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Abstract
In multi-stage press hardening, the product properties are determined by the thermo-mechanical history during the sequence 
of heat treatment and forming steps. To measure these properties and finally to control them by feedback, two soft sensors 
are developed in this work. The press hardening of 22MnB5 sheet material in a progressive die, where the material is first 
rapidly austenitized, then pre-cooled, stretch-formed, and finally die bent, serves as the framework for the development of 
these sensors. To provide feedback on the temporal and spatial temperature distribution, a soft sensor based on a model 
derived from the Dynamic mode decomposition (DMD) is presented. The model is extended to a parametric DMD and 
combined with a Kalman filter to estimate the temperature (-distribution) as a function of all process-relevant control vari-
ables. The soft sensor can estimate the temperature distribution based on local thermocouple measurements with an error 
of less than 10 °C during the process-relevant time steps. For the online prediction of the final microstructure, an artificial 
neural network (ANN)-based microstructure soft sensor is developed. As part of this, a transferable framework for deriving 
input parameters for the ANN based on the process route in multi-stage press hardening is presented, along with a method 
for developing a training database using a 1-element model implemented with LS-Dyna and utilizing the material model 
Mat248 (PHS_BMW). The developed ANN-based microstructure soft sensor can predict the final microstructure for specific 
regions of the formed and hardened sheet in a time span of far less than 1 s with a maximum deviation of a phase fraction 
of 1.8 % to a reference simulation.
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Abbreviations
ANN  Artificial neuronal network
BDC  Bottom dead center

DC  Direct current
DMD  Dynamic mode decomposition
FEM  Finite element method
SVD  Singular value decomposition
TDC  Top dead center

1 Introduction

Press hardening of sheet metal in multi-stage dies allows 
for the production of geometrically complex, hardened 
components in large batch sizes [1]. For example, the hot 
shearing and hardening of automotive seat belt buckles [2] 
and gear parts [3] can be implemented in progressive dies. 
However, even in conventional single-stage press harden-
ing, predicting the thermal and mechanical interactions, and 
thus the resulting product properties, is challenging. Achiev-
ing zero defect production remains a major challenge [4]. 
In the case of multi-stage press hardening, the modeling 
effort required to determine a functional process window 
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increases considerably [5], and greater uncertainties in the 
prediction of product properties are given by a multi-step 
error propagation and an extended disturbance collective. 
Sources of disturbance include measurement uncertainties 
of sensors, actuator errors, a variance in the properties of the 
semi-finished product (e.g. the sheet thickness), and model 
errors. To compensate for these uncertainties as well as the 
disturbances and thus implement robust production, closed-
loop control can be added to forming processes [6].

First approaches to control spring back [7] or strength [8] 
in multi-stage hot sheet bending in a progressive die have 
already been developed. However, the implementation of a 
comprehensive property control in multi-stage press harden-
ing, i.e., a multivariable control of hardness and geometry 
features, is still missing. Controlling the product properties 
requires that the latter are accessed online and fed back dur-
ing the ongoing process. However, in-situ measurement of 
properties such as hardness has so far been possible only to a 
limited extent in such forming processes. For example, with 
the established 3MA sensor [9], which evaluates micro-mag-
netic effects such as Barkhausen noise, hardness measure-
ments can only be carried out after the formed component 
has cooled down. This results in undesirably long idle times 
when such a sensor is utilized for closed-loop control. Even 
the in-situ measurement of the spatial and temporal tempera-
ture distribution is a challenge itself because in the closed 
die the temperature can only be recorded at isolated meas-
uring points. To date, the temperature distribution is meas-
ured with thermal imaging cameras before the die is closed 
and after it is opened to estimate whether sufficient cooling 
below the martensite finish temperature was achieved [10]. 
The latter, however, does not provide any information on 
the exact spatial–temporal temperature profile in the sheet, 
which is particularly important for predicting mixed micro-
structures for tailored components.

With a so-called soft sensor, a model processing repre-
sentative measurement variables can be used to infer a target 
variable [11], which may not be directly measurable with 
conventional measurement methods. Bambach et al. [12] 
developed an artificial neural network-based soft sensor for 
property control in close-die forging, which estimates the 
grain size evolution in the workpiece dependent on tempera-
ture measurements and other forming parameters. Stebner 
et al. [13] designed a soft sensor for property control in free-
form bending relying on an extended Kalman filter capable 
of predicting local strength and residual hoop stress based 
on inline hardness measurements.

In the context of this work, the development of soft sen-
sors for the determination of the spatial and temporal tem-
perature distribution as well as for the determination of the 
final microstructure are presented. The underlining goal is 
to contribute to the implementation of property-controlled 
multi-stage press hardening by providing suitable sensors. 

First, in Sect. 2 the underlying multi-stage press hardening 
process and the general control concept are explained. Then, 
in Sect. 3, a temperature soft sensor is developed based on 
the dynamic mode decomposition. Subsequently, in Sect. 4, 
the development of a microstructure soft sensor based on 
an artificial neural network is presented. Additionally, in 
Sect. 5, a short motivation is given on how the output of the 
developed sensors can be further utilized.

2  Demo Process and Control Concept

To establish a property control mechanism, multi-stage 
press hardening in a progressive die (refer to Fig.  1), 
which is installed in a servo press, is set to be the frame-
work. The overall aim is to control the product proper-
ties based on the microstructure, such as hardness, while 
simultaneously keeping the geometry constant. The mate-
rial used is uncoated 22MnB5 slit strip with a cross-section 
of 2 × 200 mm and the chemical composition is given in 
Table 1. A microstructural analysis of the material according 

Fig. 1  Demo process with control loop, control variables, soft sen-
sors, and product properties for property-controlled multi-stage press 
hardening in the progressive die
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to DIN EN ISO 643:2013.05 indicates that the base material 
consists of 70% ferrite, 22% sorbite, 5% pearlite, and 3% fine 
carbides. The average ferrite grain size GF is 12 μm.

During the initial forming stages of the unillustrated pro-
gressive die, the slit strip is pre-cut into rectangular blanks 
(with dimensions of W × L: 60 mm × 140 mm), which are 
connected to the remaining material for a transfer through 
the die. In the first stage under consideration for property 
control, the blank is inductively heated to the austenitizing 
temperature Tγ. For this purpose, a two-part coil arrange-
ment [14] is built into the progressive die, which allows the 
sheet blank to be heated to the austenitizing temperature, 
while the ram is at the bottom dead center (BDC) at a heat-
ing rate rh of 300 K/s to ensure sufficient stroke rates. In 
conventional press hardening, the blanks are heated to aus-
tenitizing temperatures between 870 °C and 950 °C in the 
furnace. Due to the high heating rates presented above, the 
AC3-temperature increases [15], hence, austenitizing temper-
atures above 1000 °C are required to achieve a completely 
homogeneous austenitization while maintaining short hold-
ing times. In the second stage, known as the pre-cooling 
stage, a temperature profile is set along the length of the 
blank using flat fan nozzles, which partially cool the blank 
with compressed air, and a DC power source, which partially 
maintains or raises the sheet temperature through resistance 
heating. This allows the temperature-dependent flow of the 
material in the subsequent stages as well as the initial ther-
mal history to be pre-controlled. In the third stage, the first 
forming stage, a hat-shaped profile is stretch-formed. During 
stretch-forming, the blank holder force FBH can be adapted 
for setting the sheet indentation E and thus the thickness 
distribution s. Finally, during die bending, one side wall 
of the hat-shaped profile is bent and the resulting profile 
is calibrated. In both stretch forming and die bending, the 
formed blank is quenched by contact with actively cooled 
dies during the holding phase of the ram at BDC. The hold-
ing time at BDC is scaled by adjusting the stroke rate fSR 
(with constant punch speed) of the servo press, thus the total 
amount of transmitted thermal energy during the multi-stage 
process is altered.

During the process, the temperature is measured at dif-
ferent spots using thermocouples installed in the dies and 
with pyrometers. In addition, the temperature distribution 
in the sheet is recorded by a thermal imaging camera during 

transport with the dies open with the ram at the top dead 
center (TDC) position. The measured temperature (distribu-
tion) is evaluated by a cascade of soft sensors, which predict 
the product properties on this basis. The latter are compared 
with predefined target properties so that the process control 
adjusts the process control variables (fSR, Tγ, temperature 
profile in the second stage, FBH) accordingly.

The soft sensor cascade starts with a temperature soft sen-
sor, employing a model-based state observer). This sensor 
predicts the temporal and spatial temperature distribution 
using data from temperature sensors. The model used for 
the temperature soft sensors is elaborated in Sect. 3. Based 
on the temperature distribution, the strain distribution in the 
formed sheet is calculated. The latter is not discussed in this 
paper. However, it should be noted that for efficiently cal-
culating plasticity, a data-based model, employing a similar 
approach as described in Sect. 3, could be selected. Addi-
tionally, Lafarge et al. [16] presented the development of an 
artificial neural network that could be employed. Finally, by 
considering the temperature and plasticity calculations, the 
final microstructure is predicted (see Sect. 4), serving as the 
foundation for determining the product properties.

3  Temperature Soft Sensor Based 
on Dynamic Mode Decomposition

In order to determine the temperature distribution T(θ,x,t) 
in the sheet across all tool stages of the progressive die for 
different sets of process parameters θ, a multi-stage process 
is simulated using the finite element code LS-Dyna (solver: 
R12.0.0). The modeling approach for each process stage 
follows the setup detailed in Sect. 4.4. The meshed blank, 
in which the spatial positions of nodes change over time, 
is depicted in Fig. 2. The left side of the figure shows the 
mesh of the undeformed blank at the start of the process 
and the right side depicts the mesh at the end of the forming 
process. Gray nodes indicate positions for fixture elements, 
which are irrelevant to the forming process. On the other 
hand, the red and green nodes are crucial. For simplicity, 
only the temperatures of the green nodes are considered in 
the subsequent analysis, as the temperatures exhibit minimal 
changes in the x-direction.

Table 1  Chemical composition 
of the 22MnB5 slit strip 
according to the melt analysis

Element Fe Mn Si Cr C Al
(wt%) 97.935 1.13 0.33 0.27 0.19 0.036
Element Ni Ti Cu P Mo N
(wt%) 0.03 0.028 0.02 0.01 0.004 0.0037
Element As S B V Sn Nb
(wt%) 0.003 0.003 0.0023 0.002 0.002 0.001



355Soft Sensors for Property-Controlled Multi-Stage Press Hardening of 22MnB5  

1 3

With these data, in Sect. 3.1 a reduced order system model 
using dynamic mode decomposition (DMD) is derived. This 
model is further extended to a parametric DMD in Sect. 3.2, 
and subsequently, a temperature estimator is developed in 
Sect. 3.3. The methodology described in Sects. 3.1 to 3.3 
can be applied in a similar manner to the temperature output 
of other finite element programs. For consistency with the 
other developments presented in Sect. 4, LSDyna is selected 
in this study.

3.1  Dynamic Mode Decomposition

The DMD is a data-driven model order reduction technique 
that extracts the most important dynamic characteristics 
from measured or simulated data [17]. It also determines a 
linear model for the temporal evolution of these modes. For 
the actual evaluation, simulated data is used, which is sum-
marized in the data vector TSim(tk), collected at discrete time 
points tk = (k − 1) ∆t with k = 1,2,…m. TSim(tk) denotes the 
sampled temperatures obtained from the detailed LS-Dyna 
simulation at the n = 119 most relevant (marked in green) 
nodes of the sheet metal, as shown in Fig. 2, passing through 
the three consecutive processing stages: 2 (pre-cooling), 3 
(stretch-forming), and 4 (die bending), as depicted in Fig. 1. 
Figure 3 illustrates the evolution of temperatures TSim (tk) at 
the nodes marked in green for one set of parameters, dem-
onstrating the range of histories.

X1 = [TSim(t0) TSim(t1) … TSim(tm-2)] ∈ ℝn×(m−1) and 
X2 = [TSim(t1) TSim(t2)…TSim(tm-1)] ∈ ℝn×(m−1) are the snap-
shot matrices, which are required for the DMD algorithm. 
The processing time te and the sampling time ∆t determine 
the number of time steps m = te/∆t. The DMD assumes that 
TSim(tk) and TSim(tk+1) are approximately related by a linear 
operator A ∈ ℝn×n, which yields T(tk+1) ≈ A T(tk) with the 
DMD state vector T(tk). This is equivalent to X2 ≈ AX1 in 
terms of the snapshot matrices. A least-squares solution A 
is obtained by the minimization of the Frobenius norm of 
|X2 − AX1|, which leads to A = X2X1

†. Here, X1
† is the pseu-

doinverse of X1, which can be calculated efficiently using 
the singular value decomposition (SVD). Furthermore, a 

reduced-order representation Ar of A can be determined 
this way. The rank-r truncated DMD is calculated with the 
following steps [17]:

(1) The rank-r truncated SVD X1  ≈  UrSrVr
* with 

Ur ∈ ℂn×r, Sr ∈ ℂr×r and Vr ∈ ℂm×r is evaluated, where ∗ 
denotes the complex conjugate transpose.

(2) The matrix A is determined using the SVD with 
A = X2X1

† ≈ X2 VrSr
−1Ur

* = Ā. This gives T(tk+1) = Ā T(tk) to 
approximate the evolution of the temperature (state) vectors.

The linear transformation Tr(∙) = Ur
* T(∙) with Tr ∈ ℝr for 

r ≪ n is introduced to obtain

w i t h  t h e  r e d u c e d  o r d e r  d y n a m i c  m a t r i x 
Ar = Ur

*ĀUr = Ur
*X2VrSr

-1.
(3) The eigenvalues of Ā are summarized in the diago-

nal matrix Λ, which is derived via the eigendecomposition 
ArW = WΛ. The related eigenvectors, the DMD modes, are 
determined by the columns of Φ = X2VrS− 1W.

The discrete-time eigenvalues λk are transformed to con-
tinuous time ones with ωk = ln(λk)/∆t [17]. The approximate 
solution of Eq. (1) for any time t is then given by

With the DMD modes Φ, the diagonal matrix Ω with 
eigenvalues ωk, and the vector b = Φ†T(0).

The sampling time ∆t = 0.01  s and truncation rank 
r = 50 are chosen to obtain numerical stability of the 
reduced order system taking into account the work of 
Ref. [18]. The results depicted in Fig. 4 are achieved by 
simulating the DMD model via Eq. (2). In Fig. 4 (top) 
the time evolution of the average temperature of all nodes 
mean(T) = 

∑n

i=1
Ti∕n is given. The difference between the 

DMD and the full model (Sim.) is small. The temperature 
difference ΔT =|T-TSim| between DMD and the full model, 
given in Fig. 4 (bottom), indicates low values compared 

(1)Tr(tk+1) = ArTr(tk)

(2)T(t) ≈ ΦeΩtb

Fig. 2  Mesh before (left) and mesh at the end of the forming process 
(right)

Fig. 3  Temperature evolution in green nodes over the three simulated 
stages at one specific parameter set
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with the absolute temperature. The average difference over 
all nodes mean (ΔT) = 

∑n

i=1
ΔTi∕n has a maximum value 

of 20 °C, which occurs at the stage changes, where the 
knowledge of the exact temperature is not necessary for 
estimation during the forming process. The maximum dif-
ference over all nodes max (ΔT) behaves similarly with 
higher values of up to 60 °C.

With regard to the real-time application of the models 
for state estimation, the respective simulation times are 
relevant. It is important to assess the advantage offered 
by the DMD model by comparing the simulation times 
of the process simulation with LS-Dyna and DMD. The 
simulation of the LS-Dyna model lasts 16 to 20 h, while 
the DMD model completes the simulation in just 70 ms.

3.2  Parametric DMD

This model generation approach needs to be extended 
to incorporate a parametric DMD method, allowing for 
different parameter configurations of the stroke rate fSR, 
the blank holder force FBH, and the austenitization tem-
perature Tγ. One parametric DMD method is the stacked 
DMD algorithm [19]. In this method, the time series solu-
tions for different parameter values are “stacked” to form 
extended snapshot matrices X1,µ, and X2,µ in Eq. (3). These 
matrices contain vertically stacked time series for N = 7 
parameter realizations, represented as µ = [µ1,µ2,…,µN]T 
for the multistage forming process. The stacked matrices 
are

The N = 7 realizations, as summarized in Table 2, encom-
pass a range of process or control variables, namely the 
stroke rate fSR, the blank holder force FBH, and the austeni-
tization temperature Tγ. These variables are then combined 
into a tuple θ = (fSR,FBH,Tγ), where each element is expected 
to satisfy the following constraints: 6  min−1 ≤ fSR ≤ 8  min−1, 
5 kN ≤ FBH ≤ 40 kN, and 1000 °C ≤ Tγ ≤ 1100 °C.

The previously summarized DMD algorithm is then 
applied using these matrices of stacked snapshots, which 
yields the parametric projected DMD modes Φµ in Eq. (3). 
For any new parametric realization θ, the projected DMD 
modes Φ(θ) are obtained through Lagrangian interpolation 
between the Φµ,j, j = 1,…, N matrices. The approximate solu-
tion of the temperature distribution for any given time t is

The different parameter configurations lead to different 
temperature developments. The mean temperatures across all 
nodes mean (T) for five different stroke rates fSR are depicted 
in Fig. 5 (top). The blank holder force is set to FBH = 20 kN, 
and the austenitization temperature to Tγ = 1050 °C. While 
the temperature evolutions for fSR = 6  min−1, fSR = 7  min−1, 
and fSR = 8  min−1 are obtained from the conventional DMD, 
fSR = 6.5  min−1 and fSR = 7.5  min−1 are derived by the para-
metric DMD using interpolation (ip.). A higher stroke rate 
fSR speeds up the process, resulting in shorter process times 
te and higher temperatures at the end of the process.

The middle illustration of Fig. 5 shows the mean tempera-
tures mean (T) for five different blank holder forces FBH with 
fSR = 7  min−1 and Tγ = 1050 °C. FBH = 5 kN, FBH = 20 kN, 
and FBH = 40 kN are derived by conventional DMD, while 
FBH = 10 kN and FBH = 30 kN are interpolated from the 
parameter configurations in Table 2. A higher blank holder 
force FBH reduces the average temperature in the stretch-
forming stage. In the die-bending stage, this difference 

(3)X1,� =

⎡
⎢⎢⎢⎢⎣

X1,�1

X1,�2

⋮

X1,�N

⎤
⎥⎥⎥⎥⎦
,X2,� =

⎡
⎢⎢⎢⎢⎣

X2,�1

X2,�2

⋮

X2,�N

⎤
⎥⎥⎥⎥⎦
, and�� =

⎡
⎢⎢⎢⎢⎣

��1

��2

⋮

��N

⎤
⎥⎥⎥⎥⎦

(4)T(�, t) ≈ Φ(�)eΩtb(�)

Fig. 4  Comparison of LS-Dyna simulation results with the derived 
DMD model

Table 2  Parameter sets µi for i = 1,…, N 

i fSR (1/min) FBH (kN) Tγ (°C)

1 6 20 1050
2 7 20 1050
3 8 20 1050
4 7 5 1050
5 7 40 1050
6 7 20 1000
7 7 20 1100
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remains constant. Five different austenitization temperatures 
Tγ = 1000 °C, Tγ = 1050 °C, Tγ = 1100 °C, and the interpo-
lated Tγ = 1025 °C and Tγ = 1075 °C are depicted in Fig. 5 
(bottom). The austenitization temperature Tγ is the only 
parameter that affects the starting temperature. The differ-
ence becomes smaller as the process progresses.

To evaluate the functionality of the parametric DMD, the 
resulting temperature evolutions of two-parameter configu-
rations differing from the ones used for the interpolation 
(see Table 2) are simulated using Eq. (4) and are compared 
with corresponding LS-Dyna simulations. The configuration 
with fSR = 7.5  min−1, FBH = 20 kN, and Tγ = 1050 °C, where 
the stroke rate fSR differs from the originally used param-
eter configurations, is depicted in Fig. 6 (top). The blue line 
represents the temperature difference averaged across all 
nodes’ mean (ΔT). It is negligibly small with maxima at the 
stage changes (transportation of the sheet) where the knowl-
edge of the exact temperature is not required as discussed 
in Sect. 3.1. The red line represents the maximum differ-
ence max (ΔT), which reaches values up to 80 °C, with an 
average of 30 °C. These differences are deemed acceptable 
in terms of absolute temperature. For configurations with 
more different parameters, the difference is also small. This 
is shown for fSR = 6.5  min−1, FBH = 30 kN, and Tγ = 1000 °C 
in Fig. 6 (bottom). The mean difference exhibits a compa-
rable pattern to the previous configuration. However, the 
maximum difference is smaller during the pre-cooling stage 

and reaches a higher maximum during the transition to the 
stretch-forming stage than in the previous configuration.

3.3  Design of the Temperature Estimator

The parametric DMD model, combined with the tem-
perature measurements y(tk), results in the discrete-time 
representation

with Tr(·) = Tr(θ,·) ∈ ℝr the reduced state vector and ini-
tial values Tr

0 at time t0 = 0  s. Note that the mapping 
T(θ,tk) = UrTr(θ,tk) ∈ ℝn gives the full temperature vector. 
The sampling time ∆t = tk+1 − tk = 0.01 s and the system 
matrix Ar(θ) ∈ ℝr×r are determined by the parametric DMD. 
The output matrix C(tk) ∈ ℝnsen×n for the full-order system is 
stage-dependent, which can be converted into a time-varying 
setting given the stroke rate fSR. It must be formed from 
the actual sensor configuration. As explained in Sect. 2, the 
temperature is measured by five spring-loaded thermocou-
ples installed in die stages. Each thermocouple measures 
the temperature in the sheet blank in one of the three stages, 
while the ram is near the bottom dead center. The tempera-
tures are read with an added thermal imaging camera and 
pyrometers at these positions, while the press is open. In the 
pre-cooling and the stretch-forming stages, the temperatures 

(5)
Tr

(
tk+1

)
= ArTr

(
tk
)
, k ∈ ℕ,Tr(t0) = T0

r

y
(
tk
)
= Cr

(
tk
)
Tr

(
tk
)

Fig. 5  Comparison of LS-Dyna simulation results with the derived 
DMD model for different settings of the control variables

Fig. 6  Difference between the average temperature evolutions 
obtained from the parametric DMD and those from LS-Dyna simula-
tions for different θ = (fSR, FBH, Tγ)
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are measured at nsen = 2 positions, and in the die-bending 
stage the temperature is measured only at nsen = 1 position. 
By applying the projection Cr(tk) = C(tk)Ur, the correspond-
ing reduced output matrix for Eq. (5) is obtained.

The estimator is set up in the simulator-corrector form

In particular, a discrete-time Kalman filter is designed 
to minimize the variance of the estimation error T̃
r(tk) = Tr(tk) − T̂r(tk) under the assumption of zero mean 
Gaussian process and measurement noise with covariances 
Q ∈  Rn×n and R(tk) ∈ Rnsen×

nsen [20]. The time-varying estima-
tor gain matrix

L(tk) = P(tk)Cr(tk)T(Cr(tk)P(tk)Cr(tk)T + R(tk))−1

with the matrix P(tk) obtained from solving the discrete-time 
algebraic Riccati equation

P(tk) = ArP(tk)Ar
T − (ArP(tk)Cr(tk)T)(R(tk)

+ Cr(tk)P(tk)Cr(tk)T)−1(Cr(tk)P(tk)Ar
T) + Q

In the following a comparison between the DMD model 
T(tk) and the DMD-based estimator T̂ r(tk) is exemplarily 
evaluated for θ = (8  min−1, 20 kN, 1050 °C). The estima-
tion error of the Kalman filter T̃ r(tk) for an initial value of 
T̂ r0 = Tr

0 + 10 °C 1, i.e., an initial deviation of 10 °C on all 
states, is depicted in Fig. 7. The average error mean ( ̃T ) 
across all nodes is small with maximums up to 3 °C, while 
the maximum error from all nodes max ( ̃T ) is slightly larger 
within an acceptable range. Both errors increase after the 
press is at the BDC in the stretch-forming stage as the tem-
perature changes fast at this time point.

With the developed estimator, it becomes possible to 
reconstruct the spatial–temporal temperature distribution 
on the sheet metal T(θ,t) for all relevant parameter con-
figurations θ. The error of the soft sensor emerges as the 
combined error of the DMD model and the Kalman filter. 

(6)

T̂
(
tk+1

)
= ArT̂r

(
tk
)
+ L

(
tk
)
(y
(
tk
)
− ŷ

(
tk
)
), k ∈ ℕ, T̂r

(
t0
)
= T̂

0

r
,

ŷ
(
tk
)
= Cr

(
tk
)
r
T̂
(
tk
)

The temperature distribution can be estimated based on 
local thermocouple measurements with a total error of 
less than 10 °C compared with the LS-Dyna simulation 
during the process-relevant time steps. The measurement 
uncertainties caused by the use of hardware sensors (ther-
mocouple, pyrometer, thermal imaging camera), which 
are not specifically addressed in this paper, can be taken 
into account by a disturbance estimator to improve over-
all accuracy in an application, as demonstrated by Klöser 
et al. [21].

4  Artificial Neuronal Network‑Based Soft 
Sensor for Microstructure Prediction

As the microstructure cannot be measured in situ with exist-
ing technologies during press hardening, it must be derived 
from representative measurement variables with a soft sen-
sor for the purpose of feedback. The nonlinear development 
of the microstructure makes a time-efficient control-oriented 
description by means of analytical calculations difficult. For 
this reason, an artificial neural network (ANN) is built as the 
basis for a predictive microstructure soft sensor. The meas-
urement variables (input) for this microstructure soft sensor 
are the thermal and mechanical history from the upstream 
soft sensors, as discussed in Sect. 2, on the basis of which 
the phase fractions of the final microstructure are then esti-
mated. In the first step, a parameterization of the input vari-
ables of the ANN is developed (Sect. 4.1). Subsequently, 
the construction of a training database (Sect. 4.2) and the 
ANN (Sect. 4.3) as well as a concept validation is presented 
(Sect. 4.4).

4.1  Parameterization of Thermal and Mechanical 
History

Each sheet element is subjected to a thermal and mechanical 
history during the process, on the basis of which the final 
microstructure evolves. The reduced parameterization of the 
histories (see Fig. 8) is presented in the following. For the 
purpose of simplification, dependencies of the microstruc-
ture evolution on the stress state are neglected and therefore 
not part of the parameterization. The time sequence of the 
stages and the characteristic shape of the ram curve are taken 
into account by the parameters stroke rate fSR and contact 
ratio ξ, which represents the ratio of the contact time tco to 
the cycle time tcy. The heating rate rh,S1, the austenitizing 
temperature Tγ, and the holding time tγ summarize the aus-
tenitizing conditions. The cooling after the austenitizing step 
is described by the step-averaged cooling rates rc,S2 (during 
pre-cooling), rc,S3 (during stretch-forming), and rc,S4 (during 
die-bending). To describe the mechanical history, which in 
the example process is limited to the forming in the third 

Fig. 7  Mean estimation error over all nodes mean ( ̃T ) and 
maximum estimation error from all nodes max ( ̃T ) for 
θ = (8  min−1, 20 kN, 1050 °C)
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and fourth stages, the true strain rate �̇� and the true strain � 
are employed. It is assumed that in each forming stage, the 
forming process is completed when the bottom dead center 
of the ram curve is reached.

4.2  Building a Training Database with Parametrized 
a 1‑Element Model

To facilitate the training of the ANN, a dataset is required 
that establishes the correlation between different thermo-
mechanical histories and the resulting microstructure, 
in this case, the final phase fractions ξi. With the aim to 
develop such a dataset, a 1-element model is implemented 
in LS-Dyna (see Fig. 9). In this model, an element under-
goes the thermo-mechanical history according to the previ-
ously defined parameterization. Here, the temperature T is 
imposed over time t on the 4 nodes of a shell element. The 
austenitization stage of the process is not simulated. Instead, 
a homogeneous austenitic microstructure with a grain size G 
and a starting temperature Ts is assumed as the initial condi-
tion. Two of the nodes have their x-displacement suppressed, 
while the other two nodes undergo a time-dependent dis-
placement u(t), which induces the strain � in the element.

In the model, the evolution of the microstructure of the 
calculated element is captured using the material model 

Mat248 (PHS_BMW) [22]. This material model incorpo-
rates the diffusionless phase transformation from austenite 
to martensite, and the phase transformation by diffusion, 
according to implementations based on Hippchen et al. 
[23]. The diffusionless phase transformation is determined 
by various factors, as expressed in Eq. (7)). These factors 
include the current phase fraction of martensite ξM and aus-
tenite ξA, the current temperature T and the martensite start 
temperature MS, as well as the material-dependent model 
parameters α, n, φM, and ψM.

The time-dependent diffusion-controlled phase transfor-
mation of the phases i, characterized by the phase fraction ξi, 
can be expressed as a function, as shown in Eq. (8). This 
function considers several parameters, including the phase-
specific grain size parameter ωi, the grain size G of the aus-
tenite (specified in ASTM units), the equilibrium tempera-
ture Teq,i, the current temperature T, the phase-dependent 
exponent pi, the activation energy Qi for the initiation of the 
diffusion–reaction, the universal gas constant R, the alloy-
dependent coefficient ci, and the transformation kinetic 
parameters cr,i, φi, and ψi.

Moreover, the model considers the acceleration of phase 
transformations from austenite to bainite, ferrite, and pearlite, 
which is caused by strain introduced into the austenitic micro-
structure. This is achieved by scaling the activation energies 
of the transformations [24]. The initial grain size G, obtained 
after rapidly heating the material to the austenitization tem-
perature Tγ with a holding time tγ, is determined according to 
Eq. (9) [25]. The activation energy Qr, as well as the param-
eters K and z, are material-dependent, empirical constants.

The LS-Opt program is used to systematically vary the 
input parameters of the 1-element model (as described in 
the parametrization in Sect. 4.1) implemented in LS-Dyna. 
This variation is carried out within the relevant parameter 
space and the resulting simulation data is processed to cre-
ate a training data set for the ANN. Since a full factorial 
calculation of all possible parameter combinations would 
mean a considerable simulation effort, the parameter space 
is covered by utilizing a space-filling design of experiments 
with a maximized distance between each simulation point.

It should be noted that the material model presented 
above is used to provide a reasonable representation of the 
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Fig. 8  Parameterization of the thermal and mechanical history for an 
exemplary sheet metal element in the demo process for multi-stage 
press hardening

Fig. 9  Setup of the 1-element model in LS-Dyna
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microstructure evolution throughout the multi-stage pro-
cess. However, the comprehensive validation of whether 
the model is fully applicable to the multi-stage process 
falls outside the scope of this paper. The focus here is on 
developing a transferable concept, where the database can 
be interchangeable.

4.3  Structure and Training of the Microstructure 
Soft Sensor ANN

According to the parameterization derived above, the devel-
oped ANN requires 12 input parameters defining the thermal 
and mechanical history. In turn, the output of the ANN pro-
vides correlation for 5 parameters, which describe the phase 
fractions ξi of the final microstructure. Specifically, these 
parameters represent the phase fractions of austenite ξA, fer-
rite ξF, pearlite ξP, bainite ξB, and martensite ξM.

Tensorflow is used to create ANN's structure and train 
it [26]. In total, the designed ANN consists of four layers. 
The first layer does not have any trainable parameters and is 
composed of 12 input parameters, which are scaled between 
− 2 and 2, using the standard scaler “sklearn”. The second 
layer comprises 126 neurons, while the third layer consists 
of 64 neurons. Both of these layers employ the Rectified 
Linear Unit (ReLu) as the activation function, connecting 
the input and the output layers. The fourth layer—the output 
layer—consists of 5 output parameters. Here, the “Softmax” 
activation function is used to normalize the output, result-
ing in values between 0 and 1, which corresponds to phase 
fractions ξi ranging from 0 to 100%. The database gener-
ated using the 1-element model presented above consists of 
3000 data sets, which are divided into 70% for training data 
and 30% for test data. The test data is used to evaluate the 
network on overfitting and, on the other hand, to validate 
the training progress with unfamiliar data sets. The initial 
values and parameters of the network are set randomly. The 
training process of the network employs the Adam optimizer 
[27]. The weights and offsets of the network are determined 
during the training of the ANN via error backpropagation by 
optimizing the mean square error. After training the ANN, 
the average deviation in terms of calculating a specific 
phase fraction is 0.084% in comparison to the training data. 
It should be noted that additional ANN-builds with more 
neurons and layers are trained and tested. However, no sig-
nificant reduction of the average deviation presented above 
is obtained. Other activation functions have not been tested.

4.4  Comparison of Microstructure Soft Sensor 
and Full Process Simulation

For the first validation of the ANN-based microstructure soft 
sensor concept and the underlying parameterization, its pre-
diction quality is checked by means of a numerical simulation 

of the multi-stage press hardening process. The simulation of 
the multi-stage process is implemented with the FEM software 
LS-Dyna (see Fig. 10), using the same material modeling as 
in Sect. 4.2. To model the individual process stages, the basic 
structure follows the methodology described in Hochholdinger 
[22]. With values based on Shaprio [28], the heat exchange 
between the sheet, the tools, and the environment, as well as 
the yield stress and the modulus of elasticity of the 22MnB5 
sheet material are modeled. The process of heating the sheet 
to the austenitizing temperature is not simulated. Instead, a 
defined temperature distribution depending on the specified 
austenitizing temperature is assigned to the nodes of the blank 
with the assumption that a homogeneous austenitic microstruc-
ture is present. Similarly, resistance heating and cooling in the 
pre-cooling stage of the progressive die are taken into account 
in a simplified way by a thermal boundary condition imposed 
on the nodes of the blank. From the full process simulation, 
the thermal and mechanical histories for representative shell 
elements (here of S1, S2, and S3) are evaluated and converted 
accordingly into the input parameters for the microstructure 
soft sensor. This way the input generated from the numerical 
simulation is used to emulate the output from the temperature 
and plasticity soft sensors upstream in the presented soft sen-
sor cascade (see Fig. 1). In addition, the final phase fractions 
are written out from the full process simulation for the pur-
pose of comparison with the prediction of the microstructure 
soft sensor. When a specific phase fraction is determined, the 
average percentage deviation PD% between the prediction of 
the microstructure soft sensor and the full process simulation 
is less than 1.8% for the investigated shell elements. Further-
more, the maximum per-phase deviation in the given examples 
is 5.3% and occurs in the prediction of the bainite phase. In 

Fig. 10  Evaluation of the microstructure soft sensor based on a full 
process simulation of multi-stage press hardening
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this case, the calculation of the full process simulation takes 
16–20 h, and the prediction for the microstructure of a shell 
element with the microstructure soft sensor <  < 1 s. The given 
times are achieved on a computer with Windows 10 Pro 64-bit 
operating system and an Intel Xeon E3-1245 processor (clock 
speed: 3.5 GHz).

5  Prediction of Product Properties

The benefit of the developed soft sensor concept is that addi-
tional modeling approaches for the prediction of several 
product properties can be easily implemented, modified, or 
replaced. In the following, examples are provided to demon-
strate how different macroscopic product properties could be 
predicted and explicitly calculated on the basis of the DMD- 
and the phase fraction output of the microstructure soft sensor.

A mixing rule (Eq. (10)) could be used to estimate the hard-
ness HV of the final microstructure, depending on the hardness 
of the individual phases HVi and the phase fractions ξi.

From the output of the temperature soft sensor, the predic-
tion of the hardness of the bainite fraction and thus of the 
entire final microstructure could be further refined by con-
sidering the cooling rate sensitivity of the bainite hardness. 
According to Smoljan et al. [29] the hardness of the bainite 
fraction HVB can be modeled with Eq. (11).

HVB,max is the maximum bainite hardness, which is set 
within the cooling time of tB,max, and KHV,B is a material con-
stant for fitting the equation. tB,8/5 represents the time required 
to cool the material from 800 °C to 500 °C and can be deter-
mined online during the multi-stage process due to the output 
of the above-described temperature soft sensor. In the case of 
22MnB5, the hardness of the resulting ferrite, pearlite, and 
martensite phases is almost independent of the cooling rate 
and can therefore be assumed to be constant [30]. From the 
hardness estimated on the basis of the soft sensor output, the 
tensile strength TS could be determined in situ as a supple-
mentary product property. For example, according to Löbbe 
et al. [31], the hardness HV of 22MnB5 can be correlated to 
the tensile strength with a standard deviation of 23.3 HV10 
using the empirical linear Eq. 12.

(10)HV =
∑
i

HVi ⋅ �i

(11)HVB = HVB,max − KHV ,B ⋅ log

(
tB,8∕5

tB,max

)

(12)HV = 0.325 ⋅MPa−1 ⋅ TS + 67.9

6  Conclusions

A new control method for predicting the product properties 
in multi-stage press hardening by utilizing soft sensors for a 
feedback loop is presented. First, a temperature soft sensor 
based on dynamic mode decomposition (DMD) is devel-
oped. This sensor can estimate the temperature (distribution) 
for all process-relevant control variables by extending it to a 
parametric DMD with an error < 10 °C during the process-
relevant time steps. Thus, by using a few hardware sensors 
that measure point-by-point or discontinuously over time, in 
conjunction with the temperature sensor, the entire spatial 
and temporal distribution of temperature can be fed back for 
the purpose of control. Furthermore, an artificial neural net-
work (ANN)-based microstructure soft sensor is developed, 
which predicts the final phase fractions based on plasticity 
estimation and the output of the presented temperature soft 
sensor. The microstructure soft sensor can predict the final 
phase composition in a time span of <  < 1 s with an average 
deviation per phase of 1.8%. This allows both the hardness 
and the tensile strength to be determined in situ by simple 
correlations.
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product properties, as well as hot shear cutting and profile bending with 
stress superposition.
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