglis and Boland 1992

Zhou and Reeleder 1989; Inglis and Boland 1992
Inglis and Boland 1992

Inglis and Boland 1992

Rodriguez et al. 2006

Tu 1980; Phillips 1986; Whipps and Budge 1990; Budge et al. 1995
McCredie and Sivasithamparam 1985

Bitsadze et al. 2015

Inglis and Boland 1992

Rai and Saxena 1975

Rai and Saxena 1975

Rai and Saxena 1975

Ayers and Adams 1979; Adams and Ayers 1983; Adams and Fravel 1990;
Fravel 1997; Del Rio et al. 2002

Zeng et al. 2012b

McLaren et al. 1983

Adams and Ayers 1983

Geraldine et al. 2013; Aleandri et al. 2015
Aleandri et al. 2015; Jones et al. 2015

Bin et al. 1991; Budge and Whipps 1991; Knudsen et al. 1991;
Menendez and Godeas 1998; Elad 2000; Chitrampalam et al. 2008;
Zeng et al. 2012b; Steindorff et al. 2014; Aleandri et al. 2015

Li et al. 2005; Matroudi et al. 2009

Castro 1995

Zaidi and Singh 2013; Aleandri et al. 2015; Jones et al. 2015
Paula Junior et al. 2009

Li et al. 2003

density by Trichoderma isolates (Geraldine et al. 2013). Most
of these experiments were conducted under laboratory or
greenhouse conditions (Matroudi et al. 2009; Smolinska
et al. 2016). However, the number of reports dealing with
the antagonistic activity of Trichoderma in field conditions
is rather limited (Knudsen et al. 1991; Zeng et al. 2012a;
Geraldine et al. 2013).

Geraldine et al. (2013) observed a reduction of
S. sclerotiorum apothecia number and disease severity after
application of 7 asperellum at the dose of 2 x 10'? spores ml™!
per plot in two years of field experiments with common bean.
A positive effect was also observed of Trichoderma treatment

on the number of pods per plant and an increase of yields up to
40% compared to the control. 7 hamatum reduced Sclerotinia
disease of cabbage by 31-57% in field experiments conducted
by Jones et al. (2015) showing that T hamatum-colonized
sclerotia had reduced apothecial production and a lower
carpogenic infection of cabbage. The white mould of cucum-
ber fruit and stems was reduced by 64 and 30-35%, respec-
tively, after 7. harzianum T39 application under commercial
greenhouse conditions (Elad 2000). Another isolate of
T. harzianum T-22, protected soybean against
S. sclerotiorum and decreased the disease severity index
(DSI) by 38.5% in a field-grown crop (Zeng et al. 2012a).
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The mechanisms involved in the control of pathogenic fun-
gi by Trichoderma include mycoparasitism (Zeilinger and
Omann 2007; Geraldine et al. 2013), antibiosis (Elad 2000;
Vinale et al. 2008) and systemically induced resistance
(Harman et al. 2004; Nawrocka and Matolepsza 2013).
Also, several studies have shown that isolates of
Trichoderma spp. can significantly stimulate the growth of
different plant species (Vinale et al. 2008; Smolinska et al.
2014). Fungi of the genus Trichoderma are characterized by
rapid growth and abundant production of spores, so they are
highly competitive compared with other soil-borne microor-
ganisms. The ability to secrete active compounds varies great-
ly among Trichoderma species, and isolates. Mechanisms
used by Trichoderma spp. in biological control vary with the
species, pathogen and host plant. In the case of antifungal
activity against S. sclerotiorum, the mycoparasitic properties
of Trichoderma play an important role. Chitynases,
glucanases, proteases and cellulases were identified among
the Trichoderma enzymes that disintegrate the cell wall of
the pathogens (Chet et al. 1998; Kaur et al. 2005; Zeilinger
and Omann 2007; Lopez-Mondejar et al. 2011).

Antagonistic microorganisms

Bacteria Various studies have reported the capacity of diverse
bacterial genera, such as Bacillus and Pseudomonas, to control
fungal diseases (Table 2). Studies of biological control in the
phyllosphere of host plants with bacterial antagonist were con-
ducted much less frequently than with fungi (Fernando et al.
2007; Saharan and Mehta 2008). It was observed that
Pseudomonas chlororaphis and Bacillus amyloliquefaciens
significantly reduced stem rot of canola caused by

S. sclerotiorum under field conditions (Fernando et al. 2007).
The percentage of stem rot incidence after application of bac-
teria (9x10® CFU ml™") at 30-50% bloom stage, was 7.5-28.7%
for P. chlororaphis and 5.0-29.6% for B. amyloliquefaciens in
two field trials, and were significantly different from that of the
pathogen-inoculated control (20.0-75.0%). Application of
P, chlororaphis at 10* -10° CFU ml"" inhibited ascospore ger-
mination of S. sclerotiorum on canola petals. When bacteria
were applied prior to, or at the same time as S. sclerotiorum,
there was a complete inhibition of the disease (Savchuk and
Fernando 2004).

The antifungal activity of Pseudomonas brassicacearum
DF41 (Loewen et al. 2014) against S. sclerotiorum under
greenhouse and field conditions was demonstrated by
Savchuk and Fernando (2004) and Berry et al. (2010). In later
papers Berry et al. (2012, 2014) described the role of
lipopeptide sclerosin produced by P. brassicacearum DF41
in the suppression of S. sclerotiorum and studied the role of
quorum sensing and biofilm formation on production of anti-
fungal compounds.

Antagonistic bacteria inhibit the germination of ascospores
either through the production of antimicrobial substances or
direct growth on ascospores. Fernando et al. (2007) suggested
that application of P. chlororaphis on host plants induced sys-
temic resistance against S. sclerotiorum. Strains of
Pseudomonas spp. produce many antimicrobial compounds,
i.e. pyoluteorin, pyrrolnitrin, phenazines, siderophores, cya-
nide, 2,4-diacetylphloroglucinol (Compant et al. 2005) and
enzymes that can lyse fungal cells, i.e. cellulose, chitinase,
proteases and beta-glucanase (Hernandez-Leon et al. 2015).
In most cases Pseudomonas showed multiple mechanisms in
the biocontrol of diseases caused by S. sclerotiorum.

Table 2 Bacteria with

antagonistic activity towards Species

References

S. sclerotiorum
Bacillus subtilis

Bacillus megaterium
Bacillus amyloliquefaciens
Bacillus cereus

Erwinia herbicola
(Pantoea agglomerans)
Pseudomonas chlororaphis

Pseudomonas fluorescens
Pseudomonas putida

Pseudomonas cepacia
(syn. Burkholderia cepacia)
Pseudomonas brassicacearum

Serratia plymuthica

Zazzerini 1987; Zhang and Fernando 2004a; Chitrampalam et al. 2008;
Hu et al. 2011; Zeng et al. 2012a, b; Monteiro et al. 2013;
Hu et al. 2014; Kamal et al. 2015

Hu et al. 2013; Hu et al. 2014
Fernando et al. 2007

Zazzerini 1987; Kamal et al. 2015
Godoy et al. 1990b; Yuen et al. 1994

Zhang and Fernando 2004b; Savchuk and Fernando 2004;
Fernando et al. 2007; Selin et al. 2010

Bin et al. 1991; Expert and Digat 1995
Expert and Digat 1995
McLoughlin et al. 1992

Savchuk and Fernando 2004; Berry et al. 2010; Ortet et al. 2011;
Loewen et al. 2014; Berry et al. 2014

Thaning et al. 2001; Kamensky et al. 2003
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Production of antimicrobial metabolites by Pseudomonas spp.
is governed by a complex network involving multiple regula-
tory elements (Berry et al. 2014).

Bacillus strains were often used as biological control agents
against Sclerotinia diseases (Table 2). It was observed that
Bacillus cereus and B. subtilis reduced hyphal growth of the
pathogen and minimized sclerotinia stem rot disease incidence
in sunflower (Zazzerini 1987). Hu et al. (2014) demonstrated
that B. subtilis BY-2 suppressed a disease of oilseed rape
caused by S. sclerotiorum when applied as seed coating or
as a spray at flowering. The mean disease incidence in the
treatment with B. subtilis BY-2 was 8.9-11.8%, while it was
18.1-22.9% in the control. Kamal et al. (2015) showed that
two applications of B. cereus SC-1 at 7-day intervals signifi-
cantly reduced the incidence of sclerotinia stem rot of canola
(6.5-9.3%), compared with the control (20.0-29.8%).

Bacillus spp. produce a wide range of biological active
compounds that suppress development of many plant patho-
gens (Zhao et al. 2012). However, a recent investigation dem-
onstrated that the amount of antifungal or antibacterial com-
pounds released by this bacteria in the rhizosphere is relatively
low, raising doubts that a direct suppression of plant patho-
gens plays a major role (Chowdhury et al. 2015). More likely,
it seems that the main mechanism responsible for biocontrol
activity is the induced systemic resistance (ISR) triggered by
compounds produced by Bacillus spp. (Kloepper et al. 2004).

Another bacterial species Serratia plymuthica IC14 that
showed antifungal activity towards S. sclerotiorum was report-
ed by Kamensky et al. (2003). This bacterium protected cucum-
ber against S. sclerotiorum white mold disease under green-
house conditions. S. plymuthica produces antibiotic pyrrolnitrin,
siderophores and proteolytic as well as chitynolytic enzymes.
Mutants of S. plymuthica deficient or with a higher production
of chitynolytic enzymes had a similar effect towards the
suppression of Sclerotinia foliar disease as the parental strain,
suggesting that the chitynolytic enzymes are not essential for the
biocontrol of S. sclerotiorum by S. plymutica. However,
Thaning et al. (2001) demonstrated that S. plymuthica sup-
presses apothecial formation of S. sclerotiorum.

Organic amendments

It is known that organic materials added to the soil improve soil
properties, plant health and yield. These substances are sources
of nutrients for soil microorganisms and cause quantitative and
qualitative changes in the communities of bacteria and fungi
(Emmerling et al. 2002). Suppressive effects of the organic
amendments against soil-borne fungal diseases have often been
attributed to enhanced microbial activity (Mazzola 2004;
Borneman and Becker 2007; Bonanomi et al. 2007). One of
the methods for elimination of fungal propagules from infested
soil is the application of organic material containing biological

active compounds (Huang and Huang 1993; Gamliel et al.
2000; Smolinska 2000; Huang et al. 2002, 2005; Smolinska
et al. 2016). Volatile and non-volatile compounds formed dur-
ing decomposition of these material in the soil may exhibit
toxic effect towards many microorganisms. The quantity and
quality of compounds formed during decomposition of organic
materials depend on several physical, chemical and biological
processes taking place in the soil. Huang et al. (2002) tested 87
organic residues to assess their potential for controlling
carpogenic germination of sclerotia S. sclerotiorum. Among
them, 46 effectively inhibited the development of the fungus
when the materials were applied to the soil at a dose of 3%
w/w. However, only three kinds of residues were effective at
0.5% w/w. The most effective in preventing ascospore produc-
tion were materials with elevated levels of nitrogen, e.g. fish
meal. The authors suggested that the loss of viability of scle-
rotia in the soil was connected with the production of ammonia
and ammonia-related compounds.

Addition of organic materials to soils infested by a pathogen
may have positive effects when they stimulate the antagonistic
microorganisms or negative effects when they increase the pop-
ulation of pathogens (Bonanomi et al. 2007). Ferraz et al.
(1999) demonstrated that soils rich in organic matter stimulated
carpogenic germination of S. sclerotiorum sclerotia. One of the
most promising methods of Sclerotinia elimination from
infested field soil and avoiding the danger of pathogen
multiplication is the application of organic materials together
with antagonistic microorganisms. The study by Huang et al.
(2002) reveals that amendment of soil with organic residues
infested with C. minitans or Trichoderma virens decreased
carpogenic germination of sclerotia. Furthermore, Smolinska
et al. (2016) reported that the application of selected
Trichoderma species on organic carriers prepared from agro-
industrial wastes (wheat straw, apple and strawberry pomaces,
potato pulp, dry onion rind, rapeseed meal), allowed the com-
plete eradication of S. sclerotiorum sclerotia. Organic com-
pounds provide nutrients for mycoparasitic fungi which allows
the maintenance of their population in the soil for a long time at
a high level. On the other hand, overgrowing of plant residues
with Trichoderma prevents pathogen reproduction on these ma-
terials. Bonanomi et al. (2007), after analysis of about 2500
experiments, concluded, that in the case of S. sclerotiorum,
the population of the pathogen increased in over 50% of the
cases after addition of organic amendments. In conducive con-
ditions for Sclerotinia, the addition of plant residues to the soil
infested with sclerotia significantly decreased the yield of let-
tuce plants (Smolinska et al. 2016).

Conclusion

The growing cultivation of plants particularly sensitive to
Sclerotinia diseases (canola, carrot, sunflower, bean, lettuce
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and other) causes the accumulation of S. sclerotiorum sclerotia
in field soils and increases crop losses all over the world. The
effectiveness of biological control methods is rarely sufficient
to completely reduce the population of the pathogen. Disease
restriction is possible only if the concentration of the pathogen
is not too high. The most promising method seems to be the
application of antagonistic fungi with strong parasitic proper-
ties, e.g. C. minitans or fungi of the genus Trichoderma on
organic carriers which extend their persistence in the soil.

The consensus is that the application of biological methods
seems to be safer for the environment than the use of synthetic
pesticides. However, most likely the effective control of this
pathogen will require for a long time the application of com-
bined methods: chemical and biological protection, crop rota-
tion and the use of resistant cultivars.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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