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Abstract
Nowadays, with increased sensor perception performance for Advanced Driver Assistance Systems (ADAS), scenario-based 
simulation is becoming more frequent to manage the complexity of reality in terms of cost and time. The perception system 
provides the basis for the vehicle guidance algorithms calculation, but the simulation of ADAS sensors is a challenging 
task in virtual testing. Literature reports the magnitude of relevant modelling approaches and data-driven models becoming 
increasingly important. A basic method is to fit the sensor output in the virtual environment with high-fidelity measurements 
of real-world scenarios, thus a direct relation can be established between real and synthetic sensor data. To prove the suitabil-
ity of a method, it is necessary to quantify the gap between simulation and reality to determine the performance of different 
models. In this work, authors address this problem and visualize the gap by introducing a multi-level evaluation approach 
that combines Model Generalization Ability Evaluation and Case Implicit Performance Evaluation. The former directly 
evaluates the model’s overall performance, while the latter is used for specific cases in simulation. The study shows that this 
combined evaluation approach provides an in-depth framework for evaluating sensor models to make the differences apparent.

Keywords  Sensor model evaluation · Uncertainty quantification · Estimation performance evaluation · Validation and 
verification · Virtual simulation

1  Introduction

Beginning with pioneering work in the late 1980s to the 
present [1], some of the most relevant technology demon-
strations, competitions, and challenges have contributed sig-
nificantly to the development of highly autonomous driving 
technology. However, reliable and accurate perception is the 
basis for driving automation. To accelerate and facilitate the 
development and verification of ADAS functions, scenario-
based simulation is widely used [2]. For this reason, reliable 
sensor models are essential, represent the detection perfor-
mance of the real sensor as closely as possible. However, all 
virtual sensors must be validated to quantify the difference 
between the synthetic data and the actual measurement data, 
thus ensuring fidelity for the intended use [3].

Given the differences in intended use, the requirements for 
sensor models can vary considerably. Sensor models must be 
validated based on balancing model realism and computation 
time. Schlager et al. inferred the fidelity of a sensor model by 
considering the inputs and outputs of the model as well as 
the modelling principles [4]. In addition, a more widely used 
approach is direct qualitative comparison of synthetic and real 
sensor data. For example, the work of [5–7] evaluates model 
fidelity by plotting comparisons between simulation results 
and real measurements, but this assessment is often based on 
expertise and development experience. To eliminate the draw-
backs of empiricism, the focus of Ref. [8] is on comparing 
model outputs with measurements through cumulative distri-
butions to assess model performance directly. Additionally, the 
study by Yang et al. [9] compared the distribution of model 
outputs in confidence space, thereby verifying the validity and 
effectiveness of the statistical model for representing real envi-
ronment. In contrast to direct evaluation, sensor models are 
evaluated indirectly by feeding synthetic data to downstream 
algorithms to validate the behaviour of functions [10]. The 
indirect evaluation focuses on the performance of the percep-
tion system in functional applications and less on the realism 
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of the sensor model itself. Therefore, by building a multi-layer 
evaluation, Ngo et al. combined direct and indirect evaluation 
methods to measure the gap between simulation and reality 
[11]. However, the explicit sensor model evaluation metrics 
should be designed relatively simple. In Refs. [12, 13], the 
same metrics are used to evaluate the point cloud consistency 
of the LiDAR model. These evaluation approaches are based 
on analysing key performance indicators and scenarios that 
reveal the sensor model’s realism and performance.

Since the generation and validation of sensor data is a rel-
atively new research area, no uniform ranking criteria have 
been given in previous studies. Therefore, there are challenges 
in selecting and designing metrics. Moreover, it is necessary 
to ensure that different models have a corresponding set of 
evaluation metrics. Among the various types of modelling 
mentioned above, simulation of physical models face the chal-
lenge of being extremely demanding hardware which requir-
ing excellent computational power [14, 15]. Furthermore, the 
fidelity of ideal sensor models can not be guaranteed due to the 
lack of representation of detection uncertainties [5]. In order 
to balance computational time and fidelity, phenomenological 
sensor models could be the best choice, thus become the focus 
of this paper, which can better reflect the uncertainty and real-
ism of detection through real data-driven modelling, and also 
can optimize the computational efficiency by using statistical 
algorithms [16, 17]. In this paper, the evaluation of a data-
driven sensor model is investigated to refine the research area 
of sensor model evaluation. A series of evaluation metrics are 
proposed from the perspective of Model Generalization Abil-
ity Evaluation (MGAE) and Case Implicit Performance Evalu-
ation (CIPE) for currently popular modelling approaches. In 
the MGAE phase, authors use the data collected in real sce-
narios to build sensor models and evaluate the generalization 
of the trained models. In addition, a digital twin-based simula-
tion is used to replicate the real test scenario carried out in the 
CIPE phase, including road logic and test vehicle trajectories. 
Finally, the different modelling methods are ranked and visual-
ized by Ranking Vector (RV).

The remainder of the paper is structured as follows: First, 
Sect. 2 introduces the generation of synthetic data using the 
data-driven modelling approach. Section 3 describes the 
proposed validation methodology with the different evalu-
ation metrics in detail. Section 4 presents the conducted 
experiments and discusses the effectiveness of the method. 
Finally, Sect. 5 concludes the contribution to sensor model 
evaluation.

2 � Data‑Driven Modelling Approaches

The current mainstream modelling approach is based on 
experimental on-road driving tests. This has the advantage 
of improving the efficiency of modelling and expressing 

the perceived behaviours of sensors as much as possible 
with limited data. Although some fidelity is compromised 
compared to physical models, these models can achieve a 
better balance of simulation time and computing power. 
Data-driven approaches represent a significant improve-
ment over traditional empirical models. Machine Learn-
ing (ML) algorithms or statistical distributions are used to 
determine the relationship between the inputs and outputs 
using a training dataset to represent all the behaviours in 
system. Once the model has been trained, it can be tested 
with independent datasets to determine how well it gener-
alizes to unseen data [18]. Magosi et al. [19] introduced 
sensor modelling approaches from the system integrator’s 
perspective. The V-model-based development process has 
different performance requirements for the sensors at differ-
ent levels of abstraction, which inevitably leads to different 
development and verification strategies. Therefore, in pre-
sent study, we will propose a data-driven model validation-
oriented approach.

3 � Model Evaluation Methodology

The methodology introduced in this section focuses on 
measuring this simulation-to-reality gap of a sensor model 
for a specific intended use. The complete evaluation and 
simulation architecture is illustrated in Fig. 1. The measure-
ment dataset is the sensor data collected by the vehicle in 
test on a real road. The real data for the modelling target can 
be generated from the measurement dataset as ground truth 
data. The target is then modelled based on a data-driven 
approach, and a trained sensor model can be efficiently 
obtained in the sensor model training phase by ML [20]. 
The trained sensor model is then validated and simulated in 
the downstream phase for replicating specific test scenarios. 
An accelerated approach test case is selected from the col-
lected dataset for comparison with real data. Meanwhile, the 
environment model provides a digital twin-based road logic 
and scenarios during the simulation.

To refine the evaluation of two modelling approaches in 
the validation phase, a multi-level testing method is pro-
posed that consists of MGAE and CIPE illustrated in Fig. 1. 
In the MGAE phase, the modelling training performance is 
evaluated using pre-defined metrics for data-driven-based 
approaches. For the CIPE evaluation, some test cases are 
selected randomly from the database. Additionally, a digital 
twin-based scenario and vehicle trajectory are replicated in 
the simulation to compare the differences between the real 
measurements and the synthetic data generated by the sensor 
model. Finally, the proposed evaluation approach is used to 
calculate model performance rankings through comprehen-
sive measures and visualize the results through polar charts 
to measure the gap between simulation and reality.
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3.1 � Model Generalization Ability Evaluation

In this work, the MGAE focuses on the LiDAR model train-
ing performance. Namely, during model training, various 
problems affect the regression algorithms. For example, inef-
ficient learning or too many interference factors can result in 
unsatisfactory analysis. Therefore, there is a need to evalu-
ate the variability between the predicted and reference data. 
MGAE is designed to assess that the overall model predic-
tions and the collected data can be matched as closely as 
possible. As the training time grows, the Prediction Error 
decreases, more accurate answers are obtained. Finally, the 
error converges to a certain level which satisified the model 
accuracy as expected. The core concept is to verify whether 
the trained model achieves a better prediction performance.

In this work, we focus on understanding and quantifying 
uncertainty in the modelling process and providing better 
information to make more robust decisions from the estima-
tor. The model output incorporating uncertainty provides more 
information than an average or deterministic prediction. Once 
the model is prepared, the average prediction performance 
and the uncertainty should be adequately assessed. The ideal 
validation metric reflects intuitive information about the key 
differences between model outputs and observed distributions, 
such as statistical distance or difference. Additionally, the ref-
erence data with the same inputs as the real distribution ℚ are 
calculated while comparing the variability between reference 
distribution ℚ and model outputs ℙ . Here three metrics are 
used to evaluate the generalization ability of model output. 
The first considered is the Wasserstein distance DWS , which 
measures the minimum effort required to reconfigure the prob-
ability mass of one distribution to recover another. It is defined 
in Eq. (1), where I and J respectively are number of points for 
two distributions in the data sets. fi,j represents the optimal 
flow to rearrange the distributions and the Euclidean distance 
is given as di,j . The detailed derivation formula can be found 
in Ref. [21]. Subsequently, integral probability measures are 
introduced. In contrast to f-divergence, this category of met-
rics assesses the difference rather than the ratio in probability 

measures. Where Kolmogorov Distance DK is the maximum 
L1-norm between two Cumulative Distribution Functions 
(CDF) bounded [0 1] [22] and calculated by Eq. (2), where 
FP(x) and FQ(x) is a CDF for the prediction probability distri-
bution ℙ and real probability distribution ℚ over the random 
variable x respectively. Figure 2 illustrates an example of the 
distance for a set of samples where an Empirical Cumulative 
Density Function (ECDF) is formed. Finally, the Area Metric 
Darea , proposed by Ferson et al. [23], is a popular validation 
metric in engineering for assessing the difference area between 
two CDFs ( FP(x) and FQ(x) ) defined in Eq. (3). Figure 3 illus-
trates an example that this metric also represents the distance 
between the quantile function [24].

(1)DWS(ℙ,ℚ) =

∑I

i=1

∑J

j=1
fi,jdi,j

∑I

i=1

∑J

j=1
fi,j

(2)DK(ℙ,ℚ) = sup
x∈ℝ

|FP(x) − FQ(x)|

Fig. 1   Overview of proposed 
validation approach

Fig. 2   An example of Kolmogorov Distance
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3.2 � Case Implicit Performance Evaluation

In previous sub-section, three metrics were used to evaluate 
the performance of the model in fitting the reference data. 
This subsection introduces the implicit or indirect evaluation 
of the sensor model by assessing the output of test cases fed 
with real vehicle trajectory and dynamic information in simu-
lation. Therefore, CIPE should be executed combined with 
simulation.

Some test cases are randomly selected from the test set 
samples in established simulation platform. To evaluate the 
difference between simulation results and real measurement 
data, pattern similarity metrics are proposed including Che-
byshev distance Dc , Pearson correlation-coefficient Cpc and 
cross-correlation coefficient Ccc . Because the model output is 
a deterministic prediction when applied in the simulation, it is 
more appropriate to use distance metrics to evaluate them. In 
addition, the similarity assessment of the overall model output 
also appears to be of interest.

Chebyshev distance Dc is a metric in vector space [25], 
where the distance between two points is defined as the max-
imum of the absolute value of the difference between their 
coordinate values. Equation (4) shows the definition of Dc , 
where p and q are model output and real measurement data, 
respectively. pi and qi are the coordinates in the dataset.

Pearson correlation-coefficient Cpc , with value between -1 
and 1 is used to measure the degree of correlation (linear 
correlation) between two variables [12]. When Cpc is 1, it 

(3)Darea(ℙ,ℚ) = ∫ |FP(x) − FQ(x)|dx

(4)Dc(p, q) = max
i

(|pi − qi|
)

becomes a perfectly positive correlation. When Cpc is -1, 
it becomes a perfectly negative correlation; the larger the 
absolute value of the Cpc , the stronger the correlation. The 
closer the correlation coefficient is to 0, the weaker the cor-
relation is. The mathematical expression is shown in Eq. (5). 
p and q respectively are the simulations and real data, with 
dimension of m.

Cross-correlation coefficient Ccc is a measurement that tracks 
the movements of two or more sets of time series data rela-
tive to one another [26]. It is used to compare multiple time 
series and objectively determine match-up extent with each 
other, particularly, at which point the best match occurs. 
This metric is very suitable for comparing simulation and 
real measurement data because the cycle time between simu-
lation and real measurement is usually different, resulting 
in the amount of collected data and time stamp alignment 
being inconsistent under the same test. Cross-correlation can 
be used when measuring information between two different 
time series. The possible range for the correlation coeffi-
cient of the time series data is from −1.0 to +1.0. The closer 
the cross-correlation value is to 1, the more closely the sets 
are identical. Equation (6) expresses the calculation, where 
pi ⋅ qi is the mean of pi ⋅ qi and � is the standard deviation.

To implement CIPE evaluation, as shown in Fig. 1, some 
random test cases are deployed in the simulation. In setting, 
the same trajectory and scenario as in the real measurement 
are reproduced in the simulation so that the implicit perfor-
mance of the model in the specific test case can be analyzed.

3.3 � Evaluation Based on Multiple Performance 
Measures

Given various prediction models, the evaluation of indi-
vidual estimators is presented in Sects. 3.1 and 3.2. In this 
section, the multiple estimators with the same category mod-
elling approaches are summarized and ranked to evaluate 
comprehensive performance. If only one measure is used, 
the choice could be arbitrary, and the final results could be 
incomplete. In this case, it can lead to ranking differences 
in evaluation. Therefore, it is challenging to give a compre-
hensive and authoritative evaluation. To derive an overall 
conclusion, we propose a new visualization method and pair-
wise comparison rankings to address the above issues based 
on Pitman’s Closeness Measure (PCM).

(5)Cpc(p, q) =

∑m

i=1
(qi − q̄) ⋅ (pi − p̄)�∑m

i=1
(qi − q̄)2 ⋅ (pi − p̄)2

(6)Ccc(p, q) =
pi ⋅ qi − p̄i ⋅ q̄i

𝜎(p) ⋅ 𝜎(q)

Fig. 3   An example of Area Metric
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PCM is based on the probability of the relative close-
ness of competing estimators x̂ to the estimate x [27]. Equa-
tion (7) measures the difference between two estimators s1 
and s2 with respect to the i-th attribute ai.

where s1 > s2 means s1 is preferred to s2 . With the same 
attribute ai , s1 is closer to the optimal solution. To use the 
comparison information, the Multiple-attribute Competition 
Measure (MCM) is given by Equation (8).

where a is the vector of attributes. The evaluation met-
rics used in MGAE and CIPE compose this vector for n 
elements.

Each estimator is compared to each other and summarized 
in a MCM matrix defined by Eq. (9) with m estimators. The 
MCM matrix XMCM contains all cumulative results of all 
pairwise comparisons based on Eqs. (7) and (8). The pair-
wise comparisons reveal well the comparative information 
of the different estimators. Furthermore, to further calcu-
late the eigenvectors, the eigenvalues r can be calculated by 
Perron-Forbenius theorem [28] and expressed by Eq. (10), 
where r is the only eigenvalue in the spectral circle of XMCM . 
Particularly, if MCM(s1, s2, a) = 0 , let MCM(s1, s2, a) equal 
to 0.0001. Because it is necessary to ensure that the calcu-
lated matrix is non-negative irreducible.

For adapting the characteristics of the ranking problem and 
using the comparison information, Yin et al. [27] developed 
a ranking approach and define a RV as Eq. (11) for m estima-
tor and ri > 0 (i = 1,… , n) to get around the intransitivity 
problem.

The elements of RV are all positive and represent how well-
estimated the values are relative to each other. The rank-
ing results provided by the RV explain the goodness of the 
estimator. This means that the larger the element, the better 
the corresponding estimator. Additionally, more information 
than ranking information is involved in an RV. Meanwhile, 

(7)m(s1, s2, ai) =

⎧
⎪⎨⎪⎩

1 if s1 > s2
0.5 if s1 = s2
0 if s1 < s2

(8)MCM(s1, s2, a) =
1

n

n∑
i=1

m(s1, s2, ai)

(9)XMCM =

⎡
⎢⎢⎣

MCM(s1, s1, a) ⋯ MCM(s1, sm, a)

⋮ ⋱ ⋮

MCM(sm, s1, a) ⋯ MCM(sm, sm, a)

⎤⎥⎥⎦

(10)XMCM ⋅ r =� ⋅ r

(11)r =
[
r1,… , rm

]�

its cardinal values also quantify the performance of the esti-
mator. For example, the three estimators x̂1 , x̂2 , x̂3 calcu-
late RV result [1, 1.01, 5]� . The rank order can be expressed 
as �x1 < �x2 < �x3 . However, the results for x̂1 and x̂2 are very 
close, so the performance of both can be identified as simi-
lar. In contrast, the performance of x̂3 is much better than 
the other two estimators. Thus the estimators can be ranked 
as �x1 ≈ �x2 < �x3.

The properties and advantages of the RV method based 
on linear mapping have been described and proofed in Ref.
[27]. It can be expressed as follows:

•	 Homogeneity The ranking order calculated by perfor-
mance measures will also be reflected in the RV.

•	 Invariance When a rank is given, it will not be influenced 
by adding a new performance metric that matches the 
rank.

•	 Monotonicity Suppose that �xi > �xj by the RV approach, 
if x̂i is better or x̂j is worse than before, then this ranking 
will still be maintained.

•	 Decisiveness The RV approach is deterministic in the 
sense that a unique RV is always available.

4 � Experiments and Validation Results

In this section, the effectiveness of the proposed comparison 
approach will be examined in terms of its ability to meas-
ure the different sensor modelling approaches accurately. 
LiDAR models based on different approaches are presented 
here and created to reflect the longitudinal distance detection 
performance.

4.1 � Driving Scenario and Measurement

Digitrans Proving Ground (www.​digit​rans.​expert/​en/) in 
Sankt Valentin, Lower Austria, is a closed test terrain for 
facilitating the development of vehicle function. Addition-
ally, one main research topic is concentrated on the ADAS 
function test. The test area consists of seven different zones, 
for example, a basic asphalt track, driving dynamics track, 
junction and arch, and off-road terrain, illustrated in Fig. 4. 
To cover a large area of individual scenarios, a unique out-
door rain plant with a length of 80 m and a width of 6 m 
is implemented in the dynamic driving area (dimensions 
of 450 m in length and 20 m in width). Three modes of 
rain intensities referring from light, moderate to heavy rain 
(10 mm/h to 100 mm/h) are possible. With an additional 
existing intelligent lighting system, thus a variety of sce-
narios can be performed. In order to investigate the behav-
iours of sensors, a complex test series was conducted where 
six test cases and two conditions (dry road and rain) were 
selected in this study. The test manoeuvres are illustrated in 

http://www.digitrans.expert/en/
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Fig 5, and all data collected during the measurements is used 
to build LiDAR model:

•	 Manoeuvre 1 So-called “Accelerate Leaving” represents 
a drive-off at a traffic light. Both vehicles start with the 
same speed and a small initial distance between them. 
The target car in front accelerates until a desired speed 
beneath the rain plant, while the ego vehicle maintains 
its initial speed.

•	 Manoeuvre 2 “Accelerate Approach” represents an 
approaching traffic jam scenario, meaning that the start-
ing time of both vehicles is identical, but their speed are 
different. The ego car starts with a higher velocity and 
approaches the target car, which has a very low initial 
speed under the rain simulator.

•	 Manoeuvre 3 So-called “Lateral Leaving” depict a lat-
eral movement, for example, a lane change manoeuvre. 
Both vehicles drive with the same constant velocity and 
the target in front evades to the left and then executes a 
double lane change to the left.

4.2 � Digital Twin‑Based Simulation

At the CIPE level, the real recorded manoeuvre is replicated 
in the simulation based on IPG CarMaker [29]. Therefore, 
the accuracy of the re-simulation result should be examined. 
The required digital twin-based high-definition map of the 
Digitrans proving ground is provided by Joanneum Research 
Forschungsgesellschaft GmbH. Figure 6 illustrates the digi-
tal twin-based map with a detailed 3D view of the driving 
dynamics track.

By converting the GPS data from the measurement sys-
tem into relative metric coordinates, the necessary data for 
the trajectory can be extracted. Magosi et al. [3] enables 
the exact following of recorded trajectories by modify-
ing the CarMaker C-code interface. However, the vehicle 
under test can only replicate the position and lacks dynamic 
information.

Along with the help of ScenarioRRR (Scenario Record, 
Replay, Re-arrange), an extended toolbox of IPG, the con-
verted GPS routes can be converted into a ready-to-play 
test run in CarMaker. Table 1 shows the accuracy of re-
simulation in CarMaker. We compare the difference of some 
basic kinematic information between real measurement and 
re-simulation in CarMaker. As a result, ScenarioRRR is a 
very precise tool for implementing real measurement into 
the simulation.

A test case is randomly generated from the database dur-
ing the simulation phase. The CarMaker simulation plat-
form configures the virtual vehicle with the same sensor 
parameters as the measurement vehicle. The trained model 
is deployed in Simulink to build a co-simulation with Car-
Maker. To make the traffic vehicle follow the previously 
recorded and post-transformed trajectory, the virtual vehicle 
is given the exact position in X and Y directions at each time 

Fig. 4   Overview Digitrans proving ground with a detailed view of 
rain simulator

Fig. 5   Test manoeuvres. a Accelerate leaving b Accelerate approach 
c Lateral leaving Fig. 6   Digital twin of Digitrans with detailed view
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step. In this setup, the real measurement scenario can be 
play-back the simulation [3]. Ultimately, the corresponding 
sensor model is evaluated using CIPE metrics. The fidelity 
and performance of the different sensor models are evaluated 
and presented in Subsequent-sections 4.3 and  4.4.

4.3 � Modelling Approaches

In order to compare the different approaches, several model-
ling approaches are selected to build sensor models using the 
same dataset. The modelling process is shown in Fig. 1 in 
Sect. 3. For the current example, the modelling target is the 
relative distance of the obstacle from the LiDAR. Therefore, 
during the data processing phase, some irrelevant informa-
tion is removed (e.g., temperature, altitude, etc.), retaining 
the parameters that impact the vehicle dynamics and percep-
tion performance as much as possible. Once the modelling is 
complete, MGAE evaluates the model’s overall performance 
to verify the model’s goodness to the ground truth data. 
Some of the current mainstream ML methods have been 
chosen in creating the sensor model, which has received 
popularity in many studies. The focus of Refs. [9, 30] is to 
train a LiDAR point cloud model using Gaussian Process 
Regression (GPR). Li et al. [20] create a Radar model with 
the help of a Mixture Density Network (MDN) to present 
detection uncertainty. Meanwhile, Genser et al. [31] intro-
duce a Kernel Density Estimation (KDE) modelling and 
focus on the camera’s position measurement error. Other 
modelling methods, such as Robust Linear (RL) regression 
[32], are useful when expecting to repeat fitting a model 
multiple times in a loop. Moreover, the study of Ref. [33] 
introduces a sampling from a Normal Distribution (ND) 
which allows a radar model being deployed efficiently in a 
real-time system. Finally, although Stepwise (SW) regres-
sion [34] does not have any advantage in predicting new 
data, it has a low prediction error for large data sets. Hence, 
these different modelling approaches are compared as below.

At the MGAE level, we need to ensure that the model 
has been treated correctly and trained successfully. In this 
work, we prepared 2791 data to train the model and split 
the data set into a training set, a validation set and a test set 
according to the ratio of 70% , 15% and 15% , respectively. To 
illustrate the distribution of the statistics more clearly, the 

CDF is used here to intuitively compare the gap between the 
real LiDAR sensor measurement data (target data) and the 
predicted data from the other models. From Fig 7, we can 
observe that the MDN is closer to the target data. However, 
the intuitive conclusion is insufficient to prove the generaliz-
ability of the model. Therefore, we continue to calculate the 
final generalisation evaluation from Eqs. (1)–(3). The final 
statistics MGAE are presented in Table 2.

As introduced in Sect. 4.2, the digital twin-based simula-
tion can be replicated in CarMaker. Namely, re-simulation 
is a prerequisite for CIPE. All trajectory points of the ego 
and target vehicle are reproduced in the simulation with 
high accuracy when the corresponding test is carried out 
on the test track. Moreover, a CarMaker co-simulation sys-
tem for use with Simulink is built to allow all models to be 
deployed. To intuitively visualise the simulation-to-reality 
gap, the predicted results of all models are compared with 
the real LiDAR measurements in the simulation shown in 
Fig. 8. The boxplot indicates the accuracy of the different 
models and the range of uncertainty fluctuations. In light 
of the current simulation results, the MDN remains much 
closer to the actual performance of LiDAR, and the error 
fluctuations are relatively less. While, SW, KDE and GPR 
perform not differently and within acceptable error ranges. 
However, RL and ND have a larger error fluctuation range, 
which indicating that the model predictions are unstable and 
more random. Further analysis of the simulation results can 
be calculated by using Eqs. (4)–(6) and the detailed con-
clusions are shown in Table 2. The Cpc values for all mod-
els show a strong positive correlation. However, giving an 
accurate assessment based on one evaluation metric alone 
is difficult. Therefore, the introducting Dc and Ccc allows a 
more comprehensive evaluation of the simulation results. By 
comparison, it is easy to see that MDN is superior in terms 
of correlation and distance error.

Finally, we collate the MGAE and CIPE results in 
Table  3. Also, the RV is calculated by Eqs.  (7)–(11), 
expressed in Table 4. By comparing the scores of each 

Table 1   Offset between measurement data and simulation output

Parameter Mean Std

Heading error (rad) 4.9779e−04 9.8335e−04
Longitudinal distance (m) −0.3042 0.0500
Lateral distance (m) −0.1419 0.0259
Longitudinal velocity (m/s) 0.0099 0.0368
Lateal velocity (m/s) −0.0019 0.0055

Fig. 7   Comparison of CDFs measured by different modelling meth-
ods and LiDAR
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model, MDN achieves the best overall rating. Besides, both 
GPR and KDE have comparable performance, which is the 
reason why many sensor models in the state-of-the-art have 
been built based on these two approaches. However, SW, RL 
and ND models perform weakly and are not recommended.

4.4 � Discussion

A multi-level model evaluation framework can be applied 
to the evaluation of data-driven models, as the purpose 
of the model is to fit the distribution of the reference data 
via a specific probability distribution function. MGAE 

provides a very good theoretical basis for evaluating the 
generalizability of models. Meanwhile, CDF plots can 
be plotted for the goodness of fit after training. However, 
we believe this is insufficient, as the final model will be 
applied to the simulation to emulate the detection behav-
iour of the sensor. As a result, CIPE can draw more accu-
rate conclusions about the effects of the simulation. The 
most crucial aspect is replicating the measurement sce-
nario in a virtual environment. The real vehicle trajecto-
ries, kinematic information and road network logic are 
all implemented with the help of the CarMaker add-on. 
Accordingly, different models can be further validated in 
the same scenario, and the RV summarizes the overall per-
formance eventually. By comparison, MDN demonstrates 

the performance since this model takes into account the 
influence of the input on the output, and the multi-modal 
output can cover more extreme cases. Although KDE and 
GPR show comparable performance, KDE can be a histo-
gram statistic for all data and outputs a generic distribu-
tion function. Hence, this approach ignores the influence 
of relative distances on the model objectives. In addition, 
the improvement of the prediction performance by GPR 
is significant because different inputs affect the probabil-
istic prediction of the model, thus improving the results 
of MGAE. Similarly to the KDE, the ND outputs a fixed 

Fig. 8   Comparison of prediction errors in simulations

Table 2   Performance evaluation 
summary for non-parametric-
based approaches

Approach MGAE CIPE

DWS DK Darea Dc Cpc Ccc

MDN 0.0212 0.0450 0.0197 0.7748 0.9988 0.4328
KDE 0.1818 0.2856 0.1813 2.3527 0.9988 0.3160
SW 0.1223 0.4937 0.1121 1.2243 0.9959 0.3181
RL 0.1112 0.4242 0.1793 2.3527 0.9978 0.2794
ND 0.1147 0.2474 0.1067 1.6774 0.9988 0.3087
GPR 0.0547 0.2280 0.0506 1.2489 0.9988 0.2906

Table 3   Six attributes for sensor 
models

MDN KDE SW RL ND GPR

D
WS

0.0212 0.1818 0.1223 0.1112 0.1147 0.0547
DK 0.0450 0.2856 0.4937 0.4242 0.2474 0.2280
Darea 0.0197 0.1813 0.1121 0.1793 0.1067 0.0506
Dc 0.7748 2.3527 1.2243 2.3527 1.6774 1.2489
Cpc 0.9988 0.9988 0.9959 0.9978 0.9988 0.9988
Dcc 0.4328 0.3160 0.3181 0.2794 0.3087 0.2906

Table 4   Ranking vector for 
sensor models

MDN KDE SW RL ND GPR

RV 0.2850 0.1803 0.1161 0.0851 0.1497 0.1839
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distribution function and therefore has large error fluctua-
tions in the simulation. While, SW and RL models are not 
suitable as sensor modelling methods.

5 � Conclusion

Currently, virtual sensor perception is always a basis in 
ADAS simulation. However, existing evaluation methods 
lack uniformity as they focus on specific modelling methods 
or models. Additionally, a single metric could make the eval-
uation results incomprehensive. To overcome these short-
comings, we propose a multi-level and metrics approach for 
estimating performance rankings based on pairwise compar-
isons. This approach can comprehensively consider different 
performance metrics and give a complete evaluation result. 
The RV method is homogeneous, invariant, monotonic, and 
decisively. Moreover, it can enrich the evaluation system 
by introducing more evaluation metrics based on expertise, 
experience or understanding of performance measures.

To investigate the validity of the proposed approach, 
we have implemented and evaluated a LiDAR longitudi-
nal distance detection model based on different modelling 
approaches. The results have shown that by introducing 
different evaluation metrics and perspectives (MGAE and 
CIPE). The fidelities of the sensor models under different 
modelling approaches are compared, and it is possible to 
make existing biases visible in detail by using a boxplot and 
CDF plot. This objective and quantitative evaluation avoids 
subjectivity based on experience and the incomprehensive-
ness of a few metrics.
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