
Vol.:(0123456789)

Automotive Innovation 
https://doi.org/10.1007/s42154-023-00252-1

Prefrontal Correlates of Passengers’ Mental Activity Based on fNIRS 
for High‑Level Automated Vehicles

Xiaofei Zhang1 · Chuzhao Li1,2 · Jun Li1 · Bin Cao3 · Junwen Fu4 · Qiaoya Wang5 · Hong Wang1 

Received: 6 August 2022 / Accepted: 20 July 2023 
© The Author(s) 2024

Abstract
With the spread adoption of artificial intelligence, the great challenges confronted by the intelligent safety concern-safety 
of the intended functionality has become the biggest roadblock to the mass production of high-level automated vehicles, 
notably arising from perception algorithm deficiencies. This paper focuses a cut-in scenario, dividing this scenario into 
low-risk and high-risk segments predicated on the kinetic energy field, and the mental activities of passengers on prefrontal 
cortex, are analyzed within these delineated segments. Two experiments are then conducted, leveraging driving simulators 
and real-world vehicles, respectively. Experiment results indicate that high risk may result in the passengers’ mental activity 
on prefrontal cortex change. This revelation posits a potential avenue for augmenting the intended functionality of automated 
vehicle by using passengers’ physiological state.

Keywords  Safety of the intended functionality · Functional near-infrared spectroscopy · Mental activity · High-level 
automated vehicles

Abbreviations
ADS	� Advanced driving system
BCI	� Brain-computer interface
fNIRS	� Functional near-infrared spectroscopy
GVT	� Global vehicle target
SOTIF	� Safety of the intended functionality

1  Introduction

The 94 % of critical crash was caused by human driver [1], 
and with the promise of safer transportation, highly auto-
mated driving vehicles are expected to avoid those crashes. 
However, accidents still occur involving high-level auto-
mated vehicles, which attracts increasing attention, and has 
become the biggest roadblock for the mass production. At 
present, functional deficiencies in perception algorithms 
constitute significant contributors to accidents, and under 
a triggering condition those functional deficiencies may 
cause safety of the intended functionality (SOTIF) [2, 3], 
which means the absence of unreasonable risk due to haz-
ards resulting from function insufficience of the intended 
functionality or reasonably foreseeable misuse by person, 
such as Tesla Tesla colliding with an overturned white truck 
misidentified as a white cloud. Humans are essentially a spe-
cial kind of sensor, and it is a meaningful thing to study 
human-in-loop decision-making based on humans’ states for 
overcoming perception algorithm function deficiencies and 
improving SOTIF.

In recent years, some studies based on human states 
for autonomous vehicles have been carried out, and some 
researchers point out that fNIRS-measured prefrontal activ-
ity may discriminate cognitive states in real life [4–8]. 
Yamamoto et al. [9] found that both the parietal association 

 *	 Hong Wang 
	 hong_wang@tsinghua.edu.cn

1	 School of Vehicle and Mobility, Tsinghua University, 
Haidian District, Beijing 100084, China

2	 National Elite Institute of engineering, Chongqing 
University, Shapingba District, Chongqing 401100, China

3	 School of Automation, Beijing Institute of Technology, 
Haidian District, Beijing 100081, China

4	 Department of Electrical and Computer Engineering, 
Carleton University, 1125 Colonel By Drive, Ottawa, 
ON K1S 5B6, Canada

5	 School Mathematics and Physics, Lanzhou Jiaotong 
University, Anning District, Lanzhou 730070, China

http://orcid.org/0000-0002-5127-2941
http://crossmark.crossref.org/dialog/?doi=10.1007/s42154-023-00252-1&domain=pdf


	 X. Zhang et al.

cortex and prefrontal area are activated when people are 
driving. Izzetoglu et al. [10] did an experiment, in which the 
relationship between driver’s behavior and cognitive meas-
ures observed by fNIRS is explored, and the preliminary 
results demonstrated that driving speed affected the increase 
in oxygenation levels in dual-task driving where positive 
correlations are observed. Geissler et al. [11] studied the 
mental workloads in city environment and country environ-
ment, which require distinct demands, and they proposed 
that the right middle frontal gyrus might be a suitable region 
for the application of powerful small-area brain-computer 
interfaces. Horrey et al. [12] explored the impact of task 
engagement on driving performance, and pointed out that 
the response time of the driver to braking events is longer 
in the interesting audio condition, and drivers showed a 
reduced concentration of cerebral oxygenated hemoglobin 
when listening to interesting material, compared to baseline 
and boring conditions. Balters et al. [13] provided a colli-
sion that fNIRS is suitable to detect the driver habituation 
that is present when drivers operate new automated driving 
systems.

Building upon the aforementioned research, it is evident 
that different driving tasks have an influence on the mental 
activity of driver, such as driving speed, driving environ-
ment and so on. Huve et al. [14] presented a brain-computer 
interface (BCI) that may analyze brain activity in real time 
and deduce the current driving mode, and with an average 
classification accuracy of 61.7% online, it shows the poten-
tial of using DNN-based classification of fNIRS signals in 
developing BCI for monitoring mental states. Le et al. [15] 
did a classification of the mental workload from a second-
ary task by using machine-learning method, and the predict-
ing accuracy on the testing data from the fNIRS data in the 
cases of subject-dependent classification is 96.8%. In previ-
ous study, the mental activities on prefrontal cortex, which 
is also our regions of interest, caused by different driving 
tasks have been discussed, online and offline classifications 
of fNIRS signal for monitoring mental states were analysed, 
but those works were all aimed at drivers. For high-level 
automated vehicles, human will serve as the role of passen-
ger, and the mental activities of passengers may be different 
from diver owing to the result that the passenger can not 
operate vehicle when he feel dangerous.

The objective of the current study is to analyze the pre-
frontal correlates of passengers’ mental activity caused by 
risk and explore the potential of using passengers’ fNIRS 
signals in developing BCI for improving SOTIF of high-
level automated vehicles. The structure of this paper is 
shown as follows: Sect. 2 provides an introduction to the 
methodology, Sect. 3 presents the results of the experiment 
analysis, and Sect. 4 encapsulates the conclusions drawn 
from the study.

2 � Methodology

fNIRS serves as a valuable tool for measuring cerebral oxy-
hemoglobin and deoxy-hemoglobin levels by directing spe-
cific wavelengths of light to the cerebral cortex. Each data 
acquisition channel of blood oxygen monitoring device is 
formed by an emitter and a receiver [16]. The intrinsic char-
acteristics of fNIRS equipment, including its non-invasive, 
safe, and portable nature, position it as an ideal choice for 
monitoring brain activity. Its robustness renders it suitable 
for application in real-world highway driving experiments. 
In this paper, the influence on passengers’ mental activity of 
prefrontal cortex resulted in risk is analyzed by comparing 
the difference of cerebral oxygen change on prefrontal cortex 
between low-risk segment and high-risk segment. The dia-
gram of this study is shown in Fig. 1. Firstly, a highway cut-
in pilot is designed, dividing the scenario into low-risk and 
high-risk segments based on Kinetic energy fields to assess 
the impact on passengers’ mental activity resulting from per-
ceived risk; Secondly, two experiments are conducted-one 
utilizing a driving simulator and the other involving an real-
world vehicle. The driving data and cerebral cortical activ-
ity data are temporally matched; Finally, the influence of 
passengers’ mental activity on prefrontal cortex due to risk 
is analyzed by comparing the difference of cerebral oxygen 
change on prefrontal cortex between low-risk and high-risk 
segments using t-test and Wilcoxon Signed Rank Test.

2.1 � Experiment Equipment

The specific device employed OctaMon+ is provided by 
Artinis, a Dutch company. The OctaMon+ equipment is 
equipped with eight emitters and two receivers. The blood 
oxygen monitoring device which was used in this study and 
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Fig. 1   The framework of this study
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its 3D model of this device are shown in Fig. 2. Measure-
ment region is located at the prefrontal cortex, the distance 
between two optodes is 30 mm, and the sampling frequency 
is 50 Hz. A head attachment is placed so that the center of 
the front row is 3.5 cm above the nasion. During the attach-
ment of probes, careful adjustments are made to apply mini-
mal pressure to the skin surface.

In order to analyze the passengers mental activity of pre-
frontal cortex resulted in risk, we built a signal acquisition 
system. This signal acquisition system contains Matlab/Sim-
ulink module, Python module and OxySoft Software, they 
can record vehicle states which may be used to build risk 
field, participant states, and the cerebral oxygen exchange 
data of passenger, respectively, and time error can be con-
trolled within 10 milliseconds.

2.2 � Kinetic Energy Field

Kinetic energy field is a safety indicator [17, 18], reflecting 
the potential danger level within a driving scenario. It is 
mathematically represented in Eq (1). The kinetic energy 
field [19] involves relative longitudinal distance, relative 
speed. Those information is related to time to collision and 
enhanced time (TTC) to collision [20], so there is a relation-
ship between the kinetic energy field and TTC. In this paper, 
the segments where Ev > 0.05 are considered as a high-risk, 
and while the others are deemed low-risk.

where k1, k2,G are three constants, M2 indicates target vehi-
cle mass, r indicates the distance between target vehicle and 
ego vehicle, v2 represents target vehicle speed, R2 is road 
friction coefficient, and �2 indicates the angle between r and 
v2.

(1)Ev =
GR2M2

rk1

rk1

|rk1 |
e[k2v2 cos(�2)]

2.3 � Data Processing Process

In this paper, the data processing process is shown in Fig. 3, 
and it can be divided into two parts: data preprocess and 
data analysis. In data preprocess part, kinetic energy field 
and cerebral oxygen exchange △TH are aligned by time; in 
data analysis part, scenario is divided into a low-risk seg-
ment and a high-risk segment based on a splits point, the 
△TH during low-risk segment and high-risk segment are 
analyzed based on mean value and statistics theory for find-
ing the influence on passengers mental activity of prefrontal 
cortex resulted in risk.

2.3.1 � Data Preprocessing

Firstly, oxy-haemoglobin concentration changes ( △HbO ) 
and deoxy-haemoglobin concentration changes ( △HB ), 
which are obtained by blood oxygen monitoring equipment 
based on fNIRS, are processed with Homer3. It contains 
three steps: (1) Raw data is collected by Oxysoft3.4.9x64; 
(2) Raw data format is convert to snirf format by the MAT-
LAB tool package “oxysotf2matlab”; (3) Intensity data is 
converted to △HbO and △HB using Homer3. It contains 
filtering operation and operation removing motion artifact 
operation. Motion artifacts are rectified by correlation-based 
signal improvement algorithm [21],and a bandpass filter 
(0.015–0.085 Hz) is used to remove respiration, heart rate, 
blood pressure fluctuations, Mayer waves noises, and others 
noises.

(a) Blood oxygen monitoring device (b) The 3D model of OctaMon+

Fig. 2   Experimental device and its 3D model
Deoxy-haemoglobin

concentration

change

Oxygenated

hemoglobin

concentration change

Kinetic energy

field

∆TH Split point

Mean value and t-test

The influence on passengers mental activity resulted in cut-in 

scenario

High-risk segmentLow-risk segment

D
g

nissec
or

p ata

hmrR_PruneChannels (dRang:0.01-
1;SNRthresh:2;Sdrange:10.0,45.0)

hmrR_MotionArtifactByChannell(tMtion:0.5;tMask:1.0;
STDEVthresh:5.0;AMPthresh:0.05)

Bandpass_Filter_OpticalDensity(hpf:0.015,lpf:0.085)
hmrR_OD2Conc(ppf:1.0,1.0)

hmrR_MotionCorrectCbsi(turnon:1)

hmrR_PruneCorrectWavelet(iqr:1.50,turnon:1)

hmrR_Intensity2OD

D
at

a 
an

al
y
si

s
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Secondly, an index is chosen to indicate mental activity. 
Previous studies have shown that △TH is an effective index, 
which may indicate mental activity [22–24], and it equals to √
2 times of the difference between △HB and △HbO . In 

this paper, passengers’ mental activity is analyzed by com-
paring the difference in △TH on the prefrontal cortex of 
passengers between low-risk and high-risk segments.

Finally, kinetic energy field and △TH are aligned by 
time, then a scenario is divided into a low-risk segment and 
a high-risk segment. In this paper, for ease of description, 
the time corresponding to the low-risk segment is termed the 
"window time," and results from different window times are 
analyzed successively.

2.3.2 � Data Analysis

The low-risk segment and high-risk segment represent 
distinct phases, where the mean value of the risk field in 
the high-risk segment is systematically contrasted with the 
mean value in the low-risk segment across various window 
times. Additionally, to discern the characteristics of passen-
gers’ mental activity influenced by risk, t-test and Wilcoxon 
Signed Ran are performed on the mean values of △TH in 
low-risk and high-risk segments. The data processing is car-
ried out using MATLAB 2020.a, Python 3.8.8, and SPSS 
25.0.

3 � Experiments Analysis Results

The high complexity of advanced driving systems (ADS) 
and the associated costs of real-world testing have led to a 
substantial increase in test efforts for practical scenarios. 
Scenario based methods play a crucial role in the verification 
and validation processes of ADS, Reference [25], provides 
a comprehensive survey of various approaches and methods 
for scenario generation and evaluation in ADS testing and 
validation. Notably, three common single-car scenarios-
cut-in, cut-out, and emergency braking-were investigated. 
Specifically, this paper focuses on investigating the prefron-
tal correlates of passengers’ mental activity during a cut-in 
scenario. Simulation and real-world vehicle experiments 
have been conducted. The simulation experiment, involv-
ing twenty participants, examine the impact of scenario risk 
on passengers’ prefrontal cortex activity. The results from 
the simulation experiment are utilized to assess the impact, 
while the findings from the real-world vehicle experiment 
serve to validate the conclusions drawn.

The participants are volunteers who provided informed 
consent after a thorough explanation of the tasks involved. 
Participants are explicitly informed of their option to with-
draw from the experiment at any point without facing 
any penalties. The study adhered to the principles of the 

Declaration of Helsinki and received approval from the 
Institutional Review Board of Tsinghua University, China. 
(Approval number: 20210102).

3.1 � Simulation Experiment Introduction

This simulation experiment is performed in a driving simu-
lator and a signal acquisition system based on hardware-
in-loop equipment. The experiment process, as depicted in 
Fig. 4, involved participants sitting in the driving simulator, 
focusing on front scenarios. On sensing danger or hearing 
a stimulating sound, he/she was only required to press the 
keyboard. Those scenarios are established based on virtual 
test drive Software, and contains cut-in scenario and some 
other scenarios 13 kinds scenarios. The ego vehicle in this 
cut-in scenario is set at 72 km/h, and the target vehicle at 
40 km/h. When the distance between target vehicle and ego 
vehicle is 25 m, target vehicle would cut in from left lane. 
Twenty-five scenarios are randomly selected from those 14 
kinds scenarios, and make up a simulation scenario, which 
lasts approximately 13 min. Within in initial 1000 ms of this 
simulation scenario, no events occur to prompt participant 
entry states. Each participant need to complete 12 simula-
tion experiments. There are total 28 data of blood oxygen 
monitoring device about this cut-in scenario may collected 
for each participant.

3.2 � Simulation Experiment Result

Twenty participants completed the assigned task. The group 
consisted of 5 females (with a mean age of 24.73, ranging 
from 21 to 41) and 15 males (with a mean age of 34, rang-
ing from 25 to 46). Among these participants, 7 had valid 
driving experience. Fifty-three results were excluded due 
to data recording errors, leaving a total of 506 valid data 
points for analysis. The p values of t-test for the mean values 
of △TH between low-risk and high-risk segments, and the 
mean values of kinetic energy field are presented in Fig. 5. 
In this context, L denotes low-risk segment, H denotes high-
risk segment and p signifies the associated probability.

Across all five window times, the mean values of the 
kinetic energy field are consistently higher in the high-risk 

(b) Scenario(a) Participant

Fig. 4   The simulation experiment process and scenario information
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segment compared to the low-risk segment, and it indicates 
that the division mode of cut-in scenario is effective. The 
t-test results show that within 5 s, the p from t-test for △TH 
between low-risk and high-risk saller than 0.1. This signifies 
that the null hypothesis is rejected at the 10% significance 
level, indicating a significant difference in passengers’ men-
tal activity in the prefrontal cortex between low-risk and 
high-risk segments.

3.3 � Real‑World Vehicle Experiment Introduction

This real-world vehicle experiment is performed on the 
dedicated road for intelligent connected vehicles at experi-
mental base1 in Chongqing, China, and it is shown in Fig. 6 
in which it includes a real cut-in scenario and a virtual 
diagram. This experimental base is owned by Automotive 
Engineering Research Institute Co., Ltd, located in Dazu 
District, Chongqing. This experimental base comprises a 
dynamic square and a dedicated road for intelligent con-
nected vehicles.

In those experiments, automotive drive platform (ADP) 
is used for building a cut-in scenario. The ADP, provided by 
CAERI Intelligent Connected Technology Co., Ltd., com-
prises an inertial navigation system, a driving robot, a com-
munication module, and a Global Vehicle Target (GVT), and 
it may obtain the motion parameters and relative parameters 
of ego vehicle and target vehicle, including speed, accelera-
tion, relative longitudinal distance, relative lateral distance, 
relative speed, and more.

GVT is driven by power, and people can control its tra-
jectory. In this experiment, it is used to play the role of one 
target vehicle. When ego and GVT achieve a constant speed 
and relative distance, GVT will cut in from the left lane.

3.4 � Real‑World Vehicle Experiment Result

In these experiments, the participant, who sits in the driv-
ing position, plays the role of passenger, and does not need 
to operate the high-level automated vehicles. Blood oxygen 
monitoring equipment is attached to the participant’s fore-
head in a way allowing for measuring concentration changes. 
This scenario inherently carries risks, with 9 group tests 
conducted for a 23-year-old male participant.

In real-world vehicle experiment, the Wilcoxon Signed 
Rank Test is used to analyse the difference in cerebral oxy-
gen exchange between low-risk and high-risk episodes with 
small sample sizes. p indicates probability, when p < 0.1 
means that the test rejects the null hypothesis at the 10% 
significance level, and there are significant difference. The 
results of these experiments are shown in Fig. 7. L represents 
low-risk segment, and H represents high-risk segment.

The p values obtained from t-test or Wilcoxon Signed 
Rank Test for the mean values of △TH between low-risk 
and high-risk segments in five window times are all below 
0.1. This indicates a significant difference between low-risk 
and high-risk segments. Furthermore, the mean values of 
the kinetic energy field in high-risk segments consistently 
exceed those in low-risk segments across the five window 
times.

Based on the results of simulation experiments and real-
world vehicle experiments, the following two conclusions 
may be acquired: (1) For simulation experiment and real-
world vehicle experiment, the p values of t-test or Wilcoxon 
Signed Rank Test all less than 0.1, and it indicates that there 
are obvious difference of the passengers’ mental activities on 
prefrontal cortex between low-risk and high-risk segments.
(2) For real-world vehicle experiment, the change trend of 
the kinetic energy field in five window times differs from 
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1  https://www.i-vista.org/
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that observed in the simulation experiment. This disparity 
is attributed to distinct criteria for delineating low-risk and 
high-risk segments. In simulation experiment, the segment 
in which Ev > 0.05 is considered as a high-risk segment, 
and otherwise it is considered as a low-risk segment. In real-
world vehicle experiment, the front half segment is consid-
ered as a high-risk segment, and the latter half segment is 
considered as a low risk segment.

4 � Conclusions

For high-level automated vehicles, functional deficiencies 
in robustness and logical completeness may caused SOTIF. 
Humans, in the role of passengers, can be seen as special 
sensors. The mental activities of passengers may differ from 
those of drivers in SOTIF scenarios because passengers can-
not intervene to control the vehicle when they perceive dan-
ger. It is worth noting that existing studies predominantly 
concentrate on drivers rather than passengers.

In this study, two experiments were conducted, utilizing 
driving simulator and real-world vehicle respectively. t-test 
and Wilcoxon Signed Rank Test are employed to analyzed 
the disparity in △TH between low-risk and high-risk seg-
ments within a cut-in scenario aiming to assess the impact 
on passengers’ mental activity resulted in risk.

Drawing from the findings of both simulation and real-
world vehicle experiments, it becomes evident that risk 
exposure can indeed alter passengers’ mental activity on 
prefrontal cortex. This alteration can be discerned through 
the analysis of △TH using fNIRS, and it offers a promising 
avenue for implementing passenger-in-loop decision-mak-
ing. By leveraging passengers’ states mechanisms, such as 
the △TH on prefrontal cortex, combined with reinforce-
ment learning techniques, it becomes feasible to address the 
function deficiencies of perception algorithms and improve 
SOTIF.
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