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Abstract
Clustering is an unsupervised learning technology, and it groups information (observations or datasets) according to similarity 
measures. Developing clustering algorithms is a hot topic in recent years, and this area develops rapidly with the increas-
ing complexity of data and the volume of datasets. In this paper, the concept of clustering is introduced, and the clustering 
technologies are analyzed from traditional and modern perspectives. First, this paper summarizes the principles, advantages, 
and disadvantages of 20 traditional clustering algorithms and 4 modern algorithms. Then, the core elements of clustering 
are presented, such as similarity measures and evaluation index. Considering that data processing is often applied in vehicle 
engineering, finally, some specific applications of clustering algorithms in vehicles are listed and the future development 
of clustering in the era of big data is highlighted. The purpose of this review is to make a comprehensive survey that helps 
readers learn various clustering algorithms and choose the appropriate methods to use, especially in vehicles.
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Abbreviations
ACO	� Ant colony optimization
AMI	� Adjusted mutual information
ART​	� Adaptive resonance theory
CH	� Calinski-Harabasz index
CLARA​	� Clustering large applications
CLIQUE	� Clustering in quest
CURE	� Clustering using representative
DBI	� Davies-Bouldin index

DBSCAN	� Density-based spatial clustering of applica-
tions with noise

DTW	� Dynamic time warping
DVI	� Dunn validity index
EV	� Electric vehicles
FCM	� Fuzzy C-means
FCV	� Fuel cell vehicles
GMM	� Gaussian mixture model
IoV	� Internet of Vehicles
ITS	� Intelligent transportation system
NMI	� Normalized mutual information
PAM	� Partitioning around medoid
RI	� Rand index
SOM	� Self-organizing mapping
SSE	� Within-cluster sum of squared error
STING	� Statistical information grid
VANETs	� Vehicular ad hoc networks

1  Introduction

Daily objects are often categorized according to their char-
acteristics. For instance, competition can have junior and 
senior groups divided by age. Whenever an object with a 
label is found, it can be put into groups with the same label. 
This is commonly referred to as supervised learning [1, 2]. 
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There has been much research on supervised learning, and 
the technology has reached a mature stage with wide appli-
cations. Neural networks are the most common methods for 
supervised learning [3, 4]. Fuzzy mathematics [5] and deci-
sion trees [6] are both satisfactory classification methods. 
Many researchers have improved the multi-objective particle 
swarm optimization (PSO) algorithm [7] and the Bayesian 
classifier [8] to achieve higher accuracy of classification. But 
in many cases, when no groups have the pre-assigned label 
information, data can be put into different groups according 
to the similarity principle, therefore, unsupervised learn-
ing is required [9, 10]. For unsupervised learning, the label 
information of training samples is unknown, and the goal 
is to reveal the intrinsic nature and objective law of data 
by learning unlabeled training samples, which provides 
the basis for further data analysis [11, 12]. One of the best-
known methods is clustering analysis, which attempts to par-
tition the samples from a dataset into several disjoint subsets 
with each of them called a “cluster.” All similar points are 
divided into a cluster, which is not like others. This divi-
sion process is performed using proximity measures, density 
measures, and other similar measures [13]. In the current big 
data era, the clustering algorithm is widely used in regres-
sion prediction, data mining, image recognition, and other 
fields.

Data clustering was first mentioned in an article dealing 
with anthropological data which was published in 1954 [14], 
and then, it was widely studied and applied. Sisodia et al. 
[15] and Dave et al. [16] summarized some of the most basic 
clustering methods. K-means [17, 18] is the earliest and sim-
plest clustering method that has been used for decades. To 
date, it is still the most popular algorithm. Many scholars 
are still trying to improve clustering in combination with 
other data processing methods. Graph-based clustering in 
collaboration with neural networks is a promising clustering 
method due to its high robustness [19, 20]. Multi-objective 
clustering can improve the accuracy of clustering and is 
widely used in forecasting biogenetics and financial trends 
[21]. In the twenty-first century, there are many kinds of 
clustering algorithms such as clustering algorithms based 
on kernel [22] and clustering algorithms for streaming data 
[23]. These methods are more suitable for processing web 
data. As similarity is the core factor of clustering analysis, 
clustering results are expected to show high intra-cluster 
similarity and low inter-cluster similarity [24], but there are 
many difficulties in practical applications. For example, the 
speed data of a vehicle is a set of time series data, if the 
clustering or classification algorithm wants to divide these 
different varieties of samples into similar clusters. The 
preprocessing of high-dimensional data, the definition of 
the similarity measure [25, 26] in high dimension, and the 
imprecise matching of similarity models are the problems 
that must be taken into account.

To solve the above-mentioned problems and improve the 
accuracy of cluster analysis, clustering algorithms can be 
developed as well as methods of similarity measures accord-
ing to the dataset size and shape and the expected target. 
For example, for the time series of non-convex large-scale 
datasets, the density-based clustering [27] can be used and 
dynamic time warping (DTW) [28] can measure similarity, 
and the following sections explain this in detail.

In view of the above problems, this paper analyzes and 
compares several clustering techniques in Sect. 2. Then, 
Sect. 3 defines the classification patterns according to simi-
larity measures. Several evaluation indicators of clustering 
accuracy are illustrated in Sect. 4. The applications of the 
clustering methods in the automotive field are summarized 
in Sect. 5. The future development of the clustering algo-
rithm is discussed in Sect. 6.

2 � Clustering Technologies

Clustering technologies are broadly divided into six cate-
gories: hierarchical clustering, partition clustering, density-
based clustering, model-based clustering, grid-based clus-
tering, and modern clustering. As shown in Fig. 1, there 
are many specific algorithms in each category [26, 29–32]. 
Various clustering algorithms are introduced in detail in this 
section, including principles, advantages, and disadvantages. 
There is a wide amount of literature on all kinds of cluster-
ing technologies and extensive applications, but no algo-
rithm can be perfect under all circumstances. Some methods 
perform great with some specific nature of data but are not 
suitable for other types of data. Therefore, for specific tasks 
(goals), specific strategies should be adopted and tested in 
real-world applications.

2.1 � Hierarchical Clustering

The hierarchical nested clustering tree is created by calculat-
ing the similarity between different categories of data points. 
In the clustering tree, the original data points for different 
categories are at the bottom layer of the tree and a root node 
of a cluster is at the top layer of the tree, as shown in Fig. 2 
[33]. The clustering is performed on each hierarchy.

Hierarchical clustering can be categorized into agglom-
erative hierarchical clustering and divisive hierarchical 
clustering. In the former, each object is a cluster. The same 
objects are found according to the linkage, and finally, a 
new cluster is formed. The latter is just the opposite. There 
are three ways to verdict the same cluster according to the 
linkage [31]: (1) Single Linkage—some people also call it 
the minimal method or the nearest neighbor method. The 
same clusters are chosen by comparing the nearest samples 
of the two clusters. (2) Complete Linkage—some people 
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also call it the maximum method or the furthest neighbor 
method. The same clusters are chosen by comparing the fur-
thest samples of the two clusters. (3) Average Linkage—it is 
also known as the minimum variance method. All samples 

from the clusters need to be compared and chosen. It is the 
most used and best method because of its good monotony 
and a moderate degree of space expansion or concentration.

Advantages: (1) Distance and rule similarity are easy to 
define, and it has fewer restrictions. (2) It does not need to 
preset cluster numbers. (3) The hierarchical relationship of 
the cluster can be explored. (4) It can be clustered into other 
shapes.

Disadvantages: (1) The complexity of the calculation is 
too high. (2) Singular values can also have a bad impact. (3) 
They cannot move in other clusters in a hierarchy when two 
samples have been linked.

Several typical hierarchical clustering algorithms are 
CURE (Clustering Using Representative), ROCK (Robust 
clustering links), BIRCH (Balanced Iterative Reducing and 
Clustering Using Hierarchies), and Chameleon. A detailed 
comparison of the advantages and disadvantages of the four 
algorithms is summarized in Table 1 [16, 30, 31, 34], where 
n stands for the number of total objects/data points, k stands 
for the number of clusters, s stands for the number of sample 

Fig. 1   Classification of clustering algorithms

Fig. 2   Flowchart of hierarchical clustering [33]

Table 1   Comparison of hierarchical clustering algorithms

Algorithm Advantages Disadvantages Time complexity Dataset

BIRCH Good robust for outliers Limit the number of CF Low O(n) Large-scale
Low dimension

CURE Able to identify non-spherical categories Insensitive to outliers High O(n2logn) Small-scale
High dimension

ROCK For a variety of types of data The similarity threshold needs 
to be given in advance

High O(n2logn) Large-scale
High dimension

Chameleon Capture the neighborhood dynamically Many parameters need to be 
set in advance

High O(n2) Small-scale
Low dimension
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objects/data points, and t stands for the number of iterations. 
The same variables are used for the other tables.

(1)	 BIRCH was proposed by Zhang et al. in 1996 [35]. At 
first, it scans the database and creates a Clustering Fea-
ture-tree CF-tree [36], then the leaf nodes of the CF-
tree are clustered by a selected clustering algorithm. 
The goal is to delete the sparse clusters as outliers and 
merge the denser clusters into larger clusters.

(2)	 CURE combines two methods of random sampling 
and partitioning [37]. At first, the scattered objects in 
a cluster are selected, and then, these can shrink or be 
moved based on a specific score or shrink factor. At 
each step of the algorithm, two clusters with a pair of 
nearest points (each point comes from a different clus-
ter) are merged [38].

(3)	 ROCK is developed based on the CURE [39]. This 
algorithm takes a more global view and introduces 
the concept of “link.” The relationship between two 
objects (sample points/clusters) is determined by taking 
the number of their common neighbors (similar sam-
ple points) into account, and no distance function is 
required [40].

(4)	 Chameleon is a multi-stage hierarchical clustering algo-
rithm proposed by Karypis et al. in 2001 [41]. It uses 
dynamic modeling to determine the similarity between 
a pair of clusters. Then, clusters can be merged auto-
matically and adapted into a variety of strange data 
shapes [42]. Many researchers regard it as one of the 
best clustering algorithms.

2.2 � Partition Clustering

Partition clustering is the most common and basic cluster-
ing method whose basic principle is to take the center of the 
data points as the centroid of the corresponding clustering. 
For a data set containing multiple samples, the partitional 
algorithm is used to divide the samples into mutually exclu-
sive partitions, and each partition represents a cluster [43, 

44]. Clustering results in this classification need to meet two 
criteria: 1) each partition must contain at least one sample 
and 2) each sample belongs to only one partition.

Advantages: (1) The principle and the implementation are 
easy. (2) The convergence speed is high.

Disadvantages: (1) The results are only locally optimal 
because of iterative methods. (2) When the dataset is very 
large, the algorithm process needs a long time. (3) If the 
cluster contains abnormal points, there will be a serious 
deviation from the mean. (4) It is difficult to converge for 
data sets that are not convex [30, 43].

Several typical partition clustering algorithms are 
given below, such as K-means, K-medoids, FCM (Fuzzy 
C-means), and CLARA (Clustering Large Applications). In 
addition, PAM, CLARANS, and ISODATA are all improve-
ments based on the previous algorithms, so no more details 
are presented in this section. A detailed comparison of the 
advantages and disadvantages of these four algorithms is 
given in Table 2 [16, 30, 31, 43].

(1)	 K-means. The term “K-mean” was first used by Mac-
Queen et al. in 1967 [45]. It can find k different clusters, 
and the center of each cluster is calculated by using the 
mean of the values contained in the cluster. The num-
ber of clusters k is chosen by users, and each cluster 
is described by its centroid, which is the center of all 
points in the cluster [29, 46]. The K-means algorithm is 
the most used clustering method in decades. The steps 
are as follows:

Step 1. Choose the initial centroid: The initial centroids 
and the number of clusters k are selected.

Step 2. Sample clustering: The distance between each 
sample and each centroid is calculated, and then, put the 
sample into the cluster of the nearest centroid.

Step 3. Recalculate the centroid: The property value of 
the new centroid for each cluster is equal to the average 
property value for all samples in this cluster.

Step 4. End criteria: It stops when the number of loops is 
greater than the maximum number of loops or the maximum 

Table 2   Comparison of partition clustering algorithms

Algorithm Advantages Disadvantages Time complexity Dataset

K-means Simple principle and good effect Sensitive to noise, local optimal Low O(n) Large-scale
Low dimension

K-medoids Good robustness for noise The distance among points must be calculated High O(kn2) Small-scale
Low dimension

FCM Be closer to global optimization The membership parameter m needs to be 
chosen, sensitive to noise

Low O(n) Large-scale
Low dimension

CLARA​ Larger datasets Local optimal Middle O(k(n−k−1)(n−k)) Large-scale
Low dimension
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value in the sequence composed of distances with all cen-
troid changes is less than the maximum distance with all 
centroid changes.

Step5. If Step 4 does not end, then Step 2 and Step 3 
are repeated. If Step 4 ends, the clusters and centroids are 
printed (or drawn).

(2)	 K-medoids. K-means and K-medoids algorithms are 
very similar. The only difference is that the K-medoids 
use the sample as the reference point, but K-means 
method uses the mean value. The centroids of the for-
mer can be any value in the continuous space, while 
the centroids of the latter can only be the sample in 
the data samples [47]. The reason is that K-means has 
high requirements for data samples and requires all data 
samples to be in a European space, which may cause 
errors for data with a lot of noise. For non-numerical 
data samples, real variables such as the mean value 
cannot be calculated [48]. Therefore, it can be said that 
K-medoids is an improvement of K-means. The differ-
ence between the two algorithms can be seen in Fig. 3 
[49, 50].

(3)	 FCM. In 1973, Bezdek et al. proposed the algorithm 
as an improvement on the early hard C- means cluster-
ing (HCM) method [51]. FCM is a fuzzy clustering 
algorithm based on the objective function that uses 
membership degree to make the value of each given 
data point between 0 and 1. And the sum of member-
ship degrees of all data must be 1. The advantage of 
introducing the concept of a fuzzy algorithm is that 
each input vector is no longer subordinate to a par-
ticular cluster, which may belong to several clusters. 
Then, clusters are partitioned according to the degree 
of similarity [52].

(4)	 CLARA. This algorithm is developed based on 
K-means and PAM algorithms [53]. PAM is the same 
as K-means, but the update process is achieved by 
replacing the centroid with each point of the cluster 

in Step 3. CLARA makes random sampling in the big 
dataset and then uses the PAM algorithm for each sam-
ple [54]. Finally, among the optimal center points of 
each sample clustering, CLARA looks for a clustering 
center with the lowest cost as the optimal clustering of 
the current big dataset.

2.3 � Density‑Based Clustering

One fundamental difference between density-based cluster-
ing and others is that it is not based on a variety of dis-
tances, but on density [27]. The guiding idea of this method 
is that a cluster is defined as the largest collection of points 
with similar density. The cluster keeps growing as long as 
the density of points in the dataset is greater than a certain 
threshold value, and the outside points with lower density 
are recognized as noise points. This means that arbitrary 
shape clustering that can be found in the data with “noise,” 
convex, concave, and polygonal datasets can all be clustered 
[55].

Advantages: (1) The algorithm can get non-spherical 
clustering results and represent the data distribution well. 
(2) The complexity level of the density-based algorithm is 
lower than the K-means algorithm. (3) It only considers the 
distance among points without the need of mapping points 
to a vector space.

Disadvantages: (1) It needs to calculate the distance 
among all points in advance. (2) If the volume of sample 
data is too large, a spatial index needs to be established and 
requires a large memory space of the whole distance matrix.

Several typical density-based clustering algorithms are 
given as follows, such as OPTICS (Ordering Points to Iden-
tify the Clustering Structure), DBSCAN (Density-Based 
Spatial Clustering of Applications with Noise), DENCLUE 
(Density Clustering), and Mean-shift. A detailed comparison 
of the advantages and disadvantages of these four algorithms 
is given in Table 3 [18, 29, 31, 55].

(1)	 DBSCAN was first proposed by Ester et al. in 1996 
[56]. Two new parameters are introduced in DBSCAN, 
i.e., eps—the radius of the neighborhood around a 
point, minPts—the number of points contained at least 
in the neighborhood. Then, according to these two 
parameters, the data points are divided into three cat-
egories: (1) Core point: The radius eps of an object is 
given and the number of samples in the neighborhood 
exceeds the threshold minPts. (2) Border point: The 
number of points within the eps is less than minPts, 
but the point still falls in the neighborhood of the core 
point. (3) Outliers: A sample that is neither a core point 
nor a border point [54, 57].

Fig. 3   Comparison between the K-means and K-medoids
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	   Figure 4 illustrates the process of the DBSCAN clus-
tering algorithm [31, 58, 59], where A is a randomly 
selected point in the sample points. First, set the radius 
and the minimum number of sample points contained 
within the circle and draw a circle around A. Then, if 
there are enough sample points within the circle, the 
center of the circle is transferred to these inner sample 
points, such as B, C, M, and N. At last, the circles have 
been drawn repeatedly until the number of circled sam-
ple points is less than the minPts.

(2)	 OPTICS was first proposed by M.Ankerst et al. in 
1999 [60], and it was an improvement of the DBSCAN 
algorithm. It has overcome the shortcoming of the 
DBSCAN algorithm, which is sensitive to neighbor-
hood radius and neighborhood minimum number of 
points. This algorithm does not directly display clus-
ters after grouping, but only sorts the objects in the 
dataset to get an ordered list. Then, a decision graph 
can be obtained, through which datasets with different 
eps parameters can be processed centrally [61].

(3)	 DENCLUE. Density Clustering [62] uses a total density 
function to describe the distribution of data. The contri-

bution of each point to the total density function is rep-
resented by an “Influence Function” or “Kernel Func-
tion,” and the total density value of a point in the data 
space is the sum of the influence density functions of 
each point associated with the point. DENCLUE uses 
a local density function that considers only the data 
points, which contribute to the overall density function 
[62]. There are local peaks (local density maximum) 
and local valleys (local density minimum), in which 
each peak corresponds to a cluster centroid, and the 
clusters are separated from one another by valleys.

(4)	 Mean-shift. Kernel function and weight coefficient have 
been introduced into the Mean-Shift algorithm [30]. At 
first, the algorithm assumes that the dataset of different 
clusters has different probability density distributions, 
then needs to find the direction where the density of any 
sample points grows fastest. These sample points even-
tually converge to the maximum value of local density, 
and the same local density points are considered to be 
members of the same cluster [63]. The most important 
step is to calculate the shift mean of each point and 
then update the location of the points according to the 
calculated shift mean.

2.4 � Model‑Based Clustering

Model-based clustering uses mathematical models to group 
the given data by solving optimization problems. The basic 
idea is to select an assumption model for each cluster and 
find the cluster that fits the assumption model best. There 
are mainly two kinds of model-based clustering algorithms, 
one is based on statistical learning and the other is based on 
neural network learning [30, 64].

The algorithms based on statistical learning use prob-
ability distribution of attributes to describe the clustering. 
In other words, the data set is generated through some sta-
tistical process and described by using the best-fit statistical 
model of the samples. The most typical example is the GMM 
(Gaussian Mixture Model) and COBWEB.

The algorithms based on neural network learning use 
a neuron to represent a cluster, and the input data are Fig. 4   Principle of DBSCAN algorithm

Table 3   Comparison of density-based clustering algorithms

Algorithm Advantages Disadvantages Time complexity Data set

DBSCAN Good robustness to outliers and can 
identify clusters of arbitrary shape

Require a lot of memory and I/O space Middle O(nlogn) Large-scale
Low dimension

OPTICS Overcome DBSCAN shortcomings An ordered list needs constant maintenance Middle O(nlogn) Large-scale
Low dimension

DENCLUE Fast, good robustness to outliers A large number of parameters affects the results Low O(logn) Large-scale
High dimension

Mean-shift Good robustness to outliers The width of the window function cannot be changed High O(kernel) Small-scale
Low dimension
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represented by neurons that are connected to the prototype 
neurons. Each connection has a weighting coefficient that 
is randomly initialized prior to the model learning. Two 
popular neural clustering algorithms are SOM (self-organ-
izing mapping) and ART (Adaptive Resonance Theory). A 
detailed comparison of the advantages and disadvantages 
of the above-mentioned four algorithms (i.e., GMM, COB-
WEB, SOM, and ART) is given in Table 4 [30, 31].

Advantages: (1) Considering noise and outliers, the num-
ber of clusters can be determined automatically. (2) They 
have high accuracy in various clustering methods.

Disadvantages: (1) They have a poor clustering effect on 
large data sets and high-dimensional data. (2) They are not 
suitable for complex Web data.

The four algorithms are described in detail as follows:

(1)	 GMM. It is similar to K-means clustering. The idea is 
to find a mixed representation of the probability dis-

tribution of the multi-dimensional Gaussian model, 
then fit the data distribution of any shape by increas-
ing the number of models. The whole process can be 
seen visually in Fig. 5 [65, 66]. Each GMM consists 
of K Gaussian distributions, each of which is called a 
“component” and these components are linearly added 
together to form the probability density function of the 
GMM.

(2)	 COBWEB. The core idea of COBWEB is to build a 
classification tree, based on some heuristic criteria, to 
realize hierarchical clustering on the assumption that 
the probability distribution of each attribute is inde-
pendent [30, 67]. There are many conditional probabil-
ity models of classes based on feature space partition. 
What we need is a decision tree with less contradic-
tion with training data and good generalization ability. 
Decision tree learning expresses this objective in terms 
of a loss function that is usually a regularized maxi-
mum likelihood function.

(3)	 SOM. The core idea of SOM is to establish a map-
ping of dimension reduction from a high-dimensional 
space to a two-dimensional or three-dimensional fea-
ture space on the assumption that there is a topology 
in the input data [68]. In essence, it is a neural network 
with only the input layer and the competitive layer. The 
neurons in the input layer and neurons in the competi-
tion layer relate to each other by a weight coefficient. 
Every node in the competing layer represents a cluster. 
The training process is done in a “competitive learning” 
manner, where each input sample point finds a node 
in the competition layer that matches it best, which 
is called its activation node and is also known as the 
“winning neuron.” Then, the parameters of the acti-
vated nodes are updated by stochastic gradient descent. 
At the same time, the points adjacent to the active node 
also update the parameters appropriately according to 
their distance from the active node. SOM network 
structure is shown in Fig. 6 [69, 70].

(4)	 ART is an incremental algorithm whose core idea is to 
dynamically generate a new neuron to match a new pat-
tern and thus create a new cluster in the case of an insuf-

Table 4   Comparison of model-based clustering algorithms

Algorithm Advantages Disadvantages Time complexity Data set

GMM Understand easily, fast Not suitable for non-convex data sets High O(kt*n2) Small-scale
Low dimension

COBWEB The number of clusters is updated automatically Assumption probability distributions are 
some- times not true

Low (distribution) Large-scale
Low dimension

SOM Identify hidden patterns in data easily No target functions for comparing High (layer) Small-scale
High dimension

ART​ Better flexibility and stability for different input 
modes

Too much variability for time complexity Middle (type + layer) Large-scale
Low dimension

Fig. 5   Process of GMM
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ficient number of neurons at present. ART algorithm has 
three forms: ARTI [71] can process bipolar or binary 
signals; ART II [72] is an extended form of ART for 
processing continuous analog signals; ART III [73] is a 
hierarchical search model, which is compatible with the 
functions of the neural network and expands the two-
layer neural network to multilayer neural network.

2.5 � Grid‑Based Clustering

This method uses the idea of finite element analysis to divide 
the dimension into a finite number of cells that form a grid 
structure. And all clustering operations are performed on 
this grid structure [29]. The basic process of the grid-based 
clustering algorithm is as follows: First, the data space, W, 
is divided into grid cells. Then, the data object set, O, is 
mapped into grid cells, and the density of each cell is cal-
culated. Finally, according to the density threshold, minPts, 
input by the user, whether each grid cell is a high-density 
cell is determined, and clusters are formed by neighboring 
dense cell groups.

Depending on the strategy of searching subspace, the 
clustering is mainly based on bottom-up meshing algorithms 
and top-down meshing algorithms [74].

The bottom-up meshing method is based on the division 
of user input parameters, and the data space is evenly divided 
into equal parts according to the size of the grid cell. If all 
the data points fall into the same grid cell that belongs to the 
same cluster, each grid cell holds statistics that fall into the 
data within it. This grid cell containing a certain number of 
data points is called a high-density grid cell. Wave Cluster, 
CLIQUE, and ENCLUS are representative algorithms that 
use the bottom-up meshing method.

The top-down meshing method adopts the divide and 
conquers principle to recursively divide the data space to 
continuously reduce the scale of the problem. First, the 
original data space is divided into several larger regions, 
where the partitioning process is repeated until each region 
contains data points belonging to the same cluster. Then, 
these regions are the final grid cells. This method directly 
identifies the high-density grid cells or the connected high-
density grid cells as a cluster. However, the bottom-up mesh-
ing method requires only one linear scan of the data set and 
describes high-accuracy clusters [75]. The representative 
algorithm is STING.

Advantages: (1) It does not need to calculate distance 
and its processing time is independent of the number of data 
objects, but only relies on the number of dimension units in 
the quantitative space. (2) It can determine which clusters 
are adjacent easily. (3) It has high scalability and is suitable 
for parallel processing and increment updating.

Disadvantages: (1) Only clusters with horizontal or ver-
tical boundaries can be found, but clusters with oblique 
boundaries cannot be detected. (2) When processing high-
dimensional data, the number of grid cells will increase 
exponentially with the increase in attribute dimension. (3) 
Input parameters have a great influence on clustering results 
and are difficult to choose. (4) When there is noise in the 
data, the clustering result of the algorithm is poor if there is 
no special treatment.

Several typical grid-based clustering algorithms are 
given below, mainly STING (Statistical Information Grid), 
CLIQUE (Clustering in Quest), ENCLUS, and Wave Clus-
ter. A detailed comparison of these four algorithms is given 
in Table 5 [30, 31]:

Table 5   Comparison of grid-based clustering algorithms

Algorithm Advantages Disadvantages Time complexity Data set

STING The calculation is independent of the 
search

Boundaries can only be horizontal or 
vertical

Low O(n) Large-scale
High dimension

CLIQUE Combine the advantages of grid-based 
and density-based clustering

The best value for all subspaces cannot 
be found

Low O(n + k2) Small-scale
High dimension

ENCLUS The method of searching for subspaces is 
entropy-based

Many parameters, affect each other Low Similar to CLIQUE Small-scale
High dimension

Wave Cluster Belongs to undirected clustering Low accuracy Low O(n) Large-scale
Low dimension

Fig. 6   SOM network structure
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(1)	 STING is a grid-based multi-resolution clustering 
technique [76], which divides the spatial region of the 
input object into rectangular units, and the space can 
be divided by hierarchical and recursive methods. Each 
cell of a multilayer rectangular corresponds to different 
resolutions and forms a hierarchy. Statistics about the 
attributes of each grid cell (such as mean) are calcu-
lated and stored as statistical parameters in advance, 
and data points within a grid are a cluster. The hierar-
chical structure is shown in Fig. 7 [31].

(2)	 CLIQUE was developed by Agrawal et al. in 1998 [77]. 
It divides each dimension into nonoverlapping parti-
tions, and the whole embedded space is divided into 
units of data objects. Then, it uses a density threshold 
to identify dense units and finds the largest area that 
covers the cell, and the remaining dense cells that have 
not yet been covered are processed until all dense cells 
are covered. The algorithm has two core parameters: 
The mesh step size determines the partition of the 
space, and the density threshold is used to define the 
dense mesh [78].

(3)	 In ENCLUS, a technique is used to find clustering sub-
spaces: According to the specified entropy value, an 
effective subspace is found from the bottom to the top 

(starting from one dimension) [79]. Based on the search 
for effective subspace technology of the CLIQUE algo-
rithm, a method of searching for effective subspace 
based on entropy is proposed, and its entropy value 
is calculated for each subspace. If the value is smaller 
than the specified entropy value, the unit is effective.

(4)	 Wave Cluster is a multi-resolution clustering algorithm 
that aggregates data by imposing a multi-dimensional 
grid structure on the data space and then uses a wave-
let transform to upgrade the original feature space and 
find the dense region in the transformed space. Wavelet 
transform is a signal processing technique that decom-
poses a signal into sub-bands of different frequen-
cies. The data are transformed to preserve the relative 
distance among objects at different resolution levels. 
Clustering can be determined by seeking high-density 
regions in new space.

2.6 � Modern Clustering

With the progress of the times and the development of sci-
ence and technology, there are no longer limitations to using 
a single method of clustering in many cases. Researchers 
often combine several algorithms, including some methods 
of neural network and deep learning (DL), to get more com-
prehensive modern clustering technologies. The standard 
unsupervised learning method (such as clustering) requires 
selecting the relevant features of objects manually, while 
deep learning can automatically extract the relevant features. 
In addition, deep learning is end-to-end learning in which 
the network is given tasks such as raw data and classifica-
tion and can be done automatically. But deep learning is 
often complex and requires high-performance GPUs and 
large amounts of labeled data. Therefore, combining DL 
with clustering algorithms can reinforce complementary 
advantages.

This paper mainly introduces four kinds of modern clus-
tering which are easy to understand and widely applied, 
including those based on kernel, based on swarm intel-
ligence, based on spectral graph theory, and data stream. 

Fig. 7   Hierarchical Structure of STING

Table 6   Comparison of four 
modern clustering algorithms

Algorithm Time complexity Scalability Dataset

SM High (eigenvector + heuristics) Middle Small-scale; High dimension
NJW High (eigenvector) Middle Small-scale; High dimension
SVC High (kernel) Low Small-scale; Low dimension
Kernel K-means High (kernel) Middle Small-scale; Low dimension
PSO-based High (iterations) Low Small-scale; Low dimension
ACO-based High (iterations) Low Small-scale; Low dimension
STREAM Low O(kn) Middle Large-scale; Low dimension
CluStream Low (Online + Offline) High Large-scale; Low dimension
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Table 6 [30, 80–82] presents the specific comparison of four 
common modern clustering methods:

(1)	 Clustering Algorithm Based on Kernel. The kernel 
function is introduced into clustering, and a new clus-
tering target function on the basis of the classical clus-
tering algorithm can be obtained [22]. Then, by map-
ping the data of the input space to the high-dimensional 
space, the high-dimensional space is clustered linearly. 
In this way, the data are mapped to increase the differ-
ence of data and expand the linear division of data. The 
typical algorithms of this kind of clustering include 
kernel K-means [83], kernel FCM [84], SVC [85], and 
MMC [86]. The first two algorithms add kernel func-
tion to the original clustering method. The core idea 
of SVC (Support Vector Clustering) is to use kernel 
functions to map data points from data space in high-
dimensional feature space. In feature space looking 
for the smallest sphere that encloses all data points, 
it forms a contour that encloses the data points. These 
contours are interpreted as cluster boundaries. MMC 
(Maximum Margin Clustering) tries to find the hyper-
plane with the maximum margin to cluster and it can 
be promoted for the multi-label clustering problem.

	   Advantages: (1) It is suitable for high-dimensional 
data. (2) It can analyze noise and separate overlapping 
clusters. (3) It is suitable for any shape of clustering 
[30, 80].

	   Disadvantages: Because of the existence of kernel 
functions, it is not suitable for large-scale data sets and 
has high time complexity.

(2)	 Clustering Algorithm Based on Swarm Intelligence. 
The method is to combine the idea of the biological 
population-changing process in swarm intelligence and 
clustering, the most famous of which is ACO-based 
[87] and PSO-based [88]. The main idea of ACO (Ant 
Colony Optimization) is to build a model for search-
ing for a minimum cost path in a graph. Therefore, in 
the clustering process, data are distributed on the two-
dimensional grid randomly, and then, further operation 
can be conducted based on the decision of an ant to 
select data or not. At last, the process can be iterated 
to obtain satisfactory clustering results. PSO(Particle 
Swarm Optimization)-based clustering is suited for 
processing data points, which can be regarded as a 
particle. First, another clustering algorithm is used to 
get the initial cluster of particles. Then, based on the 
center, the cluster, the position, and the speed of each 
particle are constantly updated until satisfactory clus-
tering results are obtained.

	   Advantages: It is equipped with a great ability to 
cope with local optimal by maintaining, recombining, 

and comparing several candidate solutions simultane-
ously [82].

	   Disadvantages: Algorithms are too complex to be 
used for high-dimension and large-scale data sets 
because of the high time complexity.

(3)	 Clustering Algorithm Based on Spectral Graph Theory. 
The basic idea of this kind of clustering algorithm is to 
regard the sample points as the vertex and the similarity 
among the data as the weighted edge. Then, through a 
graph division method that can make the connection 
weight among different groups as small as possible and 
the connection weight among the edges in the same 
group as large as possible, in order to turn the clus-
tering problem into the division problem of the graph 
[89].

	   The success of this method is mainly that there is 
no high requirement on the form of the clusters. In 
addition, as long as making sure that a similar graph 
is sparse, they can effectively implement spectral clus-
tering. But choosing a good similarity graph is not so 
easy, and it is unstable when using different parameters. 
Therefore, this method cannot be used as a “black box 
algorithm,” so it is not possible to automatically detect 
the right cluster of any given dataset. There are recur-
sive spectral and multipath spectral, and the typical 
algorithms of those two categories are SM [90] and 
NJW [91], respectively. The two algorithms are clus-
tered in feature space by processing feature vectors in 
different ways.

	   Advantages: (1) It can get the global optimal solu-
tion. (2) It only needs a similar matrix as input. (3) It is 
suitable for high-dimensional arbitrary shape data.

	   Disadvantages: (1) It needs to set a large number of 
parameters in advance. (2) It has high time complexity.

(4)	 Clustering Algorithm for Data Stream. Data stream 
shares the characteristics of arriving based on sequence, 
large in scale, and limited frequency of reading [30]. In 
data stream environment, since large volumes of data 
arrive in a stream and these data points unfold with 
time, most of the conventional clustering algorithms 
are not sufficiently efficient. Therefore, some new types 
of data stream clustering algorithms have emerged. 
And STREAM [81], CluStream [92], and D-Stream 
[23] are three representative algorithms. STREAM 
organizes ordered data into a hierarchical clustering 
structure. CluStream is an incremental algorithm. 
Dynamically changing data can be processed online or 
offline through it. D-Stream is a framework for cluster-
ing stream data using a density-based approach. The 
algorithm uses an online component that maps each 
input data record into a grid and an offline component 
which computes the grid density and clusters the grids 
based on the density. The algorithm adopts a density 
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decaying technique to capture the dynamic changes of 
a data stream.

	   Advantages: (1) It can generate and adjust clusters 
efficiently in real time. (2) The system’s efficiency of 
space and time can be improved. (3) It can process data 
streams.

	   Disadvantages: It has a low clustering effect for time-
varying data of mixed types.

The comparison of six types of clustering algorithms is 
shown in Table 7, it is a summary of Sect. 2.

3 � Similarity Measures

The similarity of objects within a cluster is critical in the 
clustering process. A good cluster finds the greatest simi-
larity among its objects [93]. The measure of similarity 
in the cluster is mainly decided by the distance among its 
members. Similar data points are clustered into the same 
cluster in two-dimensional or three-dimensional space, 
while different or distant data points are placed in different 
clusters. In general, the similarity between objects a and b 
is Sim(a, b) , and the measured distance of objects a and b 
is d(a, b) , so the similarity is generally obtained by adopt-
ing Sim(a, b) = 1∕(1 + d (a, b)) . A valid distance measure 
should be symmetric, i.e., d(a, b) = d(b, a) and obtain its 
minimum value (ideally zero) in the case of identical vec-
tors. Typical distance calculation methods include [29, 31, 
93–95]:

3.1 � Minkowski Distance

Minkowski distance is a very common method to measure 
the distance among numerical points [96, 97]. Assuming that 
the coordinates of numerical points P and Q are as follows: 
P = (xi1, xi2,⋯ , xik) and Q = (xj1, xj2,⋯ , xjk) ∈ Rn . Then, 
Minkowski distance is defined as

where p ≥ 1 , xik is the value of the kth variable for the entity 
i , and xjk is the value of the kth variable for the entity j . 
For p = 1, it becomes Manhattan distance, and for p = 2, 
it becomes Euclidean distance. As p approaches infinity, 
Minkowski distance is transformed into Chebyshev distance.

Minkowski distance is intuitive and performs well when 
data clusters are isolated or compressed. However, it is inde-
pendent of the distribution of data and has certain limitations 
[93]. If the value of the x direction is much larger than that 
of the y direction, this distance formula will over-amplify 
the effect in the x dimension. Therefore, the normalization 
of continuous features is the way to solve this problem.

3.2 � Manhattan Distance

This is similar to walking on a street in a city, which only 
follows one of the x and y axes at a time and cannot walk 
diagonally between two points. This measure is defined as 
follows [29, 98]:

(1)dmin =

(
n∑

k=1

|||xik − xjk
|||
p

)1∕p

(2)dman =

n∑
k=1

|||xik − xjk
|||

Table 7   Comparison of six types of clustering algorithms

Clustering algorithm Applicable scene

Hierarchical clustering The hierarchical relationship of the cluster can be explored, and distance and similarity are easy to define. But they 
cannot move in other clusters in a hierarchy when two samples have been linked, and singular values can also have a 
bad impact

Partition clustering The principle and the implementation are easy and the convergence speed is high. But results are only locally optimal 
because of iterative methods, and it is more applicable to small and converged datasets

Density-based clustering The algorithm can get non-spherical clustering results and the complexity of the algorithm is lower than others. But it 
needs to calculate the distance among all points in advance

Model-based clustering It has high accuracy and the number of clusters can be determined automatically. But it has a poor clustering effect on 
large data sets, high-dimensional data, and complex Web data

Grid-based clustering It does not need to calculate distance and its processing speed is fast. It also has high scalability and is suitable for 
parallel processing and increment updating. But it needs to set input parameters in advance, and only clusters with 
horizontal or vertical boundaries can be found, but clusters with oblique boundaries cannot be detected

Modern clustering It is more suitable for high-dimensional data than traditional clustering algorithms. It can get the global optimal solu-
tion and generate and adjust clusters automatically in real time. But it needs to set a large number of parameters in 
advance and has high time complexity
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3.3 � Euclidean Distance

Euclidean distance [99] can be simply described as the geo-
metric distance between any two points in multi-dimensional 
space. Usually, original data are used instead of normal-
ized data. For example, if an attribute has a value within 
1–100, it can be used directly instead of being normalized 
to the interval of [0,1]. In this way, the original meaning of 
Euclidean distance is eliminated, so the advantage is that 
a new object does not affect the distance between any two 
objects. However, if the measurement criteria of the object 
attributes are different, such as using a scale of 10 and a 
scale of 100 when measuring fractions, the results may be 
greatly affected [100]. This distance is defined as follows:

3.4 � Chebyshev Distance

Chebyshev distance [29, 101] is mainly regarded as the min-
imum distance between two objects in a multi-dimensional 
space, which can be simply described as determining which 
cluster an object belongs to with a one-dimensional attribute. 
It is usually used for a specific case, such as an object moves 
to another object in a coordinate system. Chebyshev distance 
is calculated as follows:

3.5 � Cosine Similarity

Cosine similarity can be simply described as the size of the 
angle among the vectors formed by the attributes of two 
objects in space. Cosine similarity is applicable to sparse 
datasets [102]. For example, in document clustering, the 
document is usually composed of many zeros, which makes 
the data set sparse. Cosine similarity is very suitable for 
judging whether different documents are of the same clus-
ter. The normalized inner product for the Cosine measure 
is defined as

3.6 � Jaccard Similarity Coefficient

In data mining, attribute values are often binarized. By cal-
culating the Jaccard similarity, the similarity of two objects 

(3)deuc =

√√√√ n∑
k=1

(xik − xjk)
2

(4)dche = max(
|||xik − xjk

|||)

(5)dcos =
xT
i
⋅ xj

‖‖xi‖‖ ⋅ ‖‖‖xj
‖‖‖

can be obtained simply and quickly [32, 103]. However, for 
different attributes, the degree of binary type is not the same. 
It measures the similarity as the ratio of the intersection and 
the union of two sets (say S1 and S2):

3.7 � Mahalanobis Distance

This is the covariance distance of the data. It differs from 
the Euclidean distance in that it considers the relationship 
among attributes [29, 93]. Such as gender information is 
accompanied by height information, because the two pieces 
of information have a certain degree of correlation, and the 
measurement scale is independent. The calculation formula 
is as follows:

3.8 � Pearson Correlation

The correlation coefficient was first discovered by Bravais 
[104] and later shown by Pearson [105]. It is used to indicate 
the degree to which different objects deviate from the center 
line of fitting. First, many objects’ attributes are fitted into 
a straight line or curve, and then, the deviation degree of 
each object’s attributes relative to this line is calculated. The 
disadvantage of Pearson correlation is that it is sensitive to 
outliers. The normalized Pearson correlation for two vectors 
xi and xj is defined as

where xi denotes the average feature value of x in all 
dimensions.

3.9 � Dice Coefficient

It was first proposed by Dice [106]. The Dice coefficient 
measure is similar to the extended Jaccard measure, which is 
used to measure the similarity of two sets. Since a string can 
be understood as a set, the Dice distance can also be used to 
measure the similarity of strings [107]. It is defined as

(6)J(S1, S2) =
||S1 ∩ S2

||
||S1 ∪ S2

||

(7)dmah =
√

(xi − xj)
TS−1(xi − xj)

(8)dpea =
(xi − xi)

2
⋅ (xj − xj)

2

‖‖xi − x‖‖ ⋅ ‖‖‖xj − xj
‖‖‖

(9)ddic =
2xT

i
⋅ xj

‖‖xi‖‖2 + ‖‖‖xj
‖‖‖
2
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3.10 � Hamming Distance

The above measures are suitable for the data samples 
being clustered into the static numeric variable, but for the 
sequences of characters, the similarity is used to measure 
the following two metrics. Hamming first introduced this 
concept in the basic paper on error detection and correction 
code [108, 109]. It is used to measure the similarity between 
two binary codes.

Hamming distance represents the number of differ-
ent characters in the corresponding position of two (same 
length) strings. For example, the Hamming distance between 
1,101,101 and 1,001,001 is 2.

3.11 � Levenshtein Distance

For equal-length strings, which can be encoded in each letter 
by one-hot, the Mahalanobis distance or European distance 
can be used to measure the similarity. However, for the simi-
larity of two non-equal-length strings or arrays, they need to 
be calculated by edit distance, which is often called the Lev-
enshtein distance [110]. It is defined as the minimum num-
ber of edits required for one of two strings to be converted 
to another [111]. The edit operation includes replacing a 
character with another character, inserting a character, or 
deleting a character. In general, the smaller the edit distance, 
the greater the similarity between the two strings.

The Levenshtein distance equation is defined as follows:

where a and b are two arrays (string), i and j are the array 
subscript label.

3.12 � Dynamic Time Warping

Dynamic Time Warping (DTW) [28] is an algorithm to 
measure the similarity among time series. In general, 
this method, by stretching and compressing a time series, 
allows a computer to find an optimal match method between 
two given sequences within certain constraints. It has the 
advantage of allowing a point to map to multiple points in 
another sequence. Thus, the DTW distance allows for a more 
intuitive distance measure for time series that have similar 
shapes but are not aligned in time. Given two time series: 
T =

{
t1, t2,⋯ , tN

}
,N ∈ R and S =

{
s1, s2,⋯ , sM

}
,M ∈ R . 

The warping path is denoted as W = w1,w2, ...,wk, ...,wn , 
and wl =

(
p1, p2,⋯ pK

)
,K ∈ [max(N,M),N +M − 1] , the 

(10)leva,b(i, j) =

⎧
⎪⎪⎨⎪⎪⎩

max(i, j), if min(i, j) = 0

min

⎧⎪⎨⎪⎩

leva,b(i − 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i − 1, j − 1) + 1

, otherwise

elements pk = (al, bl) ∈ [1 ∶ N] × [1 ∶ M], k ∈ K  . Three 
other conditions should be met [112]:

(1)	 The boundary conditions:
	   p1 = (1, 1), pK = (N,M) . This condition constrains 

the starting and ending points of the path.
(2)	 The monotonicity condition:
	   a1 ≤ a2 ≤ ⋯ ≤ aK , b1 ≤ b2 ≤ ⋯ ≤ bK . This condi-

tion constrains the chronological order of the points.
(3)	 Step length conditions:

pk+1 − pk ∈ {(1, 0), (0, 1), (1, 1)}, k ∈ [1 ∶ K − 1] . This 
condition limits the jump step size of the algorithm when 
looking for a warping path.

DWT path and condition restrictions are shown in Fig. 8 
[113]. The DWT distance is calculated as follows:

 
The comparison of different similarity measures is shown 

in Table 8, it is a summary of Sect. 3.

4 � Evaluation Indicator

With more and more clustering methods, users need to 
choose a relatively better one, so it is necessary to determine 
the validity and accuracy of a clustering algorithm. Accord-
ing to the evaluation criteria to judge whether the similar-
ity among the objects in the same cluster is the maximum, 
the similarity among the objects in a different cluster is the 
minimum. At present, the validity evaluation indicator of the 
clustering algorithm can be divided into three categories: 
internal evaluation indicator, external evaluation indicator, 
and relative evaluation indicator [29–31, 93]. Among them, 

(11)dDWT = min

⎧⎪⎨⎪⎩

���� n�
k=1

wk∕n

⎫⎪⎬⎪⎭

Fig. 8   Graphs of the DTW wrapping path between time series with 
lengths of 8 and 6: a a path that meets all conditions, b a path that 
does not meet the boundary condition, c a path that does not meet 
the monotonicity condition, d a path that does not meet the step size 
condition
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the relative evaluation indicator is tested for different param-
eter settings of the clustering algorithm according to the 
evaluation criteria, and the optimal parameter settings and 
clustering mode are finally selected.

4.1 � Internal Evaluation Indicator

The internal evaluation indicator uses the attributes of a 
dataset to evaluate the merits of the clustering algorithm. 
Clustering quality is evaluated by calculating the overall 
similarity, the average inter-cluster similarity, or the average 
intra-cluster similarity. There is the within-cluster sum of 
squared error (SSE), compactness (CP), separation (SP), Sil-
houette coefficient, Calinski-Harabasz index (CH), Davies-
Bouldin Index (DBI), Dunn validity index (DVI), and so on.

4.1.1 � Within‑Cluster Sum of Squared Error

For each cluster, the distance between the samples in the 
cluster and the center point of the cluster is calculated, and 
then, the sum is obtained [114, 115]. In theory, the smaller 
the value, the better the validity and accuracy. The limita-
tion of this index is that it only considers the intra-cluster 
similarity and does not consider the relationship among dif-
ferent clusters.

The formula is as follows:

(12)SSE =

r∑
i=1

ni∑
j=1

(Xij − Xi)
2,Xi =

1

ni

ni∑
j=1

Xij

4.1.2 � Compactness

For a single cluster, the average distance between the sam-
ples in the cluster and the center point is calculated. Finally, 
the index can be calculated by taking the average value of 
all the clusters [116, 117]. It is like SSE, only the similarity 
intra-cluster is considered. The smaller the value, the better 
the clustering effect. It is defined as

where Ωi is the set of instances in cluster i , and wi is the 
central point of the cluster i.

4.1.3 � Separation

The final value is obtained by calculating the distance 
between the center points of pairwise clusters [117, 118]. In 
contrast to the compactness, this index only considers the 
inter-cluster distance. The larger the value, the better the 
clustering effect. It is defined as

where w denotes the central point of cluster, and k is the 
number of clusters.

4.1.4 � Silhouette Coefficient

For a sample point, the average distance between the sample 
point and other sample points in the cluster is defined as the 
cohesion of the cluster, and the average distance between the 

(13)CPi =
1

||Ωi
||
∑
xi∈Ωi

‖‖xi − wi
‖‖,CP =

1

K

K∑
k=1

CPk

(14)SP =
2

k(k − 1)

k∑
i=1

k∑
j=i+1

‖‖‖wi − wj
‖‖‖
2

Table 8   Comparison of different similarity measures

Similarity measures Applicable scene

Minkowski distance It is a very common method to measure the distance among numerical points. As the p value changes, it becomes 
other measures

Manhattan distance p = 1, as p increases, the larger value of the fractional vector will have a greater impact on distance. It is applicable 
to low-dimensional data sets which have discrete or binary properties

Euclidean distance p = 2, it is applicable to low-dimensional data, the advantage is that a new object does not affect the distance 
between any two objects

Chebyshev distance p = 3, it is usually used for a specific case, such as an object moves to another object in a coordinate system
Cosine similarity It is applicable to sparse datasets, such as document clustering
Jaccard similarity coefficient It is used to measure the similarity of two objects whose attribute values are binarized
Mahalanobis distance It is different from the Euclidean distance in that it considers the relationship among attributes
Pearson correlation The objects are in linear relation and positive distribution
Dice coefficient It is used to measure the similarity of two sets
Hamming distance It is used to measure the similarity between two binary codes
Levenshtein distance It is used to measure the similarity of two not equal-length strings or arrays
Dynamic Time Warping It is an algorithm to measure the similarity among time series data
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sample point and all sample points in the nearest clusters is 
defined as the separation degree of the cluster [119, 120]. 
Then, the calculation formula of the Silhouette coefficient 
of the sample is as follows:

where a is the cohesion of the cluster, and b is the separation 
degree of the cluster.

For the set of all samples, the Silhouette coefficient is the 
average of the Silhouette coefficient of each sample. The 
value of this index ranges from -1 to 1. When the degree 
of separation among clusters is larger than the degree of 
cohesion, the value of the Silhouette coefficient is approxi-
mately 1. Therefore, if the value of this index is close to 1, 
the clustering effect is good, and if the value is negative, the 
clustering effect is poor.

4.1.5 � Calinski‑Harabasz Index

The inter-cluster distance and intra-cluster distance are 
considered in this index [121]. The intra-cluster distance is 
represented by the distance between the sample point in the 
cluster and the center point of the cluster, and the inter-clus-
ter distance is represented by the distance between the sam-
ple point and the center point of other clusters. The larger the 
value of CH, the closer the inter-cluster distance, the farther 
the intra-cluster distance, and the better the clustering effect 
[122]. The calculation formula is as follows:

where SSB is the inter-cluster distance, SSW is the intra-clus-
ter distance, N is the sample size, and K is the number of 
clusters.

4.1.6 � Davies‑Bouldin Index

In the DB index proposed by Davies et al. [123], the distance 
between the sample point and the cluster center point is used 
to estimate the tightness within the cluster, and the distance 
among the cluster center points is used to represent the 
degree of separation among clusters. The farther the inter-
cluster distance, the closer the intra-cluster distance, the 
smaller the value of the DB index, and the better the cluster-
ing performance. The disadvantage is the use of Euclidean 
distance, which has a poor clustering effect on the circular 
distribution sample points [124]. Definitions are as follows:

(15)s =
b − a

max(a, b)

(16)

CH =
SSB

SSW
×
N − K

K − 1
=

K∑
i=1

ni ⋅ d(vi − v)

K − 1
∕

K∑
i=1

n∑
j=1

d(xj − vi)

N − K

where K stands for the number of clusters, ci is the center of 
the cluster i , �i is the average distance between any data in 
cluster i and ci , and d is the distance between ci and cj.

4.1.7 � Dunn Validity Index

Dunn index [125] is based on the idea of identifying cluster 
sets that are compact and well separated. It defines the ratio 
between the minimal inter-cluster distances to the maximal 
intra-cluster distance. It is computed as

The farther the inter-cluster distance is, the closer the 
intra-cluster distance is, the larger the DVI index is, and the 
better the clustering performance is. The number of clus-
ters with maximal DVI is taken as the optimal number of 
clusters and indicates that the clusters are compact and well 
separated [18]. But the disadvantage is that it only applies 
to discrete datasets.

4.2 � External Evaluation Indicator

The external evaluation indicator is evaluated based on 
a dataset that has a known group label so that the origi-
nal labeled data can be compared with the clustering out-
put results. The ideal clustering results of external quality 
assessment indicators are as follows: Data with different 
labels are aggregated into different clusters, and data with 
the same labels are aggregated into the same cluster. Typical 
external evaluation indicators are the Rand index (RI), Jac-
card index, F-measure (FM), normalized mutual information 
(NMI), adjusted mutual information (AMI), Fowlkes–Mal-
low’s index, and so on.

4.2.1 � Rand Index

RI is applicable for clustering where the results are divided 
into two categories [126]. Usually, results are divided into 
two categories according to whether they are consistent or 
not, so as to list the 2 × 2 statistics tables. Rand index is cal-
culated according to the table, and the formula is as follows:

(17)DB =
1

K

K∑
i=1

max
i≠j

(
�i + �j

d(ci, cj)
)

(18)
DVI =

min
0<m≠n<K

⎧
⎪⎨⎪⎩

min
∀xi∈Ωm

∀xj∈Ωn

����xi − xj
���
�⎫⎪⎬⎪⎭

max
0<m<K

max
0<n<K

����xi − xj
���
�

(19)RI =
TP + TN

TP + FP + TN + FN
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where TP is the number of true positives, TN is the number 
of true negatives, FP is the number of false positives, and 
FN is the number of false negatives. It reflects the percent-
age of consistent results in two kinds of clustering results, 
and its value range is 0–1. The closer it is to 1, the better the 
clustering effect is. But the false positives and false nega-
tives are equally weighted and this may cause the RI to be 
used only in certain application scenarios. At present, there 
is also a new index adjusted Rand index (ARI) [127], which 
is an improvement of RI.

4.2.2 � Jaccard Index

The Jaccard index is considered to identify the equivalency 
between two datasets. This is simply the number of unique 
elements common to both sets divided by the total number 
of unique elements in both sets [128, 129]. It is defined as 
follows:

It is similar to RI, 0 ≤ J(A,B) ≤ 1 , and the closer the Jaccard 
coefficient is to 1, the more similar the two data sets are.

4.2.3 � F‑measure

The F-measure is a series of indicators, and the specific 
F-measure is defined by introducing the parameter � . It is 
commonly used in information retrieval. The F-measure is 
also adopted in the classification model evaluation, and the 
clustering results are converted into classification results for 
evaluation through external labels [130, 131]. The formula 
is as follows:

where P is the precision rate and R is the recall rate. When 
� = 0, the recall rate is also 0, and the increase in � value may 
increase the weight of the recall rate in the final F-measure. 
It is also an improved index of the Rand index.

4.2.4 � Fowlkes–Mallow’s Index

The Fowlkes–Mallows index is defined as the geometric 
mean of the pairwise precision rate and recall rate [132, 
133]:

(20)J(A,B) =
||||
A ∩ B

A ∪ B

|||| =
TP

TP + FP + FN

(21)F� =
(�2 + 1)PR

�2P + R
,P =

TP

TP + FP
,R =

TP

TP + FN

(22)FMI =
TP√

(TP + FP)(TP + FN)

Its value range is also 0 to 1, and the closer it is to 1, 
the better the clustering effect is, and it does not need any 
assumptions about the clusters in advance.

4.2.5 � Normalized Mutual Information

The mutual information between two variables is used to 
measure the correlation between two pieces of information. 
If the two variables are completely independent, the mutual 
information is zero [134]. Therefore, NMI is often used to 
measure the level of fit between two clustering results �K and 
�L . The formula is as follows:

where nk and nl are the number of samples corresponding to 
the kth cluster obtained by the clustering algorithm and the 
lth cluster in the actual classification, respectively. nk

l
 is the 

common sample points owned in the cluster obtained by the 
clustering algorithm and the actual classification. NMI can 
also be expressed by the following equation:

and

where U is a group of data obtained by actual classification, 
and V  is a group of data obtained by clustering.

The values of mutual information are normalized to 
between 0 and 1 so that comparisons can be made among 
different datasets [135]. The closer the value of standardized 
mutual information is to 1, the better the clustering effect is.

4.2.6 � Adjusted Mutual Information

The values of mutual information and normalized mutual 
information are both affected by the number of clustering 
categories K, while AMI is not, and the range of value is -1 

(23)NMI(�K ,�L) =

K∑
k=1

L∑
l=1

nk
l
log(

nnk
l

nknl
)

�
(
K∑
k=1

nk log(
nk

n
))(

L∑
l=1

nl log(
nl

n
))

(24)MI(U,V) =

R∑
i=1

C∑
j=1

pij log(
pij

pi ⋅ pj
)

(25)NMI =
2MI(U,V)

H(U) + H(V)

(26)pij =

|||Ui ∩ Vj
|||

N
, pi =

||Ui
||

N
, pj =

|||Vj
|||

N

(27)H(U) = −

R∑
i=1

pi log pi,H(V) = −

C∑
j=1

pj log pj
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to 1 [136]. The larger the value is, the closer the results of 
the two kinds of clustering are. Definitions are as follows:

The comparison of different evaluation indicators is 
shown in Table 9, it is a summary of Sect. 4.

5 � Applications in Vehicles

Clustering technology is useful in plenty of applications. 
This section analyzes the application of clustering in the 
automotive industry in detail. Because the vehicle has a 
complex structure, it requires the coordinated operation of 
different systems, and many control strategies are applied to 
it. As an excellent method, clustering has been widely stud-
ied by many researchers in the automotive field. The specific 
applications are shown in Table 10 [137–143].

5.1 � Conventional Vehicles

The clustering algorithm has been studied in engines, sus-
pension, vehicle crashes, noise and vibration level assess-
ment, fault identification, and so on, see Fig. 9 [143–145].

5.1.1 � Vehicle Crash and Knock

In order to explore the knock threshold in automotive 
engines, a Gaussian mixture model (GMM) clustering-
based method was proposed by Shen et al. [146, 147] to 
learn the optimal threshold of the knock intensity metric 

(28)AMI =
MI − E(MI)

mean(H(U),H(V)) − E(MI)

in automotive engines, which minimized the probability of 
the judgment error of the knock event. The problem was 
formulated based on the assumption that the probability 
distribution model of knock intensity was a two-component 
GMM. It was a clustering problem in which parameters of 
the two-component GMM were optimized to maximize the 
likelihood of obtaining the measurements. One of the major 
challenges with vehicle crash frequency studies was how to 
deal with the unobserved heterogeneity in crash data. Gong 
and Wang [148] processed crash frequency data with hier-
archical clustering to capture more unobserved heterogene-
ity. In this study, the data of single crash accidents were 
first clustered into subgroups using a hierarchical cluster-
ing method, and then, a Random Effects Negative Bino-
mial model was applied to each subgroup with crash counts 
at an intersection as observations. A model with no data 
clustering was also estimated to serve as the comparison 
benchmark. With the collision data, the injury degree of the 
occupant or pedestrian in the accident could be analyzed by 
clustering regression [139, 149], and the correlation between 
them could be obtained.

5.1.2 � Vehicle Vibration and Acoustical Comfort

Vehicle vibration and acoustical comfort are crucial crite-
ria that may attract customers when purchasing a vehicle, a 
good suspension system and noise processing ability could 
make passengers more comfortable. Nguyen et al. [150] used 
fuzzy clustering to process historical road load data, based 
on the FISs, the desired force values were calculated accord-
ing to the status of the road at each time. Then, the B-ANFIS 
was used to build ANFISs for inverse dynamic models of 
the suspension system (I-ANFIS) to improve suspension 

Table 9   Comparison of different evaluation indicators

Evaluation indicators Applicable scene

The sum of squared error It is very suitable for K-means. The limitation of this index is that it only considers the intra-cluster similarity 
and does not consider the relationship among different clusters

Compactness For a single cluster, it is like SSE, only the similarity intra-cluster is considered
Separation In contrast to the compactness, this index only considers the inter-cluster distance
Silhouette coefficient It is used to determine the relative size of “intra-cluster distance” and “intra-cluster distance”
Calinski-Harabasz index The inter-cluster distance and intra-cluster distance are considered in this index. It cannot be used to compare 

different clustering algorithms and can only be used to select better parameters in one algorithm
Davies-Bouldin index This method is used in space–time sequence clustering. It can be used only if the similarity measure is used in 

European distance, which has a poor clustering effect on the circular distribution sample points
Dunn validity index It only applies to discrete datasets
Rand index It is applicable for clustering where the results are divided into two categories
Jaccard index It is considered to identify the equivalency between two datasets, especially the text dataset
F-measure It is an improved index of the Rand index. And it is commonly used in information retrieval
Fowlkes–Mallow’s index It does not assume anything for the clustering process. But sample categories need to be known
Normalized mutual information The method has a complex process and high precision, which can be compared between different datasets
Adjusted mutual information The values of MI and NMI are both affected by the number of clustering categories K, while AMI is not
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dynamics models and the control of dampers to reduce 
vibration levels. In addition, many references [140, 143] 
tried to determine the correlation between noise sources and 
the level of significance of their noise generation and clas-
sified them into empirical evaluation models. The objective 
was to propose an approach that clusters the level of sound 
and vibration into a few categories and classified them into 
those categories without implementing the subjective test 
that normally involves human assessment, then solves and 
avoids every noise problem effectively.

5.1.3 � Vehicle Fault Monitoring

For vehicle fault monitoring, some researchers performed 
vehicle data clustering (such as speed, engine torque, tem-
perature, wheel rotation speed, and so on), and the clustering 
result could be analyzed by using vehicle outlier informa-
tion caused by complex correlation of vehicle components 
[144, 151]. The cluster data of the representative attributes 
was sampled and the cluster characteristics were determined 
according to the relationship between the vehicle data and 
state. The vehicle outliers were monitored by the complex 
vehicle state, even on this basis, it was not difficult to get an 
accident prediction model. In addition, K-means clustering 
of the axle load spectrum of different vehicles in different 
time periods was used, and the corresponding road surface 
conditions were inferred according to the different clusters 
obtained. It could significantly improve the prediction accu-
racy of pavement performance in a certain area, so that the 
relevant departments could improve the conditions of the 
road [152]. In general, clustering processed any data in a 
vehicle well and provided the basis for further control and 
optimization.

5.2 � Intelligent and Connected Vehicles

The decision and control of intelligent and connected vehi-
cles need a large amount of historical data as support, and 
clustering, as a big data mining method, is very suitable 
for path planning, Internet of vehicles communication, and 
intelligent traffic monitoring. And the specific application is 
shown in Fig. 10 [153–155].

5.2.1 � Path Planning

For autonomous vehicles, the core is to automatically iden-
tify the surrounding obstacles and decide the best driving 
route. The shape of the car and the distance between them 
can be analyzed and evaluated through clustering, to get a 
better geometric path. Ewbank et al. [156] processed vehicle 
position parameters through fuzzy clustering, and it used 
unsupervised fuzzy clustering as the cornerstone of a pro-
posed heuristic, an assignment algorithm redistributed the 
demand points among the clusters based on their member-
ship grades, observing the vehicle capacity to save com-
putational time presenting optimal results. C. Besse et al. 
[157] compared a new distance(symmetrized segment-path 
distance) to the others according to their corresponding clus-
tering results obtained using both the hierarchical cluster-
ing and affinity propagation methods. And they tackled the 
issue of clustering trajectories of geo-localized observations 
based on the distance between trajectories. The above meth-
ods were all offline-based and could not store and update 
the historical data in real time. Therefore, the path planning 
method of cluster-based real-time online sharing was pro-
posed in Refs. [158, 159]. The proposed trajectory cluster-
ing algorithm took advantage of the network topology and 
time–space distance measurements within vehicle trajectory 
data. The time–space distance between two locations was 

Fig. 9   Application of clustering method in traditional vehicles [143–
145]

Fig. 10   Application of clustering in intelligent vehicles [153–155]
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dependent on the time-dependent shortest-path (TDSP) dis-
tance in the network, and the gap between the time stamps 
when the object was detected at each targeted location. In the 
future, the method combining clustering with deep learning 
may be the best solution to path planning problems [160, 
161].

5.2.2 � Intelligent Transportation System (ITS)

Traffic jam reduces the efficiency of transportation infra-
structure usage and increases travel time, air pollution as 
well as fuel consumption. Then, Intelligent Transporta-
tion System (ITS) came as a solution to this problem by 
implementing information technology and communications 
networks. One classical method of ITS was video camera 
technology [162]. Particularly, it has been applied to collect 
traffic data including vehicle detection and analysis. A new 
clustering method based on 3D information in real traffic 
video was used to classify the vehicle trajectory points, and 
vehicle type could be estimated to realize vehicle behavior 
analysis and vehicle classification. However, this application 
still had limitations when it had to deal with complex traf-
fic and environmental condition [163]. Therefore, clustering 
analysis was used in image segmentation [164] and pattern 
recognition [153] to overcome these limitations. Important 
information about dynamic traffic processes, such as the 
instantaneous number of vehicles, their weight, speed, and 
distance among vehicles, was available for precise position-
ing detection. These methods led to meaningful labels that 
could be automatically retrieved from large databases and 
also led to more efficient separation of the resulting feature 
space. At present, the autonomous coordinated transporta-
tion system based on the potential impact between driverless 

and manned vehicles is still being explored [154]. Thus far, 
the majority of the CACC studies have been focusing on 
the overall network performance with limited insights on 
the potential impacts of connected and autonomous vehicles 
(CAVs) on human-driven vehicles (HVs). This paper aims to 
quantify such impacts by studying the high-resolution vehi-
cle trajectory data obtained from microscopic simulation.

5.2.3 � The Internet of Vehicles

In recent years, the Internet of Vehicles (IoV) has provided 
promising solutions to upgrade traditional vehicular ad hoc 
networks (VANETs) to the next level. The information was 
exchanged between vehicles and the infrastructure of the 
vehicle (VANET) (manet or mobile self-networking), in 
order to improve efficiency and ensure traffic safety [165]. 
However, there were also some problems, such as too much 
data stored in the network, dynamic changes in vehicle nodes 
which caused frequent changes in the topology, and high 
restrictions on available resources. Therefore, the cluster-
ing method was usually used in VANETS. Dutta et al. [166] 
and Senouc et al. [167] made a study of the large-scale data, 
using hierarchical clustering, where vehicles were connected 
to the Internet through road-side unit gateways. Each vehi-
cle collected information about its neighboring nodes and 
updated the appropriate cluster heads in real time, while 
avoiding instantaneous failures caused by excessive data 
accumulation at a certain moment. Metaheuristic dragonfly-
based clustering algorithm (CAVDO) was used for cluster-
based packet route optimization to make a stable topology 
[138]. Considerable important parameters involved in the 
clustering process were the number of un-clustered nodes as 
a re-clustering criterion, clustering time, re-clustering delay, 

Table 10   Application of clustering method in vehicles

Type of vehicles Component Specific application Analysis

Traditional vehicles Engine
Suspension

The data of oil and gas, knock intensity
Load data, noise processing, stiffness, and 

strength

The basic data and parameters in the car are 
processed

It is not widely used
Others Fault locating or forecasting based on vehicle 

data
Intelligent vehicles Path planning

Internet of vehi-
cles communi-
cation

Identify obstacles and choose the best route
Vehicle network multimedia data processing and 

sharing

The decision-making process and Internet of 
Vehicles communication need to store a large 
amount of historical data

Pattern recognition needs to be used, and cluster-
ing can better realize data processing and online 
sharing

Intelligent traffic 
monitoring

Image segmentation, pattern recognition, location 
detection

New energy vehicles HEV
BEV
FCV

Energy management, power distribution
Charging and consistency of lithium batteries
Fuel cell fault identification, power distribution, 

hydrogen refueling station selection, vehicle 
configuration

The core is the battery and fuel cell. Charging 
or hydrogenation, microscopic analysis inside 
the battery and cell, and constant switching 
between different power sources, lots of data 
needs to be processed, so clustering is more 
suitable for it
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dynamic transmission range, direction, and speed. Accord-
ing to these parameters, results indicated that CAVDO out-
performed ACO-based clustering and CLPSO in various 
network settings. In order to solve the problem of resource 
limitation, IoV clustering needed to explore the correlation 
between multimedia data from vehicles. Vehicles with simi-
lar multimedia content were classified into the same cluster 
according to multimedia data analysis results. In addition, 
considering the limitation of the real-time problem and the 
vehicle location, the communication range in each clustering 
was considered. It might be a solution to maximize the stable 
sharing of the same resource [155].

5.3 � New Energy Vehicles

New energy vehicles (NEV) are the research hot spots in 
recent years, and clustering has been widely used in charge 
and discharge technology, energy management, and so on. 
The specific applications are shown in Fig. 11 [168–174].

5.3.1 � Hybrid Electric Vehicles

Hybrid electric vehicles were very popular in the market. 
The coordinated operation of the battery and engine of two 
power sources could adapt to different driving conditions. 
So clustering technology was usually used to assist energy 
management and rational switching of power sources to 
reduce energy consumption [175]. The most commonly used 
technology was clustering of speed and power information, 
and Zhou et al. [175]. used FCM to preprocess the driving 
data, including speed and acceleration sequence and selected 
three parameters to represent each driving sample, which 
were the average speed, speed standard deviation, and the 
average acceleration. Then, the dataset was divided into n 
high-dimensional driving vectors. In addition to the Markov 
chain method, a new power allocation strategy was obtained 

for energy management [173]. A further study applied clus-
tering for driving behavior recognition and real-time traffic 
information prediction. First, the driver style and personal 
information provided by the driver are analyzed, mainly the 
factors that could determine the driving behavior and pro-
vide the basis for the clustering. Then, the vehicle state and 
the driving state information were used as the attribute of 
the samples. The sample points of a period of time were 
integrated into a point set, as a sample of the final cluster-
ing analysis. Adaptive equivalent consumption minimization 
strategy or optimal rule-based pattern partitioning strategy 
was achieved [174, 176]. Some applications of clustering 
within batteries were described in detail in the following 
session.

5.3.2 � Battery Electric Vehicles

The clustering algorithm is widely used in charging technol-
ogy. Jurjen R. Helmus et al. [177] and Gilanifar et al. [137] 
constructed the charging demand prediction model based 
on the data statistics of the charging station. They overcame 
predefined stereotypical expectations of user behavior by 
using a bottom-up data-driven two-step clustering approach 
that clusters charging sessions and thereafter portfolios of 
charging sessions per user. But the influencing factors were 
not comprehensively considered. Therefore, many papers 
[171, 178] analyzed different distribution characteristics of 
EV charging loads in a period through clustering and pre-
dicted EV charging demands by considering actual traffic 
distribution data and weather conditions. The considered 
variables were the charging starting time determined by the 
real-world traffic patterns and the initial state of charge of 
a battery. And the forecasting processes included a cluster 
analysis to classify traffic patterns, a relational analysis to 
identify influencing factors, and a decision tree to establish 
classification criteria. In addition, clustering was also com-
monly used for the location selection of charging stations. 
The multi-level clustering method was usually adopted to 
cluster the charging demand positions of electric vehicles, 
and the utilization rate of charging stations and the traveling 
time of electric vehicles were taken as the objective func-
tions to seek the optimal positions [141, 179].

In addition, the internal structure and chemical proper-
ties of lithium-ion batteries also involved a large number 
of parameters, some people began to use modern cluster-
ing methods to evaluate the consistency of lithium-ion bat-
teries [168]. First, the features which reflected the static or 
dynamic characteristics of batteries are excavated. Second, 
a weighted method of multi-feature inconsistency was pro-
posed to evaluate pack consistency. Third, an improved 
Greenwald-Khanna algorithm was developed to cluster bat-
teries. Liu et al. [180] used the SOM clustering algorithm 
to further equalize the electrochemical performance of the 

Fig. 11   Application of clustering in new energy vehicles [168–174]
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battery to extend the battery life and improve performance. 
Experiments were conducted by dismantling the pack and 
measuring the capacity, voltage, and internal resistance data. 
Clustering analysis based on self-organizing map (SOM) 
neural networks is then applied to the measured data to form 
clusters of battery packs.

5.3.3 � Fuel Cell Vehicles

As a green power generation device, the fuel cell is widely 
used in vehicles. In recent years, many automobile manufac-
turers have been committed to the development of fuel cell 
vehicles (FCV) [181, 182], whose scale of production and 
application has expanded rapidly. FCV will be a hot research 
area in the future. At present, the clustering algorithm is 
rarely used in fuel cell vehicles.

Since clustering was often used in fault identification and 
image segmentation in traditional and intelligent vehicles, 
it could also be used to monitor the internal mechanism 
and to identify and classify faults in fuel cells. Zheng et al. 
[170, 183] studied air stoichiometry through electrochemical 
impedance spectroscopy (EIS), and a double-fuzzy method 
consisting of fuzzy clustering and fuzzy logic was devel-
oped to mine diagnostic rules from the experimental data 
automatically and to identify and classify the phenomenon 
of flooding or drying. On this basis, the influence of approxi-
mate relative humidity in the membrane, dynamics gases 
aspect, voltage behavior, and load demand on these two 
failures was considered in Ref. [184] to improve the per-
formance and life of fuel cells comprehensively. In order to 
further understand the internal microstructure of the cells, a 
three-phase segmentation technique of the anode image was 
usually used, the core of which was the quantum-inspired 
clustering algorithm [185, 186]. This mixture clustering 
model combined a quantum-inspired MRF-based fuzzy logic 
model with GMM. In addition, GMM-based negative log-
prior functions were designed as pixel distance metrics in 
the consequent part.

For the study of FCVs, clustering could also be used for 
power allocation, hydrogenation station selection, vehicle 
configuration, and so on. Fuel cells were often used in con-
junction with power batteries or ultracapacitors [187]. Fuzzy 
clustering [188] could achieve global power distribution to 
avoid hypoxia, enhance transient performance and extend the 
operating life of the hybrid system. The control employed 
fuzzy clustering-based modeling, constrained model predic-
tive control, and adaptive switching among multiple mod-
els. The reasonable arrangement of multiple cells and other 
components had a great influence on the transmission rate 
of hydrogen and water. Therefore, Kang et al. [169] and 
Bankupalli et al. [189] tried to design the vehicle configura-
tion through hierarchical clustering, and this allowed the 
efficient generation of decentralized control configuration 

as well as the entire hierarchy of block decentralized control 
configurations. In addition, a notion of modularity was used 
to evaluate the compactness and separation of the result-
ing clusters, allowing the identification of optimal control 
configurations, which could improve fuel efficiency greatly.

Finally, it is similar to the location selection of charg-
ing piles, and hydrogen refueling stations should also be 
distributed in all parts of the city as much as possible. As 
more stations will be added in the future, it will require a 
spatiotemporal clustering algorithm to better understand 
how the location of the station contributes to their respec-
tive behavior and utilization. Kalai [142] demonstrated 
an unsupervised temporal clustering approach and a large 
number of fuel types and hydrogenation time data need to 
be collected to make a plan for the location distribution of 
hydrogen refueling stations.

Compared with conventional combustion engine-driven 
vehicles, new energy vehicles have a great development 
prospect and are being promoted vigorously. But there are 
still many problems to be solved. Battery system involves 
a larger dataset, and cluster analysis can certainly provide 
more help for it.

6 � Future Development of Clustering

In the future, the main development directions of clustering 
are as follows [190, 191]:

(1)	 Clustering analysis is not only a process of selecting or 
designing clustering algorithms but also a process of 
data preprocessing and feature extraction. For an actual 
dataset, a large number of detailed mathematical calcu-
lations need to be completed during data preprocessing, 
and the quality of feature extraction may directly affect 
the final clustering results. Therefore, preprocessing 
and feature extraction need to be improved to reduce 
the time cost.

(2)	 In practical applications, datasets are characterized by 
complexity and diversity, so any clustering algorithm 
may not be suitable. Therefore, it is necessary to study 
the fusion of multiple algorithms based on understand-
ing the advantages and disadvantages of basic cluster-
ing algorithms, and the algorithms that can generate 
clusters of any shape will be the development direction 
of clustering algorithm research.

(3)	 In the era of big data, big data clustering algorithms 
will have a good development prospect, such as GPU-
based clustering, SPARK-based clustering, graph com-
puting framework (such as Pregel) clustering, Map 
Reduce clustering, and other new clustering concepts 
and technologies. Tasks can be distributed over many 
servers to perform a task decomposition.
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(4)	 The algorithm can be improved to enhance personaliza-
tion. Personalization algorithms synthesize information 
from the data and make appropriate conclusions, such 
as personal interests, then provide recommendations to 
users and induce them to perform certain behaviors.

(5)	 With the increasingly mature application of cloud com-
puting, Internet of Things and big data technology, the 
complexity of data to be clustered is unprecedented. 
Therefore, in the context of complex data, integrat-
ing quantum computing into the clustering algorithm 
to speed up data processing is also an important and 
demanding research hot spot.

7 � Conclusions

This paper introduces some basic ideas of various commonly 
used clustering algorithms and analyzes the advantages and 
disadvantages of each algorithm as well as their scope of 
application. Because there are many clustering algorithms, 
and new algorithms are being proposed all the time, thus to 
compare the clustering algorithms is necessary. But there 
are  many clustering technologies, some of which are almost 
unapplied. Therefore, this paper does not cover all the meth-
ods, it selects 20 kinds of commonly used traditional cluster-
ing algorithms with high practical value and more in-depth 
research and four kinds of modern new clustering methods 
and discusses each kind of clustering algorithm in detail. 
This paper illustrates the basic definition of the most used 
unsupervised learning method clustering, 6 categories of 
clustering algorithms, 12 commonly used similarity meas-
ures, and 13 clustering evaluation indexes. Finally, appli-
cations of clustering methods in the automotive field are 
illustrated. Since the current clustering technology still has 
limitations in areas like data dimension, data size and shape, 
stability and scalability, and parameter selection, more high-
performance clustering algorithms need to be proposed and 
applied in future studies.
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