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Abstract
An online trajectory planning method for collision avoidance is proposed to improve vehicle driving safety and comfort 
simultaneously. The collision-free trajectory for autonomous driving is formulated as a nonlinear optimization problem. A 
novel approximate convex optimization approach is developed for the online optimal trajectory in both longitudinal and lateral 
directions. First, a dual variable is used to model the non-convex collision-free constraint for driving safety and is calculated 
by solving a dual problem of the relative distance between vehicles. Second, the trajectory is further optimized in a model 
predictive control framework considering the safety. It realizes continuous-time and dynamic feasible motion with collision 
avoidance. The geometry of object vehicles is described by polygons instead of circles or ellipses in traditional methods. In 
order to avoid aggressive maneuver in the longitudinal and lateral directions for driving comfort, rates of the acceleration and 
the steering angle are restricted. The final formulated optimization problem is convex, which can be solved by using quadratic 
programming solvers and is computationally efficient for online application. Simulation results show that this approach can 
obtain similar driving performance compared to a state-of-the-art nonlinear optimization method. Furthermore, various 
driving scenarios are tested to evaluate the robustness and the ability for handling complex driving tasks.
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Abbreviations
AEV	� Autonomous ego vehicle
MPC	� Model predictive control
QP	� Quadratic programming

1  Introduction

The rapid development of autonomous driving technology 
has promoted the application of advanced driver assistance 
systems in vehicles to improve driving comfort and safety. 
With precise perception, accurate localization, efficient 

motion planning, and high-performance computing, it can 
prevent traffic accidents resulting from driver’s errors and 
improve driving comfort as well as transportation efficiency 
[1]. Safety has become a significant consideration factor for 
the wide implementation of automated vehicles in the trans-
portation. Current driver assistance systems are generally 
used in relatively simple driving scenarios. It is still chal-
lenging for vehicles to finish complex tasks and prevent col-
lisions with stochastic uncertain objects like a skilled human 
driver. Trajectory planning with collision avoidance is sig-
nificant to realize safe and comfortable autonomous driving 
in complex urban environments.

Motion planning is a central part for autonomous driving 
and mobile robots. It uses data from the perception system 
to generate a smooth path/trajectory for vehicle tracking 
and avoid collision with obstacles. Various numerical 
methods, e.g., graph-search method, incremental tree-based 
methods, optimization methods, are summarized in Ref. [2]. 
The path or trajectory should satisfy dynamic feasibility, 
driving comfort, and collision-free with surroundings. 
In graph-search methods, the free configuration space 
is discretized into various cells for the path planning 
problem. Road network, geometries or sampling in the 
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control space is implemented for the graph construction. 
A*, hybrid A* and lattice planning have been successfully 
implemented in the DARPA Urban Challenge in Refs. [3, 
4, 5]. Forward propagation with vehicle kinematic models 
is used to check the collision-free constraints. However, 
the discretization of the whole configuration space affects 
the quality considerable, and the problem is generally 
suboptimal. Unlike focusing on a fixed discretized graph, 
incremental tree-based methods generate kino-dynamic and 
collision-free paths by incrementally building a tree. The 
space is searched iteratively by forward propagation with 
the kinematic vehicle model. Rapidly exploring random tree-
based approaches have been developed for non-holonomic 
dynamic systems to find feasible paths in Refs. [6, 7, 8]. 
The exploration is achieved by random sampling in the free 
configuration space to find a feasible and collision-free path. 
These methods usually require huge computation for optimal 
solutions, and the obtained path is generally not smooth for 
direct tracking.

Optimization-based methods are proposed to optimize 
some performance index with a set of equality and 
inequality constraints. The kino-dynamic constraints (e.g., 
curvature) and physical constraints (e.g., vehicle lateral 
and longitudinal limits) for non-holonomic systems are 
incorporated explicitly. The objective function contains the 
jerk, trip time and tracking errors in Refs. [9, 10, 11, 12]. 
The collision avoidance constraints are non-convex and 
nonlinear, which requires nonlinear optimal programming 
for possible solution. This is usually computational 
expensive [13, 14]. A nonlinear model predictive control 
method has been used for the online motion planning of 
mobile robots in Ref. [15]. A convex inner approximation 
method is developed to model the collision avoidance 
constraint. A free ball is used to model the robot, and the 
shape of the object is limited to a wall. This simplification is 
not suitable for autonomous vehicles with a more complex 
shape. In Ref. [16], trajectories for path following under 
various time-varying constraints are optimized by a linear 
model predictive control framework along a given reference 
curve. The vehicles are approximated as three circles, and 
the distance to the objects is simplified as a linear function 
of vehicle orientation, velocity and curvature. However, 
this method requires the feasible reference curvature which 
introduces additional computation effort and increases 
complexity. A collision-free trajectory in unstructured 
environments with static and moving obstacles has been 
solved with nonlinear model predictive contouring control 
in Ref. [17]. A polyhedral set with a closed-form bound is 
used to approximate the collision-free area around the robot, 
while a dynamically feasible reference path and speed should 
be provided in advance. The collision avoidance methods 
for static and dynamic objects are separated, which is not 
convenient for real-world application.

Motion planning with collision avoidance in complex 
environments has been studied for mobile robots. 
Optimization problem is solved to obtain a collision-free 
trajectory for safe movement in Refs. [15, 17]. Safety is 
usually formulated as a constraint for the optimization 
problem using the distance between the robot and the 
surrounding objects. Such collision avoidance constraint 
is generally nonlinear and hard to solve. Most research 
approximates the objects as circles or ellipses and 
formulate the optimization problem into a nonlinear optimal 
programming in Refs. [17, 18]. However, the computation is 
expensive and requires commercial numerical software. It is 
hard for real-time implementation.

In autonomous driving, safe motion planning is a difficult 
driving task which involves both longitudinal and lateral 
movements. Figure 1 presents an autonomous overtaking 
task in urban driving. The vehicle should drive along the 
lane of road or reference path and avoid collision with 
other object vehicles. It includes a sequence of actions 
under several dynamic and static constraints, such as 
vehicle speed limit, surrounding objects, traffic conditions 
and road geometry. An autonomous ego vehicle passes by 
a slow-moving/static object vehicle ahead through a lane 
change maneuver to an adjacent lane. After a few seconds 
of lane-keeping, autonomous ego vehicle (AEV) returns to 
its original lane and continues driving. During the whole 
process, a dynamically feasible and collision-free trajectory 
is necessary for driving comfort and safety. In order to avoid 
the collisions with other object vehicles, the task has been 
regarded as a combination of lane change and path tracking 
maneuvers with two levels in Refs. [19, 20]. In the high-
level, behavior planning (e.g., using fuzzy controller, finite 
state machines) for lane change is decided to give possible 
path or trajectory. Then, a low-level motion tracking is 
realized with a polynomial trajectory. The dynamic 
performances (e.g., jerk and deviation minimization) in the 
structured road can be applied to optimize the trajectory. 
In this case, the collision-free constraint is not explicitly 
involved. Moreover, the lane change action by the behavior 
planning should be executed in advance for safe driving. 
Collision avoidance path/trajectory can be solved by the 
graph-search and incremental tree-based methods, but the 
dynamic feasibility and comfort may not be guaranteed 
meanwhile. In Ref. [21], the trajectory planning in structured 

Fig. 1   Illustration of autonomous driving with collision avoidance
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environments is solved by a robust MPC-based method. A 
self-defined safe zone based on geometry is used for the 
collision-free constraint, which is too conservative to be 
applied in different driving scenarios.

Recently, successive linearization of the non-convex 
feasible set and nonlinear dynamic constraints is proposed 
in Ref. [22] to design the motion planning for autonomous 
driving in unstructured scenarios. The linearization error 
may introduce infeasibility issues for the optimal solutions 
at corner cases. Constrained iterative LQR is developed to 
solve the motion planning problem in Ref. [23]. However, a 
good initial trajectory is required to solve the optimization 
problem which is elaborating to design for real-world 
application particularly in different driving scenarios.

Throughout the literature, there has been little research 
on a real-time motion planning approach with collision 
avoidance for optimal trajectory planning in time domain 
for both longitudinal and lateral movement. A dynamically 
feasible and collision-free trajectory is necessary for safe and 
comfortable autonomous driving. Moreover, the robustness 
in dealing with different complex driving tasks without 
high-level planning is highly desirable for motion planning 
to improve the efficiency and avoid communication faults 
between different layers. Furthermore, existing methods 
generally approximate obstacles by circles or ellipses. 
However, this may neglect the geometry and dimension 
of real vehicles. The formulated optimization problem for 
trajectory calculation is nonlinear, and the computation is 
expensive for real-time implementation.

To address the issues discussed above, this paper develops 
a real-time optimal trajectory planning approach for safe 
autonomous driving with collision avoidance in complex 
environments. A novel approximate convex optimization 
method is proposed to solve the problem for the motion 
planning as in Fig. 2. The distance between autonomous 
ego and object vehicles is described with a dual variable 
and is calculated by solving a dual problem optimization. 
The objects around AEV are modeled as polygons 
instead of eclipses or circles for efficient computation. 
The optimized dual variable is used to formulate the 
collision-free constraint. The trajectory in longitudinal and 
lateral directions is further obtained in a model predictive 
control (MPC) framework for the motion planning with 

collision avoidance to realize the driving comfort and 
safety. It can relax the nonlinear collision-free constraints 
and the nonlinear dynamic model by using the proposed 
approximate convex optimization method. The formulated 
optimization problem is convex and can be solved by using 
efficient quadratic programming (QP) solvers. It can greatly 
improve the computation efficiency.

In this paper, a computationally efficient method is to 
be presented for the online optimal collision-free trajectory 
planning. The objectives of this paper, respectively, are (1) to 
provide a dynamically feasible and collision-free trajectory 
in both longitudinal and lateral motions, by taking object 
vehicles as polygons instead of circles or ellipses; (2) to 
examine the robustness and capability of handling complex 
driving environments with multiple object vehicles; (3) to 
realize fast computation for real-time implementation for 
final purpose.

This paper is organized as follows. The problem 
formulation for the optimal motion planning of autonomous 
driving is introduced in Sect. 2. The approximate convex 
optimization method is presented in Sect. 3. In Sect. 4, 
numerical simulations in various driving scenarios are 
examined to evaluate the performance and robustness. 
Conclusions are finally given in Sect. 5.

2 � Problem Formulation for Trajectory 
Optimization

In this section, the trajectory optimization problem for 
motion planning with collision avoidance is introduced. 
The vehicle motion description is modeled by a kinematic 
model. Safety and comfort constraints are analyzed. And 
the nonlinear optimization problem in the MPC framework 
is constructed.

2.1 � Trajectory Optimization

In urban driving cases, vehicles drive along the roads and plan 
the motion based on scenarios, e.g., traffic rules, static/moving 
objects, pedestrians. Vehicles should move smoothly in the 
road network and prevent collisions with the surroundings. 
The decrease in vehicle speed during driving under some 
circumstances will affect the driving behaviors of following 
vehicles and reduce the traffic efficiency. In this case, the 
following vehicle might choose to overtake the front vehicle 
and continue to drive with its target speed. A general obstacle 
avoidance behavior for autonomous driving is shown in 
Fig. 1, where AEV drives with speed v along the road. There 
is a slow-moving object vehicle which blocks the road. In 
order to keep driving, overtaking the object vehicle ahead 
is necessary. AEV moves to the left lane, passes the object 
and finally returns to the original lane. The motion planning Fig. 2   Architecture of the approximate convex optimization method
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system designs a dynamically feasible trajectory to drive AEV 
to fulfill the whole task in a comfortable and safe behavior. It 
keeps in current driving lane and reduce the disturbances to 
other vehicles for safety. On the other hand, AEV should avoid 
collisions to surrounding objects during driving and perform a 
smooth trajectory. Therefore, the objectives for the trajectory 
planning includes minimizing the longitudinal and lateral 
jerks, the deviation from the center lane and curvature change. 
This planning can be obtained by solving an optimization 
problem. The resulting sequence of control variables are used 
to generate the optimal trajectory for motion tracking. The 
optimization problem is described by:

where xt ∈ Rm is the system state vector, and ut ∈ Rn is the 
control input. Detailed descriptions about the state and 
control variables are given in Sect. 2.2. f is the system 
dynamics equation, Z is the constraint imposed on the state 
and input, T is the time duration, and l is the stage cost. The 
optimal input sequence u ∗  = [u0, u1, …, uT]T is calculated 
by solving the problem described in Eq. (1).

2.2 � System Model

Vehicle models are used for future motion prediction, and 
various methods have been developed to study the vehicle 
dynamics and design controllers for different applications 
[24]. A more in-depth analysis between kinematic and 
dynamics models are compared for autonomous driving in 
Ref. [25]. For motion planning with collision avoidance in 
urban environments, AEV traverses with a relatively low 
speed and the slip angle of the tire can be ignored. In this 
paper, a nonlinear kinematic bicycle model is used to predict 
the future states for simplicity as shown in Fig. 3. If a more 
accurate vehicle model is developed, it can still be plugged 
into the following proposed trajectory planning architecture. 

(1)
min
ut∈ℝ

n ∫
T

0

l
(
xt, ut

)
dt

s.t. 𝐱̇t = f
(
xt, ut

)
(
xt, ut

)
∈ ℤ

Bicycle model is used here considering its simplicity because 
the focus of the research is not on the vehicle modeling.

The model can be described by:

where px, py are positions of the vehicle at the center point 
of the real axle in the inertial coordinate system, v, a are 
speed and acceleration, respectively, φ is the yaw angle, 
δ is the steering angle, L is the wheelbase, e is the lateral 
displacement relative to the reference path, φ is the relative 
yaw angle, and 𝜑̇r is the yaw rate of the reference path. The 
system state variables are x = [px, py, v, Φ, e, φ]T, and the 
control inputs are u = [a, δ]T. The continuous-time dynamic 
model can be summarized as ẋ = f (x, u). By using Euler 
approximation, the model can be further discretized by:

where ∆k is the sampling interval.

2.3 � Constraints for Driving Comfort and Safety

In order to realize a kinematically feasible, smooth and 
collision-free trajectory, some constraints are applied for 
system states and inputs. AEV should follow the traffic rule 
and drive only on the permitted area of the road. The position 
is therefore limited in the available space. Moreover, the 
vehicle physical limits of steering actuator and traction force 
restrict the control inputs within certain ranges. Furthermore, 
in order to avoid aggressive maneuver in both longitudinal and 
lateral directions for driving comfort, the rates of acceleration 
and the steering angle are restricted, which can be found in 
Eq. (8).

During the driving task, AEV should follow its prevailing 
path and avoid collision with surrounding objects for 
safety. The collision avoidance is generally modeled by the 
constraints described by:

where S(xk) represents the position of AEV, and the space 
occupied by objects is described by � . There should be 
no intersection space between AEV and objects, and the 
relative distance should be larger than zero. The distance 
between AEV and objects is illustrated in Fig. 4 and Eq. (5) 
as follows:

(2)

ṗx = vcos 𝜙

ṗy = vsin 𝜙

v̇ = a

𝜙̇ =
v

L
tan 𝛿

ė = vsin 𝜑

𝜑̇ =
v

L
tan𝛿 − 𝜙̇

�

(3)xk+1 = xk + f
(
xk, uk

)
Δk

(4)�
(
xk
)
∩� = �

Fig. 3   Nonlinear kinematic model
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The collision avoidance constraints can therefore be 
presented as:

where dmin is the minimum available distance with dmin > 0.

2.4 � Cost Function

During the driving process, AEV needs to follow the 
path with a desired driving speed. To ensure the driving 
efficiency and avoid unnecessary movement without large 
displacement from the reference path, lateral displacement 
e and relative yaw angle φ are required to be close to zero. 
Therefore, cost function is defined as

where xref contains the desired driving speed and the 
reference path to follow (in most cases the reference 
path should be the centerline of the lane), which can be 
predefined in some specific scenarios. For example, the bus 
usually takes specific route and maintains a steady speed. Q 
and R are the weighting matrix for states and inputs.

2.5 � MPC Problem Formulation

Hence, the trajectory optimization problem for motion 
planning with collision avoidance is formulated in the MPC 
form [26] as: 

(5)dist
(
�
(
xk
)
,�

)
∶= min

d

{
∥ d ∥,

(
�
(
xk
)
+ d

)
∩� ≠ �

}

(6)dist
(
�
(
xk
)
,�

) ≥ dmin

(7)l
(
xk, uk

)
= ‖‖xk − xref

‖‖2Q + ‖‖uk‖‖2R

where P is the terminal weighting matrix, and x0, x1, …, xN 
represents the state trajectory. The resulting optimal control 
sequence u ∗ = [u0,u1, …,uN−1]T in receding horizon N is 
used to calculate the optimal trajectory for motion planning. 
It can be seen from Eq. (8) that the problem is modeled 
in discrete form because in real-world control, the control 
variable is executed at specific rate.

3 � Approximate Convex Optimization 
Method for Trajectory Planning

In this section, a novel approximate convex optimization 
method is proposed to solve the nonlinear problem 
for optimal trajectory planning. The vehicle model is 
approximated by successive linearization. The object 
vehicles are described by polygons. The distance between 
vehicles is calculated by solving a dual problem. The 
collision-free constraint is then formulated with a optimized 
dual variable. The trajectory optimization for driving safety 
and comfort is finally simplified into a convex optimization 
problem.

3.1 � Model Approximation and Constraints 
Convexity

Given a sequence of states and control inputs (e.g., the 
optimized variables over the horizon in the last step), the 
system dynamics model in Eq.  (3) can be successively 
linearized by using Taylor series. The time-varying state 
space formulation is presented as

where Ak and Bk are the Jacobian matrix for states and 
inputs, and Ck is the residual term. Ak, Bk and Ck can be 
calculated, respectively, by

(8)

min
�k∈ℝ

n

N−1∑
k=0

(‖‖xk − xref
‖‖ 2

Q
+ ‖‖uk‖‖2R

)

+‖‖xN − xref
‖‖2P

subject to

xk+1 = xk + f
(
xk, uk

)
Δk

xmin ≤ xk ≤ xmax

umin ≤ uk ≤ umax

Δxmin ≤ Δxk ≤ Δxmax

Δumin ≤ Δuk ≤ Δumax

dist
(
𝔼
(
xk
)
,𝕆

) ≥ dmin

x0 = x(0)

(9)xk+1 = Akxk + Bkuk + Ck

Fig. 4   Illustration of distance between AEV and objects
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A convex set can be used to describe the space occupied 
by the objects with

where m is the index of objects around AEV. It can be seen 
from above equation that the mathematical expression of 
polygon is the combination of several linear lines, which 
is more efficient for optimization and much easier to be 
converted into a convex problem than traditionally used 
nonlinear eclipse.

Combining Eq. (5) and Eq. (10), it leads to:

In this paper, dual optimization is used for solving 
the target constrained optimization problem. Generally 
speaking, dual optimization incorporates the equation 
and non-equation constraints into the target cost function 
that needs to be minimized by using linear expression to 
approximate the constraints. Then, the problem can be 
solved like traditional non-constraint optimization problem 
by setting the derivation of the cost function equal to zero. 
Based on Ref.[27], the dual problem of minimizing d in 
Eq. (11) is given by:

where λ is a dual variable for the dual problem of (11), 
||.||∗ represents the dual norm. Here, L2 norm is used. 
Therefore, the distance between AEV and objects is obtained 
by solving the problem described by Eq. (12).

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 cos�Δk −vsin�Δk 0 0

0 1 sin�Δk vcos�Δk 0 0

0 0 1 0 0 0

0 0
tan�Δk

L
1 0 0

0 0 sin�Δk 0 1 vcos�Δk

0 0
tan�Δk

L
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Bk =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

Δk 0

0
vΔk

Lcos2�

0 0

0
vΔk

Lcos2�

⎤⎥⎥⎥⎥⎥⎥⎦

,Ck =

⎡⎢⎢⎢⎢⎢⎢⎣

v�sin�Δk

−v�cos�Δk

0

−
v�Δk

Lcos2�

−v�cos�Δk

−
v�Δk

Lcos2�

⎤⎥⎥⎥⎥⎥⎥⎦

(10)𝕆
m =

{
z ∈ ℝ

m ∶ Am
obs

z ≤ bm
obs

}
,m = 1, 2,… ,M

(11)
dist

(
�
(
xk
)
,�m

)
∶= mind

{
∥ d ∥∶ Am

obs

(
�
(
xk
)
+ d

) ≤ bm
obs

}

(12)
max
�

(
Am
obs

�
(
xk
)
− bm

obs

)T
�

s.t.
‖‖‖A

T

obs
�
‖‖‖∗ ≤ 1

� ≥ 0

3.2 � Trajectory Optimization with MPC

The trajectory optimization approach is based on two 
optimization steps. First, the dual variable λ is optimized by 
solving the dual problem for the minimum distance between 
AEV and the objects.

Then, the linear MPC is constructed to calculate the states 
and inputs. The optimized trajectory makes the AEV to track 
the path and avoid obstacles for driving comfort and safety. 
The optimization problem is summarized as:

where sk,m is a slack variable for the soft constraint, and γ 
is a coefficient.

4 � Numerical Simulation and Discussion

The proposed approximate convex optimization method 
is examined in various scenarios to evaluate the driving 
performance. The optimized trajectory drives the AEV to 
follow the reference path and prevent collisions with other 
vehicles for a safe and comfortable driving behavior. The 
simulations are conducted with python language. The 
general performances of trajectory planning in autonomous 
overtaking driving is presented. Meanwhile, reference 
tracking is illustrated for safe driving. Moreover, driving 
situation with a vehicle sudden cut-in is considered for 
AEV to avoid collisions for the driving safety. Finally, AEV 
performs the driving task in complex driving environments 
and prevents collisions with other surrounding vehicles 
from adjacent lanes. In order to illustrate the motion and 
the relative position, vehicles at different time frames are 
plotted with transparency increased over time, e.g., the 
more transparent the color, the later a fame in time is. The 
sampling period for discretization is 0.1 s, and the prediction 
horizon in MPC is 20 steps which is equivalent to 2 s. The 
videos of the demonstrated simulations can be found at 
https://​youtu.​be/​VGvQM​X68GAY.

(13)

minx,u,s

N−1∑
k=0

��xk − xref
��2Q + ��uk��2R + �

∑M

m=1
s2
k,m

+��xN − xref
��2P

s.t. xk+1 = Akxk + Bkuk + Ck

xmin ≤ xk ≤ xmax

umin ≤ uk ≤ umax

Δumin ≤ Δuk ≤ Δumax�
Am
obs

�
�
xk
�
− bm

obs

�T
�∗
k
+ sk,m ≥ dmin

sk,m ≥ 0

x0 = x(0)

k = 0, 1,… ,N − 1,m = 1, 2,… ,M

https://youtu.be/VGvQMX68GAY
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4.1 � General Performance Evaluation

AEV traverses with constant velocity, and in front of it, there 
is a static vehicle which stops and blocks the driving road. 
AEV overtakes the static vehicle and continues driving with 
its target velocity. The simulation results are shown in Fig. 5. 
It can be seen that AEV overtakes the static vehicle safely 
without collision. Trajectories of the lateral displacement, 
the velocity and the yaw angle are presented as well. When 
AEV is close to the static vehicle, it changes the yaw angle 
and moves to the left driving lane. The lateral displacement 
is increased to avoid collision. During the changing pro-
cess, the velocity decreases a little at first to keep safe rela-
tive distance and lead to a smooth movement. After AEV 
passes by, the lateral displacement is decreased, and the yaw 
angle increases to zero. AEV returns to its original driving 
lane finally. In order to avoid collisions, AEV first reduces 
the velocity and then performs a larger steering angle to 
overtake the object vehicle for safety. The proposed method 
provides a more conservative behavior in terms of safety 
compared to the baseline which is solved by nonlinear opti-
mization method.

4.2 � Curve Path Tracking with Collision Avoidance

In this case, AEV drives with 4 m/s and tracks a prede-
fined curve path which can be determined by standard 
path planning method. The path is represented by black 
waypoints. Two static red objects block the path unexpect-
edly after the path has been calculated for vehicle track-
ing. AEV should follow the path and avoid collisions with 

the red objects. The simulation results are presented in 
Fig. 6. The position of AEV over different time frames 
are illustrated. It can be seen that AEV can track the path 
and prevent collision with red objects successfully. The 
minimum clearance to the obstacles is 0.48 and 0.65 m, 
respectively, implying safe driving without collisions. 
The comparison of lateral displacement, velocity and yaw 
angle is shown in Fig. 6. It can be seen that the trajectory 
in the lateral direction is smooth both with and without 
obstacles, contributing to comfortable driving. AEV can 
follow the path closely, and the lateral displacement has 
a good match with the waypoints. When AEV gets close 
to objects, it changes the lateral movement to overtake 
objects and returns to the original path. During the whole 
process, the velocity keeps nearly unchanged for efficient 
path tracking performance. The yaw angle has similar 
profiles. The mismatch happens when AEV overtakes the 
object to prevent collisions.

4.3 � Vehicle Sudden Cut‑in

Due to some unexpected human driving behaviors, vehi-
cles from adjacent lanes may conduct sudden lane change. 
Such driving maneuver is not predicted in advance and 
would cause danger to the vehicles behind as the distance is 
very short, which limits the reaction time for hard braking. 
In order to avoid collision, the following vehicle should 
execute evasive turning and overtake the cut-in vehicle. In 
this scenario, a blue AEV traverses with 10 m/s, and in the 
same lane, there is a red vehicle with velocity of 3 m/s. At 
30 m ahead, a cyan vehicle drives in an adjacent lane. It 

Fig. 5   Simulation for the obstacle avoidance Fig. 6   Simulation for curve path tracking with obstacle avoidance
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violently cuts in the lane of AEV and follows a fifth-order 
polynomial trajectory. In order to continue driving, AEV 
should at first overtake the red vehicle. When it detects the 
movement of the cut-in cyan vehicle after passing by the 
red vehicle, the AEV needs to change the steering angle 
to avoid collisions with the cyan vehicle. The simulation 
results are shown in Fig. 7, which presents the movements 
of the three vehicles in different time frames. It is seen 
that AEV can prevent collisions with both red and cyan 
vehicles successfully when the object vehicle performs a 
sudden lane change maneuver. The trajectories of lateral 
displacement, velocity and yaw angle are shown. Here, the 
situation where there is only red vehicle is used as compar-
ison. Before 30 m, both two cases have similar trajectory in 
terms of lateral displacement and yaw angle. During this 
period, AEV overtakes the red vehicle. When AEV detects 
the cyan vehicle cutting into the driving lane, it increases 
its lateral displacement through performing a yielding turn 
to pass the cyan vehicle and avoid collisions. When there 
is enough distance between two vehicles, it returns to the 
original driving lane. Therefore, the lateral displacement 
and yaw angle converge eventually. The velocity of AEV 
remains unchanged so as to finish the overtaking process 
as soon as possible. This can reduce disturbance to vehicles 
in other lanes. The yaw angle trajectory maintains smooth 
to ensure driving comfort.

4.4 � Object Vehicles Driving with Different Velocities

During autonomous urban driving, in order to prevent 
collisions with front vehicles, AEV moves to its adjacent 
lane to pass the vehicle and returns when there is safe 
distance with surrounding vehicles. Meanwhile, it should 
not influence the driving of surrounding vehicles in other 
lanes, and prevent collisions with them. In this scenario, 
two object vehicles driving in the adjacent lanes with the 
same direction are considered in Fig. 8. The AEV in blue 
drives on the same lane with the red vehicle. The cyan 
vehicle drives faster on the adjacent lane. AEV drives to 
prevent collisions with both red and cyan vehicles. The 
simulation results indicate that AEV can avoid collision 
with both two object vehicles successfully and perform 
efficient driving. Trajectories of lateral movement, veloc-
ity and yaw angle are illustrated. When AEV gets close to 
the red vehicle and prepares to turn to the adjacent lane, 
the cyan vehicle drives close to AEV. At the moment, 
there is no enough space for AEV to change the driving 
lane. AEV would first reduce its velocity to prevent col-
lisions with the red vehicle. After the cyan vehicle drives 
away and it is empty on the adjacent lane, AEV starts to 
perform a yielding turning to pass the red vehicle. Com-
pared with the situation with one object vehicle, it can be 
seen that with two object vehicles, AEV has more velocity 
decrease for the trajectory planning to prevent collisions. 
The delay in the lateral displacement and the yaw angle 

Fig. 7   Simulation for a vehicle sudden cut-in Fig. 8   Simulation for obstacle avoidance when two object vehicles 
drive with different velocity
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indicates that AEV behaves to overtake the red vehicle 
later for safe driving.

4.5 � Object Vehicles Driving with Same Velocity

In this scenario, AEV drives with velocity of 10 m/s along 
the road. In front of it, there are two object vehicles travers-
ing parallel at 3 m/s in sequence which blocked the road. The 
inter-distance between them is 13 m. AEV should overtake 
them one by one and continues to drive on its way. Fig-
ure 9 presents that the simulation results of this case show 
the relative position between AEV and object vehicles over 
different time frames. At the beginning, AEV steers to the 
left side to overtake the closest red object vehicle. Then, it 
turns to the right side and prevents collisions with the cyan 
vehicle. After AEV passes by the two vehicles, it returns to 
the original driving path. The trajectories of lateral displace-
ment, velocity and yaw angle are presented. It is compared 
with the condition when there is only red vehicle in front. 
The velocity keeps unchanged during the whole process for 
efficient driving performance. The trajectories of lateral dis-
placement and yaw angle are smooth, enabling comfortable 
driving. In order to overtake the cyan vehicle, the yaw angle 
is reduced further to increase the lateral distance to the cyan 
vehicle after 3 s. This is also reflected in the lateral displace-
ment where the condition with two obstacles has smaller 
value than the one with one obstacle between 30 and 65 m. 

Finally, it returns back completely and AEV continues to 
drive in its original direction.

Therefore, it is demonstrated that the proposed 
method can handle different driving scenarios in complex 
environments without collisions with multiple objects for 
safe and comfortable driving.

5 � Conclusions

This paper proposes a computationally efficient optimal 
trajectory planning method for the autonomous driving 
with collision avoidance. A novel approximate convex 
optimization method is developed and implemented to 
obtain a dynamic feasible and collision-free trajectory 
for both longitudinal and lateral motions. The optimal 
trajectory is calculated in a MPC framework for safe 
and comfortable driving. The collision-free constraint 
is formulated with the dual variable by solving the dual 
problem optimization. The formulated optimization 
problem is convex and can be solved using efficient QP 
solvers. Simulation results have shown that the approach 
reaches similar performance with less computation 
burden compared to a nonlinear optimization method. 
The generated trajectory is more conservative in terms 
of driving safety. Various driving scenarios are examined 
to evaluate the robustness and the ability for handling 
complex driving tasks with multiple object vehicles.

In future work, the proposed method will be extended 
to study the trajectory planning with collision avoidance 
at traffic intersections with uncertain stochastic dynamic 
objects. More sophisticated scenarios reflecting real-world 
traffic states will be incorporated both in simulation and 
field tests to investigate the effectiveness and robustness 
of the proposed method. In addition, the proposed method 
could be improved to suit vehicle with much higher speed 
limit.
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