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Abstract

The progression toward automated driving and the latest advancement in vehicular networking have led to novel and natural
human-vehicle-road systems, in which affective human-vehicle interaction is a crucial factor affecting the acceptance, safety,
comfort, and traffic efficiency of connected and automated vehicles (CAVs). This development has inspired increasing inter-
est in how to develop affective interaction framework for intelligent cockpit in CAVs. To enable affective human-vehicle
interactions in CAVs, knowledge from multiple research areas is needed, including automotive engineering, transportation
engineering, human—machine interaction, computer science, communication, as well as industrial engineering. However,
there is currently no systematic survey considering the close relationship between human-vehicle-road and human emotion
in the human-vehicle-road coupling process in the CAV context. To facilitate progress in this area, this paper provides a
comprehensive literature survey on emotion-related studies from multi-aspects for better design of affective interaction in
intelligent cockpit for CAVs. This paper discusses the multimodal expression of human emotions, investigates the human
emotion experiment in driving, and particularly emphasizes previous knowledge on human emotion detection, regulation,
as well as their applications in CAVs. The promising research perspectives are outlined for researchers and engineers from
different research areas to develop CAVs with better acceptance, safety, comfort, and enjoyment for users.

Keywords Intelligent vehicles - Intelligent cockpit - Human-machine interaction - Emotion recognition - Emotion
regulation
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1 Introduction

With the advancements in artificial intelligence and infor-
matics communication technology, connected and automated
vehicles (CAVs) are experiencing rapid development glob-
ally in terms of hardware, software, systems engineering,
infrastructure, and policy [1, 2]. CAVs can use sensors,
controllers, actuators, and integrate communication and
network technologies to perform environmental percep-
tion, intelligent decision-making, and collaborative control,
enabling safe, efficient, comfortable, and eco-friendly auto-
mated driving [3, 4]. Thus, the CAV has become an intel-
ligent mobile terminal carrying rich functions and services.
In the foreseeable future, as a part of the CAV that users can
directly experience, intelligent cockpit will provide drivers
and occupants with a safer, more efficient and more enjoy-
able ride experience.

Intelligent cockpit in CAVs is a mobile space with
humans at its core, capable of dynamically perceiving
and understanding human behavior and providing feed-
back accordingly [5]. The development of the intelligent
cockpit will expand and deepen the relationship between
humans, vehicles, and roads, opening up new opportuni-
ties for research and innovation. Among these opportunities,
affective interaction in the intelligent cockpit is particularly
valuable for improving the acceptance, safety, comfort, and
enjoyment of human behavior and emotions in the context
of CAVs [6-8]. Affective interaction refers to using sen-
sors and other equipment to enable the intelligent cockpit to
perceive human emotional expressions, accurately identify
human emotions, and make corresponding decisions based
on the recognition results. The intelligent cockpit then pro-
vides related functions or services to humans through dif-
ferent interaction modes, according to the decision-making
strategy.

The role of affective interaction within intelligent cock-
pits plays an essential role in the development of CAVs from
driver assistance to automated driving, from single-vehicle
intelligent driving to multi-vehicle collaborative driving
[9]. For single-vehicle automated driving, due to the trust
concerns, human acceptance of the CAV can still be a sig-
nificant issue for the popularities of CAVs, while the human
emotional state can be a critical index for both real-time and

long-term human trust [10, 11]. Besides, driving context can
frequently change between a potentially stressful environ-
ment (requiring a high degree of concentration and respon-
sibility to the human) and a relaxed environment. Affective
interaction with the occupants will augment their driving
experience and comfort, especially when sharing the driving
authority with the CAV [12]. For multi-vehicle collaborative
driving, in the development process of CAVs, there is bound
to be a long-term mixed traffic situation where automated
driving and human driving coexist. Studying the expression
and behavior of human emotions and detecting and regulat-
ing emotions will help CAVs improve road safety and traffic
efficiency [9].

While affective interaction could not only provide great
opportunities in improving human acceptance, safety, and
comfort of CAVs, and but also bring enormous potential to
enhance the safety and mobility of public transport, there are
still challenges for future research. First, developing a proper
affective interaction framework for the intelligent cockpit
in CAVs requires cross-disciplinary knowledge, including
automotive engineering, cognitive psychology, human fac-
tor, affective computing, and intelligent transportation sys-
tem. Collaboration between experts in these fields is neces-
sary to develop a comprehensive and efficacious affective
interaction system [13, 14]. More importantly, in CAVs, the
relationship between the human, vehicle and road is more
complicated than in traditional vehicles, as the road scenario
causes the generation of human emotions in driving, and the
human emotional responses will continue to impact the road
scenario. Therefore, studying human-vehicle-road coupling
is crucial for developing an efficient affective interaction
system in CAVs. As illustrated in Fig. 1 shows the coupling
delineates the multifaceted relationship between the human
operator, the vehicle, and the surrounding road environment
in CAVs. Different road scenarios, such as urban and rural,
can trigger human emotions and behavior in driving. Human
emotions such as stress and anxiety can affect human behav-
ior and driving performance, as well as the perception of the
road environment and the vehicle’s behavior. The vehicle’s
acceleration, deceleration, speed, and other parameters can
affect road scenarios.

Several studies have reviewed driver emotion in terms
of driver emotion recognition [15] and regulation tech-
niques [16]. However, very few consider the intricate
interplay between humans, vehicles, roads, and the result-
ing emotional states within the context of CAVs. Besides,
fundamental understandings and potential applications
of human emotions in the context of CAVs are rarely
considered. Considering these limitations, in this study,
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1. What is the basis of human emotion?
2. What is the relationship between emotion and expression?
3. What factors should be considered for emotion experiments in driving?

Human

Emotions Scenarios

affect driving

"'

(€ D)

Driving
\impacts scenarios/
1. How to use the V2X based
information provided by the road to
improve human emotion detection in
the vehicle?

Vehicle

1. How the automated vehicle
should use human expressions and
driving context to detect human
emotions in the cabin?

Road

2. How to use the V2X based
information provided by the road to
improve human emotion regulation
in the vehicle?

2. How the automated vehicle
should use a multimodal human-
machine interface to regulate human
emotions in the cabin?

trigger emotions

Fig.1 The system description of the human-vehicle-road in CAVs,
and the topics involved in each part (V2X = vehicular communication

to everything)

a literature review is presented to analyze human-vehi-
cle-road affective interactions for future CAVs. In sum,
the works of this study can be summarized as follows.
To provide clarity, the organizational structure of this
study, along with pertinent research domains, is depicted

in Fig. 2.

e First, the basic concepts of human emotions are intro-
duced to have a clear understanding of the production

process and classification of human emotions.

e Second, the relationship between different emotions and
emotional expressions is summarized. Facial expressions,
speech expressions, body gesture expressions, and physi-

2

ological expressions are fundamental to human emotion
recognition and regulation.

Third, experimental methodologies for studying human
emotions in driving are discussed, including experiment
platform, emotion induction, emotion measurement, and
emotion annotation.

Then, how to detect human emotion effectively in CAVs
is reviewed from four aspects: in-cabin driver emotion
detection, in-cabin occupant emotion detection, driving-
context-based driver emotion detection and V2X-based
human emotion detection.

Next, how to use the human—-machine interface in CAVs
to regulate the detected human emotion is discussed,
consisting of in-cabin regulation methods, V2X-based
human emotion regulation, regulation scenarios and
regulation quality analysis method.

Finally, the significant challenges and promising areas
are highlighted.

Human Emotion Basics

The human emotion basics are a prerequisite for the study of
human emotion in CAVs. In this section, the basic concepts
of human emotions are discussed in terms of the definition
and classification of emotions.

2.1 Definition of Human Emotion

Emotion research has been conducted for decades. How-
ever, researchers studying emotions still have not reached
a broad consensus on how to define emotions precisely.
Figure 3a presents the situation-attention-cognitive
appraisal-emotional response sequence specified by the
modal model of emotion in a highly abstracted and simpli-
fied form [17-21]. According to the cognitive theory [22],
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an emotional response begins with a cognitive appraisal of
the personal significance of a situation, which in turn gives
rise to an emotional response involving subjective experi-
ence, physiological change, and behavior response [17].

Cognitive appraisal refers to the personal interpretation
of a situation or event. The appraisal process includes: (a)
whether a situation or event threatens people’s well-being,
(b) whether there are sufficient personal resources avail-
able for coping with the demand of the situation and (c)
whether the strategy for dealing with the situation is effec-
tive [22]. Subjective experience shows that all humans
have several basic universal emotions (e.g., anger, hap-
piness, sadness) regardless of culture and ethnicity, and
the way to experience these emotions is highly subjective
[23]. Physiological change is a biological awakening or a
physical reaction experience during an emotion. For exam-
ple, scare usually leads to heart racing, short breathing,
drying mouth, tensing muscles, and sweating palms [24].
Behavioral response leads to behavior that is often, but not
always, expressive, goal-directed, and adaptive [25], for
example, a smile indicating happiness and a frown indi-
cating sadness. Additionally, emotional responses often
change the situation that gives rise to the response in the
first place. Figure 3(a) also depicts this aspect of emotion
by showing the response looping back to (and modifying)
the situation that gives rise to the emotion.

2.2 Classification of Human Emotion

Emotions can be classified into different categories accord-
ing to discrete emotion theory or dimensional emotion
theory. Discrete emotion theory assumes that there exists
a small number of separate emotions, characterized by

coordinated response patterns in physiological, brain, and
facial expressions. The current discrete emotion models
mainly include the six emotion models (Fig. 3(b)) proposed
by Ekman [18] and the emotion wheel model (Fig. 3(c))
proposed by Plutchik [19]. Among these two discrete mod-
els, the most acknowledged one is the basic emotion model.
Ekman summarized the six basic emotions as happiness,
sadness, anger, fear, surprise, and disgust. Other emotions
were regarded as combinations of these basic emotions. In
particular, a cross-cultural study conducted by Ekman sup-
ported the discrete emotion theory based on the six basic
emotions [26].

Dimensional emotion theory proposed that emotional
states can be accurately represented as a combination of
several psychological dimensions (e.g., valence, arousal).
The frequently used dimensional models include the cir-
cumplex model (Fig. 3(d)) and the 3D PAD emotion model
(Fig. 3(e)). Most of these dimensional models contain
valence and arousal. Valence refers to the degree of pleas-
ure associated with emotions, whereas arousal refers to the
intensity of the experienced emotions. Russell proposed the
circumplex model in which emotions formed a circle defined
by the dimensions of valence and arousal [27]. In the cir-
cumplex model, the subjective experience of pleasure and
arousal is called core emotion [28]. Valence and arousal are
useful as a basic taxonomy of emotional states [29], how-
ever, using only valence and arousal to project a high-dimen-
sional emotional state onto a basic 2D space would result in
information loss, for example, some emotions become indis-
tinguishable (e.g., fear and anger), and some emotions are
outside the space (e.g., surprise) [30]. Further, Mehrabian
[21] extended the emotion model from 2D to 3D to develop
a well-known pleasure-arousal-dominance emotion model.

| [ | |
Cognitive
I I L | LA ki

| | | | change

Anger
(©]

Disgust
Surprise Happiniess
Q@0

% ]

Sadness

Bored

Deactivated

Fig.3 Modal model and classification of human emotion. a is the
emotion modal model [17] b and ¢ are two discrete emotion models:
b is the six basic emotions model [18], ¢ is the emotion wheel model

[19]. (d) and (e) are two dimensional emotion models, d is the 2D
circumplex model adapted from [20], e is the 3D PAD emotion model
(21]
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See Fig. 3(e) for illustration. The increased dimensional axis
is named dominance. Ranging from submissive to dominant,
dominance reflects the control ability of humans on emo-
tions. In this model, anger and fear can be easily identified
because anger is in the dominance axis, while fear is in the
submissive axis.

e Summary of human emotions basics: Discrete emotions
such as anger and sadness have been widely studied
for a long time in the past, and are considered to be the
primary extreme negative emotions that lead to traffic
accidents. In the study of human emotions in driving,
the widely used discrete emotion method can intuitively
reflect emotions, but only includes a limited number
of emotions, and it is difficult to clearly express mixed
emotions. Dimensional emotion methods have the advan-
tages of being practical and context-sensitive, but are
less intuitive and require a more complex data labeling
process. Therefore, both discrete and dimensional emo-
tions should be discussed in CAVs’ emotion research.
Moreover, in previous studies, the main emotions studied
in driving are the driver’s negative emotions, and the
positive emotions of drivers and occupants should also
receive more attention in the research of CAVs.

3 Human Emotion Expressions

Human emotion expressions are fundamental to emotion
recognition and regulation in driving. Emotional expressions
are multimodal, involving the face, speech, body gesture,
and physiological changes [31]. Therefore, human emotion
expressions will be discussed from the above aspects in this
section, separately.

3.1 Facial Expression

The association between facial expression and emotion
is investigated by a series of studies in psychology [34].
Ekman’s study shows that at least six basic emotions
(anger, fear, disgust, happiness, sadness, and surprise)
could be recognized cross-culturally by facial behavior
[26]. Many of the relevant studies have quantified facial
behavior using componential coding. In a further study,
Ekman developed a facial motion coding system (FACS),
the most comprehensive and widely used taxonomy in
facial behavior coding [32]. FACS is an anatomically-
based comprehensive measurement system that evaluates
44 different muscle movements (e.g., raising of the eye-
brows, tightening of the lips). The action units (AUs) of
FACS are suitable for studying human naturalistic facial
behavior as the thousands of anatomically possible facial
expressions can be described as a combination of 27 basic
AUs and multiple AU descriptors. Table 1 illustrates the
descriptor for each action unit and the AUs that can be
observed in basic emotions [32]. Each AU corresponds
to a specific facial movement, and different combinations
of AUs represent different emotional expressions. Table 1
also presents the prototypical AUs observed in each basic
emotion [33].

Most of the existing emotion studies on facial expres-
sion employed discrete emotion models, focusing on the
expression of six basic emotions, due to their universal
properties, and their apparent reference representations in
human’ emotional life [35]. There are also some studies
analyzing the relationship between facial expressions and
emotions based on dimensional emotion models. Russell’s
research shows that facial expression appears to indicate
the valence of a person’s emotional state reliably [36].
For example, Duchenne smiles [37] involving the wrin-
kling of muscles around the eyes are reported to associate

Table 1 Action units (AU) descriptors [32] and prototypical AUs observed in each basic emotion [33]

AU Descriptor AU Descriptor AU Descriptor AU Descriptor
Inner brow raiser 9 Nose wrinkler 16 Lower lip depressor 23 Lip tightener

2 Outer brow raiser 10 Upper lip raiser 17 Chin raiser 24 Lip pressor

4 Brow lowerer 11 Nasolabial fold deep- 18 Lip pucker 25 Lips part

ener

5 Upper lid raiser 12 Lip corner puller 19 Tongue show 26 Jaw drop

6 Cheek raiser 13 Sharp lip puller 20 Lip stretcher 27 Mouth stretch

7 Lid tightener 14 Dimpler 21 Neck tightener 28 Lip suck

8 Lips toward each other 15 Lip corner depressor 22 Lip funneler - -

Basic Emotions Anger Sadness Fear Surprise Disgust  Happiness

Prototypical AUs Observed 4,7,24 4,15 1,4,20,25 1,2,25,26 9,10,17 12,25
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with positive emotional experiences. In contrast, negative
emotion inductions are often associated with visible facial
behavior in which the eyebrows are lowered and brought
closer together [38].

3.2 Speech Expression

Speech delivers emotional information through linguistic
and acoustic messages that reflect how the words are spo-
ken [39]. The linguistic content of speech carries emotional
information. Some of the information can be inferred directly
from the surface features of the words, which have been
summarized in emotional words dictionaries [40]. The rest
of the information lies under the text surface and can only
be understood when considering semantic contexts (e.g.,
discourse information). Although the association between
linguistic content and emotion is language-dependent, mul-
tiple cross-lingual models have been developed for emotion
detection [41, 42]. In addition to the linguistic messages to
be expressed, the acoustic messages can also deliver rich
information (such as age, gender, and hometown). Acoustic
expressions are described by speech prosody (pitch, loud-
ness, thythm). A happy voice usually has a higher pitch, and
a louder and faster speech rate, whereas a sad voice has a
lower pitch and slower speech rate.

There are two opinions on acoustic expressions [43]. The
first one is that acoustic expression that could distinguish
different basic emotional states which are discrete. Early
researchers such as Darwin stated that specific intonations
corresponded to specific emotional states [43]. Banse and
Scherer [44] studied the relationship between 14 induced
emotions and 29 acoustic variables. The authors found that
a combination of ten acoustic properties can distinguish dis-
crete emotions. Cowie’s research [45] on qualitative acoustic
correlations of basic emotions shows that the basic emo-
tion-related prosodic features extracted from audio signals

Table 2 Acoustic features of basic emotions [45, 46]

include pitch, energy, and speech rate. Table 2 illustrates the
changes in various acoustic features during the occurrence
of six basic emotions [45, 46]. The pitch, intensity, dura-
tion, and spectral are shown for each emotion, with changes
indicated as either an increase, decrease, or no significant
change.

The other opinion is the acoustic expressions are different
in the continuous valence and arousal. The most consist-
ent association reported in the literature is the relationship
between arousal and acoustic pitch. Higher arousal levels are
linked to higher-pitched vocal samples [47]. Bachorowski
and Owen [48] suggested that acoustic pitch can be used to
assess the level of emotional arousal currently experienced
by individuals. It is much more challenging to find acoustic
features sensitive to valence [47] because valence correlates
strongly with textual features from the spoken word [49].

3.3 Body Gesture Expression

Many studies showed that body language plays a vital role in
emotional communication, which conveys specific informa-
tion about a person’s emotional state [50]. Body language
includes different types of non-verbal indicators such as
facial expressions, body postures, gestures, eye movements,
touch, and the use of personal space [51]. Besides the face,
hands describe the most abundant information of body lan-
guage [52]. For example, people using open gestures are
considered with positive emotions [53]. Head positioning
also reveals much information about the emotional state.
People are prone to speak more if the listener encourages
them by nodding [53]. The above knowledge indicates that it
is necessary to consider various parts of the body at the same
time to correctly interpret body language as an indicator of
emotional state [50].

Acoustics Anger Sadness Fear Surprise Disgust Happiness
Pitch Increase in Below normal  Increase in Wide range, Decrease in Increase in mean,
mean, Mean FO, mean Median normal Mean, Range Range, Variability
Median range,  Range FO FO, Range FO,  or higher slightly wider
Variability Perturbation,
Variability FO
movement
Intensity Raised Decreased Normal - Decreased Increased
Duration High rate, Slightly slow, Increased rate, Tempo normal, Low rate Increased rate,
Reduced rate Long pitch falls Reduced rate Tempo Slow tempo
restrained
Spectral High midpoint  Decrease in Increase in - - Increase in
for av high-frequency high-frequency high-frequency
spectrum for energy energy energy

nonfric portions
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Studies have investigated the body language emotional
coding system [54], but a broad consensus has not yet been
reached on how to code body posture and movement. Table 3
provides a summary of the general body expressions associ-
ated with basic emotions, with detailed descriptions of body,
hand, arm, leg, and other expressions [50, 55]. Based on the
discrete emotional model, Gunes and Piccardi [56] showed
that using naive representations from the upper body can
match body postures into six emotional categories, namely
anger, disgust, fear, happiness, sadness, and uncertainty.
Castellano et al. [57] showed that dynamic representations
of body postures could be categorized as anger, joy, happi-
ness, or sadness. Based on skeletal geometric features, Saha
et al. [58] identified gestures corresponding to five basic

Table 3 The general body expression for the basic emotions [50, 55]

human emotional states, including anger, fear, happiness,
sadness, and relaxation.

Researchers also studied the emotional expression of
body language based on dimensional emotion models. Glow-
inski et al. [59] showed that essential groups of emotion,
associated with the four quadrants of the valence-arousal
space, can be distinguished from the representation of tra-
jectories of head and hands from the frontal and lateral view
of the body. The compact representations were grouped into
clusters that divided the inputs into four categories based on
their positions in the dimensional space, namely high-posi-
tive, high-negative, low-positive or low-negative. Kosti et al.
[60] used features extracted from the body and background
to study the intensity values, arousal, and dominance.

Emotion Representative Visual Illustration

Front View Side View Rear View

Associated Body Expression

Anger

L

Surprise

Disgust

Happiness
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Body: Body spread.

Hands: Hands on hips or waist. Closed hands or clenched fists.
Palm-down posture. Lift the right or left hand up.

Finger point with right or left hand. Finger or hand shaky.
Arms and legs:Arms crossing.

Body: Body dropped. Shrunk body. Bowed shoulders.

Body shifted. Trunk leaning forward. Self-touch (disbelief),
body parts covered or arms around the body or shoulders.
Body extended and hands over the head.

Hands: Hands kept lower than their normal positions, hands
closed or moving slowly. The face is covered with two hands.
Two hands touching the head and moving slowly. One hand
touching the neck. Hands closed together.

Others: Head bent.

Body: Conservative body posture.

Hands: Hands clenched.

Arms and legs:Arms and legs crossing and moving. Arms
clenched, elbows dragged inward, bouncy movements, legs
wrapped around objects.

Others: Noticeably high heart beat-rate (visible on the neck).
Breath held.

Body: Body shift or backing. Body abrupt backward movement.
Hands: One hand or both of them moving toward the head.
Moving one hand up. Both of the hands touching the head.

One of the hands or both touching the face or mouth. Both of
the hands over the head. One hand touching the face. Self-
touch or both of the hands covering the cheeks or mouth.
Others:Head shaking

Body: Backing. Body shifted. Orientation changed or moving
to aside.

Hands: Hands covering the neck. One hand on the mouth. One
hand up. Hands close to the body. Hands covering the head.

Body: Body extended.,Looking around.

Arms and legs: Arms open. Arms move. Legs parallel. Legs
open. Legs may be stretched apart.

Others: Eye contact relaxed and lengthened. Feet pointing
something or someone of interest.

@ Springer



Review and Perspectives on Human Emotion for Connected Automated Vehicles 1

3.4 Physiological Expression

Although an individual may not clearly express his or her
emotions through speech, gestures, or facial expressions,
changes in physiological patterns are inevitable and detect-
able [61]. Emotional experience is accompanied by a series
of physiological expressions that will, in turn, enhance the
human emotional experience. The human physiological
expression can be described from three aspects, including
autonomic nervous system (ANS) response and central nerv-
ous system (CNS) response.

3.4.1 ANS Response

The ANS is a general-purpose physiological system respon-
sible for regulating peripheral function [62]. The system
consists of sympathetic and parasympathetic branches,
which are usually associated with activation and relaxa-
tion, respectively. When a person is positively or negatively
excited, the sympathetic nerves of the ANS are activated
[63]. This sympathetic activation increases the respiratory
rate, raises heart rate (HR), reduces heart rate variability
(HRV), and raises blood pressure [64].

Some emotional researchers proposed that each emotion
(e.g., sadness, anger, fear) had a relatively certain and reliable
autonomic response pattern [65]. Table 4 summarizes various
studies investigating the autonomic specificity of basic emo-
tions, which demonstrate that different emotions are associ-
ated with specific physiological responses, including galvanic
skin response, heart rate, blood pressure, finger temperature,
and heart rate variability [66, 67]. Other researchers indicated
that it might be best to observe ANS responding from the
perspective of the dimensional emotion model such as arousal
[68]. Lang and his colleagues [69] found that skin conduct-
ance level (SCL) increases linearly with the rated arousal of
emotional stimuli. A meta-analysis showed that blood pres-
sure, cardiac output, HR, and skin conductance response dura-
tion respond to emotional valence [70].

3.4.2 CNS Response

The physiological correlation of discrete emotions is more
likely to be found in brain activities rather than in peripheral
physiological responses [71]. Therefore, emotional represen-
tations in the CNS response have been investigated using a
variety of frameworks [72]. A single-system emotion model
assumes that one neurological system drives the experience
and expression of all emotions, whereas multisystem models
conceptualize emotions and their correlations into discrete
bins [73]. Recent advances in functional neuroimaging have
provided an opportunity to delineate a greater central mecha-
nism supporting emotional processes [74].

Neuroimaging studies have shown that human emotions
are controlled by a circuit, the phases of which include the
orbitofrontal cortex, ventromedial prefrontal cortex, amyg-
dala, hypothalamus, brainstem, cingulate cortex, thalamus,
hippocampus, nucleus accumbens, insula, cortical sensory
layers, etcetera. These are the critical brain regions for emo-
tional production, emotional experience, and emotional reg-
ulation [73]. Activation and inactivation of different brain
regions may indicate that they play different roles in emo-
tional processing [75]. The application of activation like-
lihood estimation (ALE) revealed consistent, dissociable
activation of distinct areas for happiness, sadness, anger,
fear, and disgust [76]. Emotional specificity was confirmed
by comparing emotional categories to each other. Kirby and
Robinson [77] replicated the work of Vytal and Hamann
[76] using the BrainMap database and ten times the number
of studies. Although evidence of different brain region net-
works was found in certain emotions, there were also brain
regions that were always activated in all emotions, suggest-
ing the existence of a multisystem model [77].

e Summary of human emotions expressions: This section
discusses the multimodal expression of human emotions
from four aspects: facial expression, speech, body posture
and physiological changes. Facial expressions and speech
expressions are the best and most commonly used in-cabin
methods to detect human emotions due to their non-inva-
sive properties. Besides, for the drivers’ emotion detec-
tion, there is a strong correlation between body gestures
and driving behaviors. Considering steering wheel angle
and gas pedal angle can reflect the drivers’ body gestures,
the relationship between body gestures and human emo-
tions is illustrated. Moreover, physiological expressions
are detailed in this section. Wearable physiological devices
can be used to measure the physiological expressions (e,g.,
heart rate and skin conductance activity) in driving, and
human brain activities are commonly used for the golden
standard (ground truth) in emotion detection. With the
development of sensing devices, CAVs will provide more
detection methods for human emotion expression-based
research in driving.

4 Human Emotion Experiment in Driving

Collecting rich and reliable data is an essential step in the study
of human emotions while driving. Therefore, the purpose of
this section is to discuss how to design experiments to collect
valid data. Table 5 presents a summary of human emotion
experiments in driving, including the experiment platforms,
induction methods, emotion measurement methods, and emo-
tion annotation methods.

@ Springer
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Table 4 Relationship between ANS responses and basic emotions [67]

ANS Response Anger Sadness Fear Surprise Disgust Happiness
Cardiovascular

HR Heart Rate 1 l T T l T
HRV Heart Rate Variability ! ) ! - )
LF Low Frequency Spectral HRV =) -
LF/HF Low Frequency/High Frequency Ratio ()

PWA P-Wave Amplitude m

TWA T-Wave Amplitude ) M\ Q)

LVET Left Ventricular Ejection Time l l (@) ()
HI Heather Index ) m

PEP Preejection Period l l (@) m
SV Stroke Volume ) ) l )
Cco Cardiac Output ) 1 T )
SBP Systolic Blood Pressure 1 1 1 1
DBP Diastolic Blood Pressure 1 1 1 T
MAP Mean Arterial Pressure T T il
TPR Total Peripheral Resistance 1 l l M
FPA Finger Pulse Amplitude l l l l N
FPTT Finger Pulse Transit Time l l l )
EPTT Ear Pulse Transit Time l l i
FT Finger Temperature l l l I l il
HT Forehead Temperature ) ()
Electrodermal

SCR Skin Conductance Response 1 1 T

nSRR Nonspecific SCR Rate T l T i T
SCL Skin Conductance Level 1 l 1 m l -
Respiratory

RR Respiration Rate ) 1 1 - l 1
Ti Inspiratory Time (@] - - 1
Te Expiratory Time (€3] } - 1
Pi Post-inspiratory Pause Time m m m M)
Pe Post-expiratory Pause Time

Ti/Ttot Inspiratory Duty Cycle m -

Vit Tidal Volume ) ) ) 1~ () 1
Vi/Ti Inspiratory Flow Rate or Inspiratory Drive N m
Ros Oscillatory Resistance ) - m
pCO2 End-tidal Carbon Dioxide Partial Pressure |

Note: ANS responses were defined as the response direction reported by the majority of studies (unweighted), with at least three studies indi-
cating the same response direction. Arrows indicate increased (1), decreased (|), or no change in activation from baseline (-), or both increases
and decreases between studies (1]). Arrows in parentheses indicate tentative response direction, based on fewer than three studies. Sadness was
defined as deactivating sadness (non-crying); Disgust was defined as mutilation disgust

4.1 Experiment Platform

As shown in the platform column of Table 5, the experiment
platforms used in human emotion experiments in driving
include both driving simulators and real vehicles for on-road
driving. Driving simulators are widely used in automotive
research, providing simple data collection, low-cost testing,
driver safety, adaptability, and a fully controllable environment.

@ Springer

Consequently, driving simulators are often used in driver
emotion research [78]. Limitations of the driving simulators
compared to the real driving environment include limited
physical, behavioral, and perceived fidelity, which may lead
to unrealistic driving behavior, degraded subjects’ involvement
level in the study, and hazards not taken seriously by the driver,
thus affecting the reliability of the research results [79]. To
date, even the most advanced driving simulators are not able
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to imitate highly complex and realistic driving situations [78].
Motion sickness is a common side-effect of subjects in simula-
tor studies, leading to blurred vision, migraine, epilepsy, and
dizziness, negatively affecting the usability of simulators [79].

Although many approaches have been conducted in the
laboratory environment, a controlled environment still has a
stronger influence on subjects’ emotions and behavior, which
may limit the reliability of the generated results. Therefore,
many researchers conduct on-road testing at the advanced
stage of research [80]. Currently, there is no framework for
on-road research for human emotion investigations. Generally,
when deciding on a driving route, subjects are often required
to travel along a route familiar to them, or pre-planned routes
to cover different driving situations and road types. Previous
automotive research suggests combining three different road
types for planning road routes or comparing them: rural, urban,
and major [81]. However, a significant concern for on-road
research is that it is unsafe for an emotional driver to drive on
real roads that may cause traffic accidents.

4.2 Emotion Induction

The high quality of emotion elicitation stimuli is vital for
driver emotion studies [102]. The purpose of emotion-induc-
ing methods is to induce the target emotions of subjects.
Generally, choosing the appropriate elicitation scene or stim-
ulus depends on the target emotions and the experimental
situation. As shown in the induce method column of Table 5,
various emotion induction techniques have been used in
human emotion experiments in driving, including emotional
video clips, traffic scenarios, music, and other methods. Sie-
dlecka and Denson [108] have classified emotion induction
techniques into five broad categories: situational procedures,
visual stimuli, auditory stimuli, standardized imagery, and
autobiographical recall. Emotional behavior can also be used
as an emotional stimulus.

Situational procedures involve creating a driving situation
and putting subjects directly into the situation that elicits
the target emotion, and is generally achieved by control-
ling the traffic, environment, accidents and personal interac-
tion (e.g., catch a plane during the time of road congestion)
[90, 102]. Visual stimuli can be film clips (videos) or static
images with emotional content selected to elicit target emo-
tions [103]. Auditory stimuli activate emotions via specific
types of auditory input (e.g., music and the voice of the
smart agent in the car) [103]. Standardized imagery involves
subjects creating vivid mental representations and imagin-
ing themselves in a novel event designed to evoke strong
emotion [94]. Standardized imagery can consist of reading
vignettes, often with guidance from the experimenter. Auto-
biographical recall involves summoning personal emotional
memories to reactivate emotions from the original emo-
tional experience. Emotional behavior as emotional stimuli

@ Springer

involves participants posing specific expressions or behav-
iors (e.g., posing a smiling expression to induce happiness)
to elicit target emotions [92]. Studies have shown that visual
stimuli usually achieve better results in emotional induction
among the basic emotions [108]. Besides, as shown in the
induce method column of Table 5, situational procedures
are mainly used for emotion induction in driving scenarios.

4.3 Emotion Measurement

Using appropriate methods to accurately measure vari-
ous changes caused by emotions is essential for emotion
detection. The measurement column of Table 5 lists various
measurements that have been used in human emotion driv-
ing research. These measurements can be broadly classified
into three categories: physiological measurements, behav-
ioral measurements, and self-reported scales. Physiological
measurements refer to the recording and analysis of biologi-
cal signals from the human body. Behavioral measurements
refer to the observation and analysis of human behavior in
response to emotional stimuli. Self-reported scales refer to
questionnaires or surveys that ask participants to rate their
own emotional state in response to stimuli.

Since emotional features are closely related to the driv-
ers’ physiological characteristics, physiological measure-
ments such as electroencephalography (EEG), functional
near-infrared spectroscopy (fNIRS), electrocardiography
(ECG), electrodermal activity (EDA), and respiration
(RESP) used in driver physiology can be used to detect
driver emotions [99-101]. There are also some authors who
use self-reported scales to measure driver emotions. Fre-
quently used self-reported scales include the positive and
negative affect schedule (PANAS) [109], the self-assessment
manikin (SAM) [110], and the differential emotions scale
(DES) [111].

In addition, researchers have used behavioral measure-
ments to infer driver emotions. To recognize emotions more
accurately through facial behavior during driving, Gao et al.
[92] used the method of near-infrared (NIR) facial expres-
sion recognition. Emotional acoustic recognition based on
dialogue between the driver and the in-vehicle information
system was also to used to measure emotions [93, 95, 96].
Also, to identify drivers’ emotions through body posture
movement, Raja et al. [94] proposed to use radio frequency
(RF) to identify driver emotions. Some authors suggest col-
lecting information about the driver, vehicle state, and sur-
rounding changes to infer the driver state, Nor and Wahab
[97] classified the drivers’ happiness and unhappiness emo-
tion using a multilayer perceptron neural network based on
the pressure characteristics of the gas and brake pedals.

Comprehensively considering emotion measurement
from different aspects is vital for emotion understanding. In
order to obtain more reliable results, different measurement
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Fig.4 Position of the in-cabin sensors used in driver emotion detec-
tion

tools are usually combined for research [102—107]. These
researchers used physiological measurements, behavioral
measurements, and self-reported measurements to identify
drivers’ emotional states. For example, Wan et al. [102]
reported the detection of anger using features of HR, blood
volume pulse (BVP), skin temperature (ST), EDA, RESP,
self-reported scale and driving behavior of drivers. Lee et al.
[105] reported the detection of three basic emotions (neutral,
boredom, frustration) using features of photoplethysmogra-
phy (PPG), electromyography (EMG), as well as the IMU.
The position of the in-cabin sensors used in driver emotion
detection is illustrated in Fig. 4. The application of these
methods has made massive progress in effectively monitor-
ing and detecting driver emotions in real time.
Comparatively, physiological measurements are more
objective and can be measured continuously; however, this
measurement is highly intrusive and may have an impact
on the measurement result. Although behavioral measure-
ment is rarely intrusive and can be measured by non-contact
sensors, its performance level could decline because peo-
ple can try to fake or disguise their emotions. Self-reported
scales measure the subjective experience of participants
when applied correctly, and provide the opportunity to gain
valuable insights about the experienced emotions, but such
measurements cannot take place during the study without
interruption. The methods require a relatively long period
to perform, potentially resulting in unreliable data. In gen-
eral, in order to obtain more accurate recognition results,
an appropriate measurement method needs to be selected
according to the experimental environment and purpose.

4.4 Emotion Annotation

To effectively detect human emotions in CAVs, it is impor-
tant to obtain reliable emotional annotations which can be
used as the standard for training and evaluation of the mod-
els. As shown in the annotation column of Table 5, there
are three annotation methods: self-reports, experimen-
tal scenarios, and annotators. The first approach involves
employing emotional self-reports [87, 103], which requires
subjects to be able to express and quantify how they feel at
a particular moment. The second approach involves using

different experimental scenarios to label the emotional expe-
riences [90, 99]. For example, in the case of on-road studies,
researchers control different driving traffic to trigger specific
emotional states, and in the case of driving simulator studies,
researchers have several opportunities to modify experimen-
tal situations and induce specific emotional states. The third
method involves the use of an external annotator, which can
identify certain emotional states based on different signals
(e.g., voice, facial expressions) of subjects [96, 97].

In comparison, self-reports require the cognitive recourse
of subjects, they are subjective, and they may reflect
strong biases (e.g., inconsistencies in evaluation criteria,
false memories, and desire to impress the experimenter).
Although the experiment scenarios reduce the burden on
the subjects, it makes some strong assumptions that may
not be widely generalized to all subjects and road condi-
tions [15]. Annotators are very time-consuming and labor-
intensive and require the use of experienced and well-trained
observers, which may be challenging to find and will be
expensive, especially at scale [15]. Besides, some studies
have also explored combining multiple methods to overcome
the weaknesses of any one method [112]. On the whole, no
one method is perfect, so researchers need to choose a proper
annotation approach according to the experimental scenario
and purpose.

e Summary of human emotion experiment in driving: This
section discusses the platform, induction, measurement,
and annotation in human emotion experiments. The col-
lection of emotional data during driving mainly depends
on the experimental platform. The data collection based
on the driving simulator can reduce the driving risk
caused by emotion during the experiment. Data collec-
tion based on on-road driving can collect more accurate
responses from participants in real scenarios. At present,
most studies choose to carry out driving simulator exper-
iments in the early stage of emotion research and choose
to carry out on-road driving experiments in the later stage
or verification stage of emotion research. For the induc-
tion, measurement, and labeling of emotions, the choice
should also be made according to the experimental plat-
form. On the driving simulator, the experimental emo-
tion measurement tools are rich, the induction method is
controllable, and the labeling is easy, but there will be
problems that the intensity of the collected emotional
data is not high and the characteristics are not obvious.
On the on-road driving, the emotions experienced by
participants are more real, and the intensity of the col-
lected emotional data is relatively high, but the emotional
measurement tools of the experiment are easily limited
(measurement equipment is easily disturbed in an uncon-
trollable environment), and labeling also requires a lot
of time and human resources. Therefore, in the human

@ Springer
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emotion experiment in driving, it is necessary to combine
the research stage and the purpose of the experiment,
choose the appropriate experimental platform, and fur-
ther choose the measurement method, induction method,
and labeling tools for emotion research.

5 Human Emotion Detection in CAVs

Accurate, stable, and efficient detection of the emotional
states of drivers and occupants is a prerequisite for affective
human-vehicle interactions. Therefore, the purpose of this
section is to discuss how CAVs use emotional expressions,
driving context, and road information to recognize the emo-
tional states of drivers and occupants.

5.1 In-cabin Driver Emotion Detection

Driver emotion detection algorithms are developed based
on selected classification methods and measurement signals.
The algorithms are usually implemented using supervised
machine learning technologies. The algorithm column of
Table 5 not only lists the different measurements used in
driver emotion driving research, but also summarizes the
main detection algorithms and corresponding recogni-
tion accuracy reported in previous studies. The detection
algorithms used in these studies can be broadly classified
into three categories: facial-expression-based, speech-
based, driving-behavior-based, physiology-based, and
multimodal-based.

5.1.1 Facial-Expression-Based

Facial expression is an effective, common-used, and non-
invasive factor for emotion detection. There are two main
detection tasks for emotion detection: discrete emotion
detection (classification task for basic emotions) and dimen-
sional emotion detection (regression task for valence, arousal
and dominance). As shown in Table 5, most of the facial-
expression-based studies choose the discrete emotion (six
basic emotions and neutral) as the detection targets, and the
deep neural network, such as CNN-based models, are com-
monly used in facial classification, such as GLFCNN [82],
Xception [86, 87], and basic CNN [85, 90]. Equations (1)
and (2) show the most commonly used loss function (multi-
class cross-entropy loss and binary cross-entropy loss) for
facial-expression-based emotion detection [82, 85, 86, 88].
As for dimensional emotion detection, some researchers
choose the regression methods for emotion detection. The
CogEmoNet was proposed to solve the regression task for

@ Springer

dimensional emotion recognition, and the Mean Squared
Error (MSE) and Consistency Correlation Coefficient (CCC)
loss functions were used [86]. The loss function of MSE and
CCC are shown in Eqs. (3) and (4):

Lossmulti—class == Z Vi IOg j\)i (D

i=1
1

Losspinary =- Z[ylna+(l -y In(l —a)] )
MM

Lossysg = N 2 Z(I;)Z )
i=1 =1

28,
Losscee = 1 — 4)

$24+ 82+ (5 - 5)

Besides, some machine learning methods are used in facial
expression classification, such as SVM [87, 91, 92] [82].
The loss function of SVM used in the detection procedure is
hinge loss. According to Table 5, the results of CNN-based
methods are generally better than those using traditional
machine learning methods in driver emotion studies. CNN
is a type of deep learning algorithm that can automatically
learn and extract features from input data, making them
well-suited for facial-expression-based emotion recogni-
tion tasks. In contrast, traditional machine learning methods
require manual feature extraction and selection, which can
be time-consuming and may not capture all relevant fea-
tures. Using CNN-based methods can improve the accuracy
of driver emotion recognition tasks and may be a promising
approach for future research in this field.

5.1.2 Speech-Based and Driving-Behavior-Based

The speech data is also a practical and non-invasive method
for driver emotion detection. Current speech-based studies
are usually used to detect drivers’ road rage and negative
emotions. The classification methods used are mainly tra-
ditional classification methods, such as KNN [94], GMM
[95], SVM, and Random forest [93]. The commonly used
loss functions for GMM, SVM, and random forest are log-
likelihood loss, Hinger loss, and MSE loss, respectively.
The log-likelihood loss is shown in Eq. (5). Besides, some
researchers used neural networks to solve classification
tasks. Kamaruddin et al. [96] used MLP to perform 4-class
emotion classification based on audio information. For driv-
ing behavior data of drivers, Nor and Wahab used MLP to
classify the happiness and neutral emotions [97].
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5.1.3 Physiology-Based

The physiological signal is closely related to the drivers’
emotional features. Therefore, some studies attend to use
physiological data to detect drivers’ emotions. The Logis-
tic regression [98, 100], SVM [99], and backpropagation
methods [101] are commonly used in the study. However,
the number of studies addressing such classification tasks is
fewer than other approaches. Since the physiological signal
devices, such as ECG, and EEG devices, are not non-inva-
sive. Meanwhile, high-quality physiological data is difficult
to obtain compared to facial expressions and audio signals.

5.1.4 Multimodal-Based

The uni-modal approaches such as facial expression, audio,
driving behaviors, and physiological data have their limits.
Generally, the reliability of the uni-modal approaches is not
good enough, especially for practical use. Therefore, some
researchers choose multimodal signals to address the clas-
sification tasks. The most commonly used combinations,
as shown in Table 5, are physiological data and driving
behaviors data [102, 105-107], speech signals and driving
behaviors data [103], and facial expression and speech sig-
nals [104, 107]. These combinations are often used in multi-
modal approaches, which combine multiple sources of data
to improve the accuracy of emotion detection. The traditional
machine learning methods, such as SVM [105], linear discri-
minant [106], least square support vector machine [102], and
bayesian network [107] are commonly used in solving this
task and the loss functions are hinge loss, and log loss func-
tion, respectively. These methods have been applied to differ-
ent modalities and have achieved varying levels of accuracy
in driver emotion detection. Transfer learning algorithms
have also been successfully implemented for driver emotion
detection, as shown in one study using a transfer learning
approach to classify emotions based on facial expressions
and speech signals [104]. Overall, the results of multimodal
approaches are generally better than those of unimodal
approaches, suggesting that combining different sources of
data can improve the accuracy of emotion detection in driv-
ing. However, the choice of methods and combinations may
depend on the specific context and available data.

5.2 In-cabin Occupant Emotion Detection

With the development of CAVs, emotion recognition for
vehicle occupants gradually gains more attention. Since the

current CAVs have not reached the level of fully autono-
mous driving, only a few numbers of researches on occu-
pants’ emotion detection have been conducted. However, the
models of general emotion detection might be able to be used
for occupant emotion detection since there is no driving task
involved for occupants. Table 6 presents a summary of the
state-of-the-art emotion detection algorithms for occupants
in vehicles in the past five years. Compared to the detection
models used for drivers’ emotion detection, the detection
models used for general emotion detection are more up-to-
date and the accuracy is generally higher. In Table 6, the
occupants’ emotion detection methods are categorized into
four parts corresponding to the driver emotion detection,
including facial-expression-based, speech-based, physiology-
based, and multimodal-based. Then, each column in the table
is discussed by category in the following subsections.

5.2.1 Facial-Expression-Based

In Table 6, facial expressions are one of the modalities used
to detect the emotions of vehicle occupants. Some studies
are summarized in the facial-expression-based part and the
datasets used in these studies are the CK+ dataset, Japanese
Female Facial Expression (JAFFE) Dataset, and CREMA-D
dataset, which contain the facial expression data and labeled
emotion annotations. The facial expressions in CK+, JAFFE,
AFEW, and CREMA-D are acted by actors/actresses [113,
114, 116]. In terms of algorithms, Table 6 shows that the
detection accuracies are generally higher when the expres-
sion datasets are acted compared to the dataset of spontane-
ous expressions. The reason is that acted facial expressions
are more exaggerated and easier to recognize than spontane-
ous expressions, which tend to be more subtle and variable.
However, spontaneous expressions are more reflective of real-
world emotions and are therefore more relevant to emotion
detection in naturalistic settings such as driving. Meanwhile,
the algorithms shown in Table 6 are mainly CNN- and RNN-
based models. The MSE and cross-entropy loss are commonly
used as the loss function [117] in facial expression-based
emotion detection. The loss functions are shown in Egs. (1),
(2), (3), and (4). Dimensional emotional recognition is not
studied in occupants’ emotion detection and the reason might
be due to the limitation of the public dataset that contains the
facial expression and arousal and valence scores.

5.2.2 Speech-Based

Table 6 shows that some studies have employed speech
signals as the approach to detect the emotions of vehicle
occupants. Speech recognition systems can analyze the tone,
pitch, and prosody of the driver’s voice to detect emotions
such as frustration, excitement, and anger. They are summa-
rized in the speech-based part and the major datasets used in
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speech-based studies are RAVDESS, IEMOCAP, eNTER-
FACE, and RECOLA database, which contain the emotional
speech segments and the labeled emotion annotation. The
speech records in the RAVDESS dataset, IEMOCAP dataset,
and eNTERFACE dataset are acted by actors/actresses [119,
122] and the speech records are spontaneous in RECOLA
database [123]. The algorithms shown in Table 6 are mainly
CNN-based models and RNN-based models, such as Bi-
directional LSTM architecture [119], Deep C-RNN [120],
etc. The MSE [123] and cross-entropy [121] loss are com-
monly used as the loss function in speech-based detection.

5.2.3 Physiology-Based

As shown in Table 6, physiological signals such as EEG are
used to detect the emotions of vehicle occupants. Sensors can
be installed on the vehicle to measure these physiological
signals, which can then be analyzed using machine learning
algorithms to detect emotions. Previous studies are summa-
rized in the physiological-based section. The major datasets
used in physiology-based studies are SEED dataset [124, 125,
128], and DEAP dataset [129], which contain the emotional
physiological signals, the labeled emotion and the dimen-
sional emotion annotation. Most of the datasets choose EEG
signals as the emotion-related factor and eye movement is also
contained in some datasets, such as SEED dataset [126, 127].
Besides, the algorithms used in physiology-based detection
are mainly CNN-based models and transfer learning models.

5.2.4 Multimodal-Based

Some studies also choose multimodal signals as the
approach to detect the emotions of occupants. Table 6
summarizes studies that have employed multimodal
approaches to emotion detection for vehicle occupants.
These approaches combine multiple modalities, such as
facial expressions, speech signals, and physiological signals
to improve the accuracy of emotion detection. The major
datasets used in these studies are the IEMOCAP and MOSI
datasets, which contain speech signals, facial expressions,
and labeled emotion annotations. Deep learning algorithms
such as LSTM-based models have been employed in some
studies to analyze these multimodal datasets and achieve
high accuracy in emotion detection [131-133]. Typically,
the number of multimodal detection studies is less than the
uni-modal study. The reason might be due to the limitation
of the public datasets that contain facial expressions and
audio signals. The major loss function used in the multi-
modal approach is MSE [130] and cross-entropy [132, 133].
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5.3 Driving-Context-Based Human Emotion
Detection

Since human emotions are mainly triggered by the driving
context or the events that happened during their driving,
such as the weather, the road type, and the traffic condi-
tions. The driving context is also an important factor for
drivers’ emotion recognition. Although the studies towards
such areas are limited because traditional vehicles lack of
capacity to perceive the condition outside the vehicles, with
the development of CAVs and the increase of the perception
of automated vehicles, the combination of driving context
and in-cabin collected signals will become possible and the
accuracy of detection may be further improved.

Table 7 summarizes the current studies on the driving-
context-based approach for drivers’ emotion detection.
These studies focus on analyzing the influence of different
driving contexts such as traffic conditions and road types
on drivers’ emotional states. Bustos et al. [134] and Bitkina
et al. [138] are examples of researchers that have investi-
gated the influence of traffic conditions and road types on
drivers’ stress levels. These studies have found that certain
driving contexts such as heavy traffic or narrow roads can
lead to increased stress levels in drivers. Logistic regression
was used to detect the stress levels and the highest accuracy
reached 82.80%. Dobbins et al. [137] used the combination
of the physiological data and driving context to analyze the
stress level, and correlation analysis was performed in their
discussion. Bethge et al. [136] proposed a new method to use
the traffic condition, weather, and vehicles’ dynamic infor-
mation to detect drivers’ emotions, and VEmotion model
was used to detect the emotions and the accuracy reached
71.00%. Liu et al. [135] used an RNN model to detect the
drivers’ emotions by using the surrounding objects and vehi-
cles’ dynamic information. The accuracy of the detection
reaches 71%. The number of studies in driving-context-
based emotion detection is limited according to Table 7, and
further study in this area is needed with the development of
CAVs.

5.4 V2X-Based Human Emotion Detection

Integrating V2X technology into driver emotion detection,
a driver can recognize his neighbors’ emotional states in
real-time by exchanging intelligent on-board data with other
intelligent devices in ITS. For example, each CAV can share
its emotional awareness information by interacting with
other vehicles [139]. Furthermore, a local vehicle’s on-board
learning data can be combined and processed by the central-
ized cloud so that to extend its intelligence to the global con-
text [140]. Other emerging technologies are integrated with
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Table 6 A brief summary of human emotion detection

M

Ref.

Emotion

Condition

Measurement Annotation

Algorithm

Dataset

Detection result

Facial-expres-
sion-based

Speech-based

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[116]

Anger,
Disgust,
Happiness,

Sadness, Sur-
prise, Fear,
Neutral

Anger,
Disgust,
Happiness,

Sadness, Sur-
prise, Fear,
Neutral

Anger,
Disgust,
Happiness,

Sadness, Sur-
prise, Fear,
Neutral

Anger,
Disgust,
Happiness,

Sadness, Sur-
prise, Fear,
Neutral

Anger,
Disgust,
Happiness,

Sadness, Sur-
prise, Fear,
Neutral

Anger,
Disgust,
Happiness,

Sadness, Sur-
prise, Fear,
Neutral

Calm, Hap-
piness,
Sadness,

Anger, Fear-
ful

Calm, Hap-
piness,
Sadness,

Anger, Fear-
ful

Anger,
excitement,
Neutral,

Sadness

Anger,
Disgust,
Happiness,

Sadness, Sur-
prise, Fear,
Neutral

Posed

Posed

Posed

Posed

Posed

Posed

Posed

Posed

Posed

Posed

FEA

FEA

FEA

FEA

FEA

FEA

Speech

Speech

Speech

Speech

Annotators

Annotators

Annotators

Annotators

Annotators

Annotators,

Self-reported

Annotators

Annotators

Annotators

Annotators

Dual integrated
CNN

CNN- LSTM based
Neural Network

Deep Convolutional
Neural
Networks

CNN+LMED+DL-
a+LSTM

Convolution-Recur-
rent
Neural Network

FER CNNs

Bi-directional
LSTM architec-
ture

and deep belief
networks

Deep C-RNN

self-attentional
CNN-BLSTM
model

Brain emotional
learning
model

CK+

CREMA-D

JAFFE

AFEW

JAFFE

CK+

RAVDESS

RAVDESS

IEMOCAP

CASIA,
SAVEE, FAU

98.54%

78.52%

95.23%

61.87%

94.91%

96.57%

82.00%

80.00%

81.60%

90.28%,
76.40%,71.05%
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Table 6 (continued)

M Ref. Emotion Condition Measurement Annotation Algorithm Dataset Detection result
[122] Anger, Posed Speech Self-reported, Transfer learning RML, 49.70%,
Disgust, Annotators eNTERFACE 34.30%
Happiness,
Sadness, Sur-
prise, Fear,
Neutral
[123] Arousal, Spontaneous Speech Self-reported  2-layer Long Short- RECOLA Arousal 78.70%
Valence Term Memory Valence 44.00%
Physiology- [124] Neutral, Sad- Spontaneous EEG Annotators Coupled Projection SEED_IV 82.16%
based ness, Fear, Transfer
Happiness Metric Learning
[125] Positive, Spontaneous EEG, Self-reported Deep neural Net- SEED Chinese—
Neutral, Eye move work (Chinese,Ger,Fra) 86.53%,
Negative German—
70.87%,
French—67.52%
[126] Positive, Spontaneous EEG, Self-reported Multimodal domain SEED 89.64%,
Neutral, Eye move adaptive 73.82%
Negative variational autoen-
coder
[127] Happiness, Spontaneous EEG, Self-reported  Semisupervised SEED_V 79.02%
Sadness, Eye move sparse
Disgust, low-rank regression
Neutral, Fear
[128] Neutral, Sad- Spontaneous EEG Annotators sISFE SEED-IV 82.45%
ness, Fear,
Happiness
[129] Arousal, Spontaneous EEG Self-reported  SparseDGCNN DEAP, SEED, Averagely
Valence DREAMER, improved
CMEED accuracy by
8.88%
Multimodal- [130] Anger, Posed FEA, Speech Annotators Semi-supervised IEMOCAP 87.43%
based Disgust, Multimodal
Happiness, Interaction Network
Sadness, Sur-
prise, Fear,
Neutral
[131] Anger, Posed FEA, Speech Annotators Reinforcement IEMOCAP 59.72%
Disgust, learning
Happiness, Dueling deep-Q-
Sadness, Sur- network
prise, Fear,
Neutral
[132] Anger, Posed FEA, Speech Annotators Multi-layer LSTM ~ MOSI 77.30%
Disgust,
Happiness,
Sadness, Sur-
prise, Fear,
Neutral
[133] Anger, Posed FEA, Speech Annotators LSTM IEMOCAP 71.04%
Excitement,
Neutral,
Sadness
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Table 7 Summary of driving-context-based human emotion detection

Ref.  Emotion No. Sub Platform Driving context Induce Measurement Annotation Algorithm Detection
Method result
[134] Stress 9 On-Road Z zone, highway  Situational Front-view Video = Annotators CNN 2%
and city procedures
[135] Anger, Disgust, 9, male 5, On-Road Small vehicles, Situational Front-view Video, Annotators RNN 71%
Happiness, Sad- female 4 trucks, procedures CAN info from
ness, pedestrians, vehicles
Surprise, Fear, cyclists,
Neutral, Valence location and CAN
info
from vehicles
[136] Angry, Disgust, 12, male 8, On-Road Weather, traffic Situational Weather, traffic Annotators VEmotion 72%
Happiness, Sur- female 4 flow, procedures flow,
prise, road type, vehicle road type, vehicle
Calm, Fear Sad- state state
ness, and personal facial
Neutral expression, audio
[137] Stress 8, male 2, On-Road Idling, journey Situational ~ Vehicle speed, Self reports Data -
female 6 impedance, procedures  location, analysis
high urban work- photographs,ECG,
load, PPG
low urban work-
load, high
non-urban work-
load,
low non-urban
workload
[138] Stress 1 male On-Road Traffic conditions  Situational Front-view Video — LR 82.8%
(average traffic procedures  and 80.3%
speed) EDA,PPG
road types(city,
highway)

V2X to improve the efficiency of drivers’ emotion detection,
such as machine learning [141] and edge computing [142].

In Ref. [139], a real-time anomaly data detection method
is proposed for safe driving based on the driver’s emotional
state and the cooperative vehicular networks. Zhang et al.
[140] proposed a safety-oriented vehicular controller area
network (SOVCAN) based on driver emotion detection. The
architecture of SOVCAN consists of a data acquisition layer,
an intra-net layer, and an inter-net layer. At the data acquisi-
tion layer, the driver’s physiological and psychological data
are collected by the in-car mobile. At the intra-net layer, the
data is transmitted to the on-board device for emotion per-
ception. The processed data is then transferred to the cloud
through vehicle-to-cloud (V2C), vehicle-to-infrastructure
(V2I), and vehicle-to-vehicle (V2V) communications for
preservation and remote control. Vogel et al. [141] intro-
duced a multi-layer cognitive architecture-emotion-aware
vehicle assistant (EVA) for the future design of emotion-
aware CAVs. With the emergence of edge computing, Raja
et al. [142] designed a driver assistant system RFexpress for
emotion detection based on wireless edges.

e Summary of human emotion detection in CAVs: This sec-
tion discusses methods for recognizing human emotions
in CAVs. In the emotion recognition subsections for the
driver and occupant in the cabin, the existing emotion
recognition models are illustrated based on facial expres-
sions, speech, behavior, physiological changes and mul-
timodal. In addition, as recently focused areas, human
emotion recognition based on driving environment infor-
mation and V2X is also introduced. On the whole, con-
sidering that the CAV is an intelligent mobile terminal
with information perception inside and outside the vehicle
and information communication capabilities, the human
emotion detection method in CAVs can use the fusion of
environmental information inside and outside the vehicle
to achieve accurate, stable and efficient recognition.

6 Human Emotion Regulation in CAVs
After detecting human emotions, the CAV needs to use

the human-machine interface to regulate driver emotions
for affective human-vehicle interactions. Thus, different

@ Springer



24

W. Lietal.

displays have been employed to regulate drivers’ emotions
in the driving context, as shown in Table 8. The display
is an essential component of driver’s emotion regulation,
including visual displays such as screens and AR head-up
displays, tactile displays such as the vibration of seats, steer-
ing wheels, and seat belts, olfactory displays such as laven-
der and lemon scents, and auditory displays such as voice
output. Besides, this section introduces road-related regula-
tion methods, regulation scenarios, and regulation quality
analysis methods.

6.1 In-cabin Human Emotion Regulation
6.1.1 Visual Regulation

Vision is the dominant sense during driving, which is the
reason for the majority of emotion regulation to be visual.
For a low automated level, the use of visual stimuli for driver
emotion regulation may cause potential distractions. How-
ever, a relaxation of visual regulation requirements is pos-
sible when the vehicle runs at a high level of automation.
Table 8 describes current studies on the visual regulation of
driver’s emotions including ambient light, visual interven-
tion, state feedback, and visual relaxation techniques.

Ambient light refers to the method employing ambient
illumination in the cockpit to implement the driver’s emo-
tion regulation. Studies have shown that ambient light can
have alarming or distracting qualities for drivers, but it may
also have a calming effect, which may depend on brightness,
position, and personal familiarity with the function [145,
149, 170]. Visual intervention is distractive by design, there-
fore, their application while driving requires to be carefully
planned. It is also feasible to blatantly intervene when the
possibly dangerous emotional state is likely to occur, such
as providing a simple notification, telling the driver to take
a break, and distracting the driver from the source of nega-
tive emotions, as well as presenting a positive notification to
decrease drivers’ negative emotions [143, 146, 147]. State
feedback refers to the visual display that allows drivers to
understand their current emotional states clearly. Research-
ers’ studies found that direct feedback on the detected driv-
ers’ states had little value for emotional regulation because
visual state feedback could amplify the driver’s negative
emotional states, which was unacceptable to the driver and
needed to be avoided examined the visual state feedback
of drivers’ negative emotions [143, 147, 170]. Besides,
participants preferred to receive only safety-critical noti-
fications of the driver’s state [144]. Relaxation techniques
are approaches to impact drivers’ emotional states through
dynamic behavior changes. Studies have revealed that this
relaxation technique led to a decrease in arousal levels and
relaxation techniques may become a valuable routine to
increase the comfort of CAVs [148].

@ Springer

6.1.2 Tactile Regulation

In the driving context, the tactile display can be presented in
multiple ways (e.g., vibration, airstream, force, temperature).
The tactile display can be widely used because human skin
includes a variety of receptors, namely mechanoreceptors
(sensitive to pressure, vibration and slip), thermoreceptors
(sensitive to temperature changes), nociceptors (responsible
for pain) and proprioceptors (sensitive to position and move-
ment), and any area of the human body can be activated by
these receptors (e.g., finger or hand, wrist, arm, chest, back,
forehead). Therefore, the tactile display has the potential for
robust message delivery without generating additional cog-
nitive demands or affecting driving performance. As shown
in the tactile regulation of Table 8, current studies on the
tactile regulation of driver’s emotions in CAVs mainly focus
on temperature and vibration. Temperature regulation can
be used to create a comfortable and calming environment in
the vehicle. For example, heated or cooled seats can provide
physical comfort to drivers and help them manage stress
levels. Vibration regulation can also be used to regulate driv-
ers’ emotional states. For example, vibration of the steering
wheel or seat can provide physical feedback to help drivers
stay alert and manage stress levels.

The study of temperature regulation by Schmidt et al.
[154] reported that cool airstreams were associated with
a decrease in low arousal and an increase in alertness and
sympathetic activity, leading to better driving performance
and acceptance. The other studies chose vibration to regu-
late drivers’ emotions by instructing the driver to breathe
and reported the effectiveness [150—153]. Besides, the
study also found that haptic warning signals were as effec-
tive as audible warning signals in handling lane departures
for both normal driving situations and driving secondary
task situations [155]. In general, tactile regulation is a
promising way for driver emotion regulation and can prob-
ably be more sufficiently utilized in the future.

6.1.3 Olfactory Regulation

Humans can also obtain information from olfaction. The
olfaction has been proven to be good at activating the neu-
ral system, which can help drivers to perceive important
information better. Hence, although less common, olfac-
tory displays are slowly entering the field of automotive
HMI as a new display for human-vehicle interaction [161].
Table 8 also investigates studies that have used different
odors to regulate drivers’ emotional states. Examples of
odors studied include peppermint, rose, lavender, vanilla,
cinnamon, and civet. Olfactory regulation can be used to
create a calming and pleasant atmosphere in the vehicle.
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For example, lavender has been found to have a calming
effect on drivers.

Raudenbush et al. demonstrated that both peppermint
and cinnamon decreased drivers’ frustration and helped
them focus on driving tasks [157]. Besides, Mustafa et al.
[163] found that the presence of odors (vanilla and laven-
der) led drivers to experience positive emotions, such as
relaxation with more feedback on comfortable and fresh
feelings. Further, Dmitrenko et al. [156] selected the odors
of different valence and arousal levels (e.g., rose, pepper-
mint and civet) to regulate drivers’ anger, and found that
pleasant odors (rose and peppermint) could be able to shift
drivers’ emotions towards the positive valence. Further-
more, Dmitrenko et al. [159-161] proposed the method
to map between different driving-related messages (“slow
down,” “refuel,” and “pass by points of interest”) and four
scents (lemon, lavender, mint, rose). Besides, some studies
also found that intermittently applying scents can effec-
tively keep drivers alert [158, 162]. Integrating olfactory
regulation into CAVs can provide a more comprehensive
and effective emotional regulation system for drivers.
However, it is essential to note that olfactory responses
can be subjective and vary between individuals. There-
fore, a personalized approach to olfactory regulation may
be necessary to ensure effectiveness for each individual
driver. Overall, the olfactory regulation of driver’s emo-
tions in CAVs is a promising area of research, with the
potential to significantly improve the driving experience
for drivers in the future.

6.1.4 Auditory Regulation

Besides the vision-based display, auditory displays are the
second most common type of human-vehicle interaction.
First, the auditory display is a high-resolution modality
that can send complex information quickly through audi-
tory icons (naturally occurring sounds), earcons (e.g.,
short tunes or bells), and spearcons (speech-based ear-
cons). Second, the auditory display conveys directional
(spatial) information, and auditory cues can be received
from any direction. Third, compared to visual display, it
reduces mental and visual distractions. Therefore, in the
auditory regulation part of Table 8, studies on auditory
emotion regulation are summarized, including adaptive
music, empathetic speech, and auditory intervention. For
example, calming music can be played in stressful driv-
ing situations to help drivers manage stress levels, and
a virtual assistant can use empathetic speech to provide
reassurance and guidance to drivers in unfamiliar driving
situations.

Many studies envisage the application of adaptive music
in the driving environment to regulate the driver’s emotions
[166, 167, 169]. Studies have indicated that recommending

calm music to drivers in a high arousal state could help them
calm down, and will affect driver’s emotional states and
driving behavior in the long run [174, 178, 180]. However,
other studies have pointed out that although music affected
driving performance and reaction times, it had no signifi-
cant effect on subjective emotion levels [168]. Empathetic
speech requires empathetic adaptation of the in-vehicle voice
agent’s speech output to adapt to the emotional state of driv-
ers and occupants in the driving environment. Studies on
empathetic speech revealed that the matched speech arousal
level could have a positive impact on driving performance
and the frequency of interactions [175, 179]. Besides, the
empathetic speech was liked by drivers, and could decrease
the impact of sadness and anger on driving [170]. Empa-
thetic speech may be a suitable method to regulate the
driver’s negative emotions. However, the above studies all
worked with prototypical interactions. A clear description of
empathy in voice interactions may require further research
[16]. A typical form of auditory intervention is a reappraisal,
which aims to illuminate frustrating situations in a more
positive light. The study has shown that reappraisal may be
an effective intervention that may nudge the driver towards
a more positive state, thereby improving driving perfor-
mance [172]. Another common form of auditory interven-
tion is to instruct the driver to perform breathing exercises
[152]. Other researchers have studied positive and negative
comments [165], young and old voices [177], familiar and
unfamiliar voices [171], warning voices [176], and different
emotion regulation strategies to intervene driver emotions
[181, 182]. In sum, auditory intervention may be an effective
way to regulate the driver’s emotions while rarely leading
to distraction.

6.2 V2X-Based Human Emotion Regulation

Seamless and real-time decisions of emotion regulation can
be obtained in V2X, where drivers can be aware of their
neighbors’ emotions in the situated environment by com-
municating with intelligent traffic participants such as the
cloud [183, 184] and neighboring vehicles [185].

In Ref. [183], a crowd-cloud collaborative and situation-
aware music recommendation system is designed to diminish
drivers’ negative emotions. The sensing data and the driver’s
social information are collected and processed by the in-car
smartphone. By collaborating with cloud computing, uni-
fied and seamless crowdsensing decisions can be made based
on the fusion of information. This approach enables the in-
vehicle smartphone to intelligently recommend preferable
music to regulate drivers’ negative emotions based on the
situated environment by collaborating with its neighboring
vehicles’ phones and the cloud. Krishnan et al. [184] pro-
posed a context-aware music emotion-mapping approach for
drivers. The V2C communication is applied to aggregate the
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crowd-sensed music emotion-mapping data to improve the
efficiency and effectiveness of the music delivery for drivers.
By incorporating the social context information of a driver
(e.g., gender, age, and personality) collected from the cloud,
the vehicle’s system ensures the timely delivery of suitable
music according to different driver emotions. A location-
based method was designed in Ref. [185] that enables road
users to send and receive feedback on their driving behav-
iors through V2V communication. On the one hand, a driver
can express his appreciation and disapproval towards nearby
drivers about their polite and impolite driving behavior by
gestures. On the other hand, he can receive others’ evalu-
ations through audio and visual feedback. With the help of
a driving simulator, the system is demonstrated to exert a
positive influence on driving behaviors.

6.3 Regulation Scenarios

Experimental scenarios are particularly important for design,
verification, and validation efforts. Scenes in the real world
are infinitely rich, extremely complex, and unpredictable. It
is very difficult to reproduce these scenes entirely in a vir-
tual environment. Therefore, the key to realizing the test and
verification of the driving simulator is to use the limited test
scene to map the infinitely rich world. The elements of the
test scene include two parts: the elements of test vehicles
and the elements of the external traffic environment. The ele-
ments of the external traffic environment also include static
environment elements, dynamic environment elements, traf-
fic participants elements, and meteorological elements.

Most previous studies employed simulated scenarios to
regulate human emotions. In Table 8, highway was a com-
mon experiment scenario and some studies simulated the
highway scene to study visual intervention [143, 144, 148],
auditory intervention [166, 169, 174, 178, 181], vibration
intervention [152—155], and olfactory intervention [158,
159, 161, 162]. In addition, to make the scenario closer to
real driving, some studies designed the car following [149,
170], curves, intersections [145], urban roads [152], and traf-
fic signs, traffic lights, traffic density [166], traffic partici-
pants [171, 177] factors. Some researchers also conducted
simulated driving experiments in different time periods (i.e.,
morning, afternoon, and evening) [153, 178]. A small num-
ber of on-road studies have been carried out for emotion reg-
ulation. Some researchers chose country trails and highways
to study the effect of the visual intervention on the regulation
[146]. Others studied the effect of haptic regulation using
commuter routes that contain straights, curves, and traffic
signs [151]. In sum, researchers can choose highways, com-
plex urban roads, and simulated driving environments such
as weather and driving tasks according to specific require-
ments when designing scenarios.

6.4 Regulation Quality Analysis Method

The analysis methods for regulation quality mainly include
measurements and analysis. As shown in Table 8, driver
emotion regulation in CAVs is commonly measured using
self-report scales, driving behavior, and physiological meas-
urements such as heart rate and respiration. Self-report
scales are the most commonly used method to measure reg-
ulation quality, while some studies also investigate driving
behavior and physiological changes under different regula-
tion methods. The purpose of emotion regulation analysis is
to examine differences in regulation quality across different
regimens. Due to the different data distributions, existing
studies have adopted different data analysis methods. Most
studies have used ANOVA for quality analysis of emotion
regulation due to its efficiency in differences analysis. Post
hoc analysis is often performed after ANOVA to analyze dif-
ferences between different regulation schemes. Other studies
have used paired t-tests, independent-samples t-tests, main
effects analysis, and non-parametric tests for regulation qual-
ity analysis.

o Summary of human emotion regulation in CAVs: This
section discusses methods for in-cabin human emotion
regulation, V2X-based human emotion regulation, regu-
lation scenarios, and regulation quality analysis method.
In terms of emotion regulation schemes, the existing
research is reviewed from the aspects of visual regula-
tion, auditory regulation, tactile regulation, and olfactory
regulation. Existing studies mainly focus on the driver’s
single-modal emotion regulation, such as ambient light,
adaptive music, vibration and odor. Benefiting the devel-
opment of intelligent cockpit interaction technology in
CAVs, studies on multimodal emotion regulation schemes
for drivers and occupants are also potential.

7 Discussion and Perspectives

Human emotion is the main research direction in CAVs
development. To improve acceptance, safety, and comfort in
CAVs, an affective connected automated driving (ACAD) is
proposed based on the previously reviewed literature in this
paper. Figure 5 shows ACAD framework for human emotion
research based on the human-vehicle-road coupling process
in the context of CAVs. As shown, the proposed ACAD
framework consists of three main layers, namely the human
layer, the automated vehicle layer, and the road layer. The
human layer describes the human’s emotional generation
process and human behaviors in CAV. When the human
is in a specific situation and is stimulated by the context,
the human will have a cognitive appraisal for the current
situation. This cognitive appraisal will then lead to different
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emotional responses, including subjective experiences,
behavioral responses, and physiological changes that result
in different emotional states and human behavior in CAVs.

The automated vehicle layer presents three modules of
affectively automated driving, which are in-cabin human
emotion detection, driving context perception, and emotion-
based automated driving. In the in-cabin human emotion
detection, both the physiological and physical behavioral
data of the occupants is collected with multimodal sensor
systems in the cabin. The data-driven multimodal emotion
detection module output the emotion detection results based
on the multimodal sensing data processing and information
fusion. Meanwhile, in the driving context perception mod-
ule, the driving scenario information, including obstacle
positions, lane marks and vehicle states are perceived. While
serving as the important input of automated driving, the traf-
fic context is the key factor in inducing human emotions
for better inference. Last, in the emotion-based automated
driving module, the driving risk assessment will consider the
driving scenario information and the in-cabin human emo-
tion comprehensively. With the help of emotion detection,
risk assessment can be more advanced and precise. Based
on the risk, the decision-making can be generated by inte-
grating the traffic rules and emotion regulation rules, which
will further control vehicles according to different vehicle
actuation configurations and fed back to the driver according
to multimodal interaction interfaces, respectively.

The road layer includes vehicle communication with the
surroundings, online driver emotion detection, history data
collection, and the creation of emotion regulation strategies.
The vehicle communicates with the surrounding mainly con-
sisting of V2V, V2I, V2C and vehicle to pedestrian (V2P).
Online driver emotion detection includes data processing,
data fusion, and the output of driver emotion. The basic
biometrics, habitual driving behavior and other drivers’
information are stored in the history data. Besides, online
driver emotion detection and history data can be employed
to generate driver emotion regulation strategies for different
drivers to guide emotion-based automated driving. In sum,
the proposed ACAD framework will dynamically record
multimodal data for real-time emotion detection and further
produce adaptive emotion regulation strategies to improve
the affective interaction quality between humans and CAVs
and promote driving safety.

Possible future research directions of human emotion in
CAVs may consist of several aspects as follows:

7.1 Human Emotion Dataset in Driving
Over the past decade, the driver’s emotion datasets during

driving proposed by some researchers have greatly promoted
the research of human emotion detection in driving [9, 87,

@ Springer

186]. In the future, researchers still need rich and repeatable
experimental datasets. To collect a reliable human emotion
dataset in driving, the following issues should be considered.

e Driver emotion dataset: Induction: Since driving is a
complicated and long-lasting task, the intensity dura-
tion of the induced emotional state and the naturalness
degree of induction are essential to the dataset and have
a more significant impact on driving performance. Meas-
urements: The dataset should include high-quality meas-
urements of essential clues related to human emotional
experience and expression (face, speech, physiology,
behavior) while considering the low intrusiveness of the
measurement metrics, which may include some indirect
and non-intrusive indicators. Annotation and scenarios:
The dataset should include annotations of the driver’s
emotional states, and the dataset should consider the
driving scenario and duration, and collect data as much
as possible while driving the actual vehicle in real traf-
fic. Characteristics: The personality characteristics of the
participants, including age, gender, driving experience,
and driving style, should also be considered.

e Human emotion interaction dataset: In-cabin interaction
between occupants: Future datasets should consider in-
cabin interaction between occupants, as the emotional
component plays a major role in human-object interac-
tions in vehicles and interactions between occupants.
Driver interaction with other road users: Studying the
interaction behavior of humans with other road users
under emotion will help to study different driving strate-
gies for CAVs and improve driving safety. Interactions
between emotions and different states: Studying the inter-
action between human emotions and motion sickness,
load, and distraction in driving will help to improve the
emotional experience of intelligent mobile spaces. Inter-
action datasets should also consider factors of induction,
measurement, annotation, and characteristics.

7.2 Human Emotion Detection in CAVs

Human emotion detection in CAVs is a research field that is
increasingly growing in importance and attention. To stimu-
late research in this area, previous research is analyzed to
discuss some future research opportunities.

e  Multimodal driver emotion detection: Various measure-
ment methods and algorithms (physiology, behavior,
subjective scales) have been used in the field of driver
emotion detection. However, unimodal driver emo-
tion detection does not always accurately recognize the
internal state (e.g., facial expressions do not always map
exactly or via a simply fixed mapping onto the internal
state). A more comprehensive multimodal detection
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Fig.5 Framework of affective connected automated driving (ACAD)

method that combines multiple signals can better evalu-
ate driver emotions. Notably, real-time communication
of multiple sensors and fusion of metrics in an emotional
multimodal recognition environment is critical.

Facial anonymization in emotion detection: Facial
expression is commonly used in emotion detection
among current studies. However, this detection method
may cause a privacy leak in the future if implementing
such an emotion detection algorithm to the cabin. There-
fore, it will be important to balance facial anonymization
and important information when developing the algo-
rithm. Using a model, such as GAN network, to create a
virtual face might be a solution.

Occupants’ emotion detection: The studies on occu-
pants’ emotion detection is in progress. Some researchers
applied the algorithms that were developed for general
emotion detection to the occupants’ emotion detection.
Although the emotions of occupants might be similar
to the general emotions since there are no driving tasks
involved. However, further studies are needed to prove
the similarity between general emotion detection and
occupants’ emotion detection in the driving context.
Besides, considering the continuous characteristic of
human emotions, occupant emotion detection needs to be
discussed from dimensional emotion (valence, arousal,
dominance) in the future for CAVs.

Online driver emotion detection: At present, most
research for automatic emotion recognition in vehicles
is conducted by processing the data offline because dif-
ferent methods can be compared to a fixed set of data.
However, as more and more sophisticated sensors are
integrated into the vehicle, and a more massive amount
of data is collected in real-time, driver emotion detection
requires excellent storage space and computing functions
to support the data processing and fusion. Therefore,
V2X-based online driver emotion detection systems will
play an essential role in the future, which can effectively
leverage information when it is most needed.
Driving-context-based detection: Previous studies have
used experimental scenarios to trigger specific emo-
tions and assume that certain scenarios induce specific
emotional states, so it is crucial to identify the source or
events of emotional changes (e.g., turning, overtaking,
and road congestion). As current vehicles are increas-
ingly equipped with sensors that provide rich contex-
tual information, a more comprehensive driver emotion
detection method will improve their recognition perfor-
mance by considering the integration of the vehicle, the
driver and the environment.

Combine with cognitive appraisal: Cognitive appraisal is
essential for emotion generation. Neuroscience research
has shown that the generation of emotions is closely
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related to the activation of different regions in the brain.
Therefore, based on neuroscience research, the study
of the cognitive appraisal process may help emotion
researchers better detect driver emotions.

e Driver emotion detection in different cultures: Since dif-
ferent cultures have different expressions of emotions
(e.g., the expression of facial expressions differs between
East Asian and Western people), this circumstance needs
to be considered in driver emotion detection. According
to the different cultural backgrounds of drivers, different
methods should be explored to improve the accuracy of
emotion recognition.

7.3 Human Emotion Regulation in CAVs

The application of driver emotion regulation technologies
in the automotive industry field may appear on a large scale
within the next 5-10 years. Combined with the summary
in Section 6, several potential aspects of human emotion
regulation are discussed.

e Parameters emotion regulation: Since most of the current
studies work with prototypical interactions, making it not
easy to describe a specific displayed emotion regulation
effect clearly. Therefore, it is necessary to investigate
the emotion regulation effect of different parameters in
different displays (e.g., visual regulation: color, shape,
expression; tactile regulation: activation time, frequency,
intensity, or amplitude). Such outcomes will provide
automotive HMI practitioners with knowledge on how to
use different displays to design emotions in the vehicle.
Besides, the relationship between these parameters and
driving distraction should also be considered.

e  Multimodal emotion regulation: The driving context is
crucial to the study of emotion regulation. Unimodal
emotion regulation may be ineffective due to rapid
changes in driving scenarios (e.g., strong sunlight reflec-
tions can invalidate visual regulation; bumpy roads can
mask tactile regulation; noisy construction sites might
make auditory regulation be drowned out). Therefore,
the driver’s emotion regulation should be multimodal and
adapt to the context.

e Emotion regulation for different cultures and charac-
teristics: Because emotions are culturally sensitive, this
factor needs to be considered in the automotive HMI.
Also, drivers’ personality characteristics (e.g., extraver-
sion or introversion) and emotional regulation strategies
(reappraisal and suppression) preferences should also be
considered. According to different cultures and charac-
teristics of drivers, the corresponding emotional regula-
tion methods should be explored.

e Driver emotion regulation from the V2X: Because driver
characteristics play an important role in emotion regula-

@ Springer

tion, driver emotion regulation needs to consider a large
amount of historical characteristics data (e.g., human
driving habits, health history, and personalized prefer-
ences). By integrating the driver’s social background and
historical information collected from the V2X, the vehi-
cle’s emotion regulation system can ensure that appropri-
ate regulation strategies are provided in time according
to different driving contexts.

e Privacy: With the rapid development of CAVs, in future
scenarios, the vehicle will become a relaxed and social
interaction environment (e.g., a living room or a work-
place). How to respect the privacy of the occupants in the
vehicle while detecting and regulating emotions will be
a vital research topic.

8 Conclusions

Affective human-vehicle interaction in the intelligent
cockpit is a research field that is increasingly growing in
importance and attention with the development of CAVs.
To help motivate research in this field, this paper first
emphasizes the potential applications and related research
areas of affective human-vehicle interactions in CAVs, as
well as introduces the definition and classification of emo-
tions. This paper then summarizes the relationship between
different emotions and emotional expressions from four
aspects: facial expression, speech, body gesture, and phys-
iological changes. The paper also introduces the human
emotion experiment in driving by introducing the detailed
methodologies in experiment platform, induction, meas-
urement, and annotation. Moreover, this paper discusses
human emotion detection in CAVs by introducing the
detailed methodologies in in-cabin driver emotion detec-
tion, in-cabin occupant emotion detection, driving-context-
based driver emotion detection and V2X-based human
emotion detection. This paper also studies human emo-
tion regulation in CAVs consisting of in-cabin regulation
methods, V2X-based human emotion regulation, regulation
scenarios, and regulation quality analysis methods. Finally,
this paper proposed the ACAD framework and discusses
future trends from three aspects: human emotion dataset
in driving, human emotion detection in CAVs and human
emotion regulation in CAVs to improve acceptance, safety,
comfort and enjoyment levels for users CAVs.
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