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Abstract
Lithium-ion batteries have become one of the most promising technologies for speeding up clean automotive applications, 
where electrode plays a pivotal role in determining battery performance. Due to the strongly-coupled and highly complex 
processes to produce battery electrode, it is imperative to develop an effective solution that can predict the properties of 
battery electrode and perform reliable sensitivity analysis on the key features and parameters during the production process. 
This paper proposes a novel tree boosting model-based framework to analyze and predict how the battery electrode properties 
vary with respect to parameters during the early production stage. Three data-based interpretable models including AdaBoost, 
LPBoost, and TotalBoost are presented and compared. Four key parameters including three slurry feature variables and one 
coating process parameter are analyzed to quantify their effects on both mass loading and porosity of battery electrode. The 
results demonstrate that the proposed tree model-based framework is capable of providing efficient quantitative analysis on 
the importance and correlation of the related parameters and producing satisfying early-stage prediction of battery electrode 
properties. These can benefit a deep understanding of battery electrodes and facilitate to optimizing battery electrode design 
for automotive applications.
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Abbreviations
AdaBoost	� Adaptive boosting
AUC​	� Area under curve
CG	� Comma gap
CRISP	� Cross-industry standard process
DT	� Decision tree
EVs/HEVs	� Electric/hybrid electric vehicles
KNN	� K-nearest neighbors
KPI	� Key performance indicator
Li-ion	� Lithium-ion
LPBoost	� Linear programming boosting
MC	� Mass content

StLR	� Solid-to-liquid ratio
SVM	� Support vector machine
TotalBoost	� Total boosting

1  Introduction

Global challenges including dramatic climate change and 
depleting fossil fuel reverses have spurred the accelera-
tion of sustainable transportation technologies. Due to the 
advantages in terms of high energy density and low self-
discharging rates, lithium-ion (Li-ion) batteries have become 
one of the most promising energy storage devices in automo-
tive applications such as electric vehicles (EVs) and hybrid 
electric vehicles (HEVs) [1]. However, the performance of 
Li-ion batteries such as capacity, service life, and energy 
and power densities are heavily dependent on their electrode 
properties, which are largely determined by the related pro-
duction stages. To optimize battery performance, it is vital 
to understand the correlation between production parameters 
and battery electrode property variables [2].

Unfortunately, battery electrodes are produced 
under many intermediate substages with numerous 
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strongly-coupled variables or parameters [3]. As multi-dis-
ciplinary knowledge including electrical, mechanical, and 
chemical information is often involved in producing battery 
electrode, the analysis on the importance and correlation 
between the intermediate process parameters and the bat-
tery electrode variables is challenging and usually reliant 
on engineering expertise and the trial-and-error method [2, 
4]. These conventional methods are extremely laborious 
and time-consuming, and even lead to deteriorated quality 
control and difficulty in product rating at earlier stages [3]. 
In this context, it is imperative to devise an effective data-
based strategy to perform reliable sensitivity analysis on the 
aforementioned aspects.

With the rapid development of machine learning and 
intelligent computing techniques, data-based modeling 
solutions have become one of many popular tools for the 
final battery production management [5, 6]. A great deal 
of research has been conducted for internal battery states 
estimation [7, 8], battery aging prognostics [9, 10], battery 
fault diagnostics [11], cell equalization management [12], 
charging control [13, 14], and energy management [15, 
16]. Usually, effective battery management can be obtained 
based on suitable data-based models development [17]. 
However, these works mainly focus on the macro perfor-
mance improvement of batteries while little has been done 
on enhancing their related production process considering 
microscopic properties of battery electrodes [18]. As battery 
electrodes play a vital role in determining the final perfor-
mance of battery cells, it is also worthwhile to design effec-
tive data-based models for efficient analysis and prediction 
of battery electrode properties.

In comparison with the in-situ operation management of 
batteries with fruitful data-based modeling strategies, fewer 
existing works have been done on deriving data-based mod-
els to benefit battery production management. Among lim-
ited research regarding the monitoring [19] and adjustment 
[20] of battery production, a suitable data-based model to 
analyze and forecast battery intermediate properties is espe-
cially crucial. For example, on the basis of cross-industry 
standard process (CRISP), the data-based models using both 
linear regression and neural network models are proposed 
in Ref. [21] to predict battery properties and to identify the 
dependency of its production chain. By using a recursive 
feature elimination method, a data-based model is derived 
in Ref. [22] to identify improvement potentials and to ana-
lyze the relevant elements within the drying stage of battery 
production. After designing a statistical data-based solution 
to analyze the fluctuations of battery production, their effects 
on battery capacity are evaluated in Ref. [23]. The data-
driven methodologies from the most existing research are 
mainly utilized to perform property prediction during battery 
production, while little has been done on designing data-
based solutions, especially using interpretable framework, 

for in-depth analysis of the effects of process parameters 
on battery properties at key production stages [24, 25]. It 
should be known that the parameters from early production 
stages such as mixing and coating are crucial to determine 
the properties of battery electrodes [26]. To achieve smarter 
battery production management and optimize battery elec-
trode properties, it is vital to perform efficient sensitivity 
analyses of battery electrode properties with respect to its 
mixing and coating specifications.

Given the aforementioned consideration, a boosting-tree-
based interpretable machine learning framework is proposed 
for the sensitivity analysis of key production process param-
eters and the prediction of battery electrode porosity quali-
ties. This paper focuses on the effects of mixing and coating 
key parameters on final battery electrode properties. The key 
works done in this paper are summarized as follows: (1) to 
quantify the importance and correlation of four key param-
eters from both mixing and coating via a well-designed 
interpretable machine learning framework; (2) to classify 
and predict battery electrode porosity at early production 
stages via effective data-based models; (3) to evaluate and 
compare performance of typical AdaBoost model and two 
other improved tree boosting-based models (LPBoost and 
TotalBoost) for battery electrode property classification. 
All these developments can help battery engineers to effec-
tively produce high-performance batteries, further benefit-
ting smart battery production management for automotive 
applications.

2 � Battery Electrode Properties and Data 
Curation

In this section, the fundamentals of battery electrode produc-
tion and two key electrode properties are introduced, fol-
lowed by the description of battery electrode data curation.

2.1 � Fundamentals of Battery Electrode Production

As a key element of Li-ion batteries, electrode generally con-
sists of anode and cathode types. To produce high-quality 
battery electrodes, a highly complicated production process 
is generally required [27]. As shown in Fig. 1, after prepar-
ing electrode component formulation such as the electrode 
additive, active material, and polymeric binder, a mixing 
process is deployed to mix these components based on the 
formulation within a mixer such as soft blender to generate 
homogenous slurries. Then, a coating process is performed 
to coat slurries onto the surface of the collector foils. In 
general, copper foil is used for anode electrodes, while alu-
minum foil is often adopted for cathode electrodes. Then the 
intermediate product from coating stage would be dried by 
an oven with a predefined temperature and calendered by 
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applying mechanical pressure through two cylindrical rolls. 
Finally, a cutting process is performed to cut electrodes into 
proper shapes for coin or pouch battery cells. It should be 
noted that the whole production process of battery electrodes 
involves electrical, mechanical, and chemical operations. 
Specific equipment are usually required at all intermediate 
production stages [26].

As two key processes to produce battery electrodes, mix-
ing and coating are complicated with many strongly-coupled 
parameters, and these process parameters directly determine 
the properties of battery electrodes, further affecting the rel-
evant battery performance. In this context, a reliable solution 
is desired to forecast properties of battery electrode as well 
as analyze the sensitivity of related process parameters on 
the electrode properties at the early production stage and 
improve battery product performance. To achieve this, a 
tree boosting model-based interpretable machine learning 
framework is designed to forecast two properties of battery 
electrode, while both importance as well as correlations of 
some key process parameters are also analyzed and quanti-
fied. Specifically, two electrode property Key Performance 
Indictors (KPIs) including the electrode mass loading with 
unit of mg∕cm2 and porosity with unit of % are adopted. 
Mass loading is directly related to the final battery capacity 
while porosity is crucial for dealing with highly porous elec-
trodes. The effects of three mixing parameters including the 
mass content (MC) of active materials, solid-to-liquid ratio 
(StLR), and viscosity (Vis), as well as one coating parameter 
namely the comma gap (CG) on these two electrode proper-
ties are investigated. Here StLR represents the mass ratio 
between slurry solid and mass, while Vis affects the shear 
rate of coating stage, and CG is the gap between coating 
comma and coating roll. As the electrode mass loading is 
directly related to the final battery capacity and measured by 
a high- precision scale for weight while electrode porosity 

would deal with highly porous electrodes and be affected by 
other properties such as coating thickness and coating den-
sity, both of these two properties are worthy of exploration.

2.2 � Battery Electrode Data Curation

Data curation is a key step for modeling activities. Without 
the loss of generality, the battery electrode experimental 
dataset from Franco Laboratoire-de-Reactivite-et-Chimie-
des-Solides is adopted. Detailed experimental information 
and data explanation can be referred to Ref. [28]. The origi-
nal data set has a size of 656 samples in total. For each sam-
ple, three slurry parameters after mixing and one coating 
parameter are used to generate one related mass loading and 
porosity observation of battery electrode. To fully investi-
gate the prediction/classification performance of designed 
tree boosting-based models, both battery electrode mass 
loading and porosity are labeled with five classes (very 
low, low, medium, high, and very high). Specifically, for 
the electrode mass loading, very low and low represent the 
ranges of (0, 15] and (15, 25], respectively. Medium stands 
for the range of (25, 35], while high and very high refer to 
the ranges of (35, 45] and (45, 60], respectively. For the elec-
trode porosity, very low refers to the range of (0, 47.5], low 
refers to the range of (47.5, 50], medium reflects the range 
of (50, 52.5], while high and very high refer to the ranges of 
(52.5, 55], and (55, 70], respectively. After setting battery 
electrode mass loading and porosity with predefined class 
labels, the tree boosting model-based interpretable machine 
learning framework for prediction/classification of both elec-
trode properties as well as sensitivity analyses of process 
parameters can be designed.

3 � Ensemble Learning Technologies

In this section, the fundamentals of AdaBoost are first intro-
duced, followed by the descriptions of another two improved 
boosting techniques including LPBoost and TotalBoost. 
Then the framework of using tree boosting-based model 
to predict battery electrode properties and analyze related 
process parameters of interest is designed. Some indicators 
are also given to evaluate the performance of established 
models.

3.1 � AdaBoost, LPBoost, and TotalBoost

Boosting is one of the most popular solutions to derive 
ensembled tree-based models. The key idea of boosting is to 
sequentially train different weak hypothesis, while the train-
ing dataset’s distribution would be also changed dynami-
cally based on the performance of previously trained weak 
hypothesis.

Mixing Coating

Drying and Calendering

Slurries

Electrode Batteries
Electrified Automotive

Application

Cutting

Fig. 1   Typical processes of battery electrode production
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Adaptive boosting (AdaBoost) is a typical and effec-
tive boosting solution for prediction applications 
[29]. Let training dataset TD includes M observations 
a s :  TD =

{(

x1, y1
)

,
(

x2, y2
)

,… ,
(

xM , yM
)}

 .  Here  xm 
(m = 1, 2,… ,M) reflects the input vector of correspond-
ing battery process parameters, ym (m = 1, 2,… ,M) stands 
for the preset classification labels with a total number of 
C , L(x) stands for a weak hypothesis that would provide an 
output result related to x , the detailed process to establish 
AdaBoost-based classification model is summarized in 
Workflow 1.

Based upon AdaBoost, another two effective boosting-
based strategies including the linear programming boosting 
(LPBoost) and total boosting (TotalBoost) are also explored. 
It should be noted that both LPBoost and TotalBoost have 
the similar establishment workflow as AdaBoost, but these 
two improved solutions would be self-terminating and 
produce ensembles with small weights. More information 
regarding the process to establish LPBoost-based model and 
TotalBoost-based model are described in Workflow 2 and 

Workflow 3, respectively. To be specific, LPBoost adopts 
the weighted linear combination of weak hypothesis, so 
that a weak hypothesis can be added in each iteration with 
the adjustment of previous weak hypothesis’ weights [30]. 
TotalBoost realizes the classification through maximizing 
the minimal margin [31]. More details of these two boosting 
solutions can be found in Ref. [32].
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Fig. 2   Detailed structure of tree boosting-based model for battery 
electrode properties prediction and parameter analyses
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3.2 � Framework of Designing Tree Boosting‑Based 
Model for Analyzing Battery Electrode 
Properties

To well predict the properties of battery electrode and effec-
tively analyze the sensitivity of mixing as well as coating 
related parameters, a novel interpretable machine learning 
framework with a tree boosting-based model structure as 

shown in Fig. 2 is designed. To be specific, three mixing 
parameters (MC, StLR, and Vis) and one coating parameter 
(CG) are utilized as the inputs to the model, while the rel-
evant manufactured battery electrode properties including 
electrode mass loading and porosity are used as outputs. As 
illustrated in Fig. 3, the detailed framework of using tree 
boosting-based technique to carry out the sensitivity analysis 
and forecast/classify the qualities of relevant electrode mass 
loading as well as porosity can be summarized with four key 
parts as follows:

Part 1. Data preprocess The raw data related to battery 
electrode production will be first preprocessed to remove 
outliers and add the missing values. Through setting the 
thresholds of manufactured electrode mass loading and 
porosity as [5 mg∕cm2 , 60 mg∕cm2 ] and [30%, 70%], 
respectively, the outliers outside these thresholds would be 
removed, further providing a robust result under uncertain-
ties during battery production. Afterward, the output obser-
vations will be set with the relevant classification labels. 
According to the predefined rules in Sect. 2.2, five labels 
including very low, low, medium, high, and very high are 
set to reflect the qualities of both battery electrode mass 
loading and porosity.

Part 2. Tree boosting-based model construction To 
establish effective tree boosting-based model, the hyper-
parameters of AdaBoost, LPBoost, and TotalBoost-based 
models need to be determined. It should be known that for 
all these three boosting solutions, decision tree is usually 
selected as their weak hypothesis. Two main hyper-parame-
ters require to be preset: the number of ensembled decision 
tree ( N ) and their learning rates ( r ). In theory, large N leads 
to the improved prediction accuracy, but too many decision 

Fig. 3   Framework of designing 
tree boosting-based model to 
predict battery electrode proper-
ties and perform sensitivity 
analyses of parameters
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trees will also cause overfit and increase the computational 
effort. In order to determine a suitable N, an iteration strat-
egy through comparing learner weights via various num-
bers of utilized weak hypothesis is adopted. For learning 
rate r , it reflects a decay rate of each hypothesis’s weight, 
further affecting the performance of each decision tree. As 
suggested by Ref. [33], r could be set as 0.1 for the general 
prediction/classification applications. After these two hyper-
parameters are set, all these tree boosting-based models can 
be well-trained with the process as illustrated in their related 
workflow.

Part 3. Importance and correlation analyses To quantify 
how important the battery production process parameters 
would affect electrode properties, Gini index that represents 
the variation of impurity due to the splits of each parameter 
is utilized. For the tree-based classification, in theory, impu-
rity could stand for how good a potential split is for deci-
sion tree’s nodes [33]. The larger Gini index value a process 
parameter can obtain, the greater effect that this parameter 
could impose on battery electrode. Besides, to carry out the 
correlation analysis of each battery production parameter 
pair, predictive-measure-of-association (PMOA) is uti-
lized. Supposing two parameters of interest are pi and pj , 
the PMOA value to reflect their correlation is calculated by:

where l and r represent the left child and right child of 
nodes; OPl and OPr mean the observation proportions of 
pi < y and pi ≥ y , respectively; OPli,j is the observation 
proportion under the condition of pi < y and pj < z , while 
OPri,j reflects the observation proportion under the condition 
of pi ≥ y and pj ≥ z . The process of obtaining PMOA is to 
investigate all the potential splits with the best case that is 
obtained during decision tree’s training stage. In this con-
text, PMOA has the ability to quantify the similarity between 
different rules for splitting observation.

Part 4. Results visualization After obtaining the Gini 
index for each parameter of interest, the relevant feature 
importance ranking can be generated. After using Eq. (1), 
the PMOA values of all parameter pairs can be obtained and 
shown as a 4 × 4 heat map. Both of these visualization results 
could give information for users to directly understand the 
importance and correlations of parameters that could affect 
battery electrode properties.

3.3 � Performance Indicators

To further quantify and investigate the prediction/classifica-
tion performance, confusion matrix (CM) is adopted as a 
key performance indicator. Supposing positive stands for an 
interested class while negative relates to other classes, four 

(1)PMOAi,j =
min

(

OPl,OPr

)

− 1 + OPli,j + OPri,j

min
(

OPl,OPr

)

basic elements including the true positive ( TP ), true negative 
( TN ), false positive ( FP ), and false negative ( FN ) could be 
obtained. Afterwards, the positive predictive value PPV

(

Ci

)

 
as well as false discovery rate FDR

(

Ci

)

 of interested class 
can be obtained:

Then a popular performance indicator for the accuracy of 
classification results namely micro F1 score ( microF1 ) can 
be calculated as:

where TPall and TNall represent all correct classifications, and 
Ntotal means the total amount of observations.

Besides, the receiver operating characteristic (ROC) 
curve as well as its area under curve (AUC) value are 
adopted to explore the results of electrode properties pre-
diction/classification. It should be known that ROC curve 
is a statistical plot to reflect the diagnostic ability of a clas-
sification model under the case of varying its discrimination 
threshold [34]. The AUC could give the degree or measure 
of separability of classes.

4 � Results and Discussions

In this section, on completion of all steps within the parts 
from Sect. 3.2, the forecast and sensitivity analysis tests by 
designing proper tree boosting-based models are carried 
out to quantify both importance and correlations of four 
input battery production parameters of interest, while the 
battery electrode mass loading as well as porosity quali-
ties will be also classified. Without the loss of generality, 
all designed tree boosting-based models (AdaBoost, Total-
Boost, and LPBoost) are evaluated through using the five-
fold cross-validation. It should be known that for different 
folds of cross-validation, these quantified importance and 
correlation values would present the same trends without 
large difference.

4.1 � Case Study 1: Li‑ion Battery Electrode Mass 
Loading

4.1.1 � Model Training

The first case study focuses on the prediction of battery elec-
trode mass loading and the relevant sensitivity analysis of 
four process parameters. To evaluate if the training process 
of all three tree boosting-based models could converge as 
well as to avoid overfitting of their training process, a test 
of using tree stumps with only 1 maximum split as weak 

(2)
{

PPV
(

Ci

)

= TP
(

Ci

)

∕
[

TP
(

Ci

)

+ FP
(

Ci

)]

FDR
(

Ci

)

= FP
(

Ci

)

∕
[

TP
(

Ci

)

+ FP
(

Ci

)]

(3)micro F1 =
(

TPall + TNall

)

∕Ntotal
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hypothesis is carried out. Figure 4 illustrates the related 
training error via the increased number of tree stumps. 
It is evident that the training errors of all these three tree 
boosting-based models could converge to 0 after using 23 
tree stumps, indicating that reasonable convergence results 
can be achieved for the battery electrode mass loading 
case. Then, the number of ensembled decision tree ( N ) for 
AdaBoost is set as a default value 50. As the weights of 
both LPBoost and TotalBoost cases are decreased via the 
number of ensembled weak hypothesis, to determine N of 
them, their hypothesis weights after compacting the cor-
responding weak hypothesis (decision tree) are illustrated 
in Fig. 5. Obviously, both LPBoost and TotalBoost-based 
models present clear decrease trajectories as the number of 
ensembled decision trees increases. Here, the weights of 
LPBoost and TotalBoost become negligible after using 19 
and 14 decision trees, respectively, indicating that a satisfac-
tory convergence of model training can be achieved. In this 
context, the N of LPBoost model and TotalBoost model are 

set as 19 and 14 for the case study of battery electrode mass 
loading, respectively.

4.1.2 � Parameter Sensitivity Analysis

After setting the hyper-parameters of all tree boosting-based 
models, the sensitivity analyses of how the process param-
eters of interest affect battery electrode mass loading can be 
conducted. After calculating the Gini index values of MC, 
StLR, CG, and Vis, their importance ranking is quantified, 
as illustrated in Fig. 6. It is shown that CG and Vis achieve 
the highest and lowest importance ranking among four inter-
ested parameters, indicating that CG and Vis play the most 
and least effects on determining the mass loading property of 
electrode, respectively. This conclusion is reasonable as the 
coating weight as well as thickness that directly determine 
battery electrode mass loading are significantly affected by 
CG in theory.

To quantify the correlations of each process parameter 
pair for electrode mass loading case, the PMOAs of all 
pairs derived from four parameters (MC, StLR, CG, and 
Vis) are calculated and visualized with a heat map matrix, as 
shown in Fig. 7. Quantitatively, the largest value of PMOA is 
achieved for the pair of MC and StLR, but this value is just 
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around 0.7. Besides, most other PMOA values are between 
0.1 and 0.6. In light of this, no strong correlations of process 
parameter pairs exist for electrode mass loading case.

4.1.3 � Classification Performance Evaluation

After well establishing the tree boosting-based models, the 
microF1 values of battery electrode mass loading prediction 
for AdaBoost model, LPBoost model, as well as TotalBoost 
model cases are illustrated in Table 1. The corresponding 

confusion matrix and ROC curves are also shown in Figs. 8 
and 9, respectively.

It is shown that battery electrode mass loading can be 
well predicted through using these four parameters at the 
early prediction stage as the microF1 values for all models 
are larger than 89%. Quantitatively, TotalBoost-based model 
presents the best classification result with a microF1 value of 
92.7%, which is 2.8% and 3.3% larger than that of LPBoost 
and AdaBoost cases, respectively. From Fig. 9, the AUC 
value of TotalBoost case is the highest one with 0.97, which 
is 4.3% and 3.2% larger than that of AdaBoost and LPBoost 
cases, respectively. In light of this, the designed TotalBoost 
model presents the most competent performance for clas-
sification/prediction of battery electrode mass loading case.

Table 1   Performance indicator 
of all these three tree boosting-
based models for electrode mass 
loading case

Tree boosting-based 
models

microF1 
values 
(%)

AdaBoost 89.7
LPBoost 90.2
TotalBoost 92.7

Fig. 8   Confusion matrix of 
battery electrode mass loading 
classification under different 
tree-based models

'high'
'low'

'medium'

'very high'

'very low'

Predicted Class

'high'

'low'

'medium'

'very high'

'very low'Tr
ue

 C
la

ss

AdaBoost

10.5%

75.0%

8.3%

16.7%

19.0%

10.0%

89.5%

81.0%

100.0%

90.0%

10.5%

75.0%

25.0% 19.0% 10.0%

89.5% 81.0% 100.0% 90.0%PPV

FDR

'high'
'low'

'medium'

'very high'

'very low'

Predicted Class

'high'

'low'

'medium'

'very high'

'very low'Tr
ue

 C
la

ss

LPBoost

7.7%

15.4%

5.0%

5.0% 9.1%

76.9%

100.0%

90.0%

100.0%

90.9%

23.1% 10.0% 9.1%

76.9% 100.0% 90.0% 100.0% 90.9%PPV

FDR

'high'
'low'

'medium'

'very high'

'very low'

Predicted Class

'high'

'low'

'medium'

'very high'

'very low'Tr
ue

 C
la

ss

TotalBoost

9.1%

4.5%

10.0%

9.1%

86.4%

100.0%

90.0%

100.0%

90.9%

13.6% 10.0% 9.1%

86.4% 100.0% 90.0% 100.0% 90.9%PPV

FDR

(a) (b)

(c)



129Data‑Based Interpretable Modeling for Property Forecasting and Sensitivity Analysis of Li‑ion…

1 3

4.2 � Case Study 2: Li‑ion Battery Electrode Porosity

4.2.1 � Model Training

The second case study focuses on the Li-ion battery elec-
trode porosity. As illustrated in Fig. 10, the training errors 
of both TotalBoost and LPBoost cases converge to 0 after 
the number of tree stumps becomes larger than 33, while 
the error of AdaBoost case could also converge to 0.06 after 
using 42 tree stumps. Therefore, all these three tree boost-
ing-based models are capable of achieving reliable conver-
gence results for battery electrode porosity case. Without 
the loss of generality, the hyper-parameter N of AdaBoost 
is also set as 50. To further determine N  of LPBoost and 
TotalBoost cases, their learner weights after compacting 
weak hypothesis (decision tree) are shown in Fig. 11. It is 
evident that the weight of LPBoost and TotalBoost would 
become negative after 32 and 12 decision trees are utilized, 
respectively. In light of this, N of LPBoost and TotalBoost 
cases is, respectively, set as 32 and 12 for battery electrode 
porosity prediction and analysis case.

4.2.2 � Parameter Sensitivity Analysis

For the sensitivity analysis of battery electrode porosity, 
after calculating the Gini index values of MC, StLR, CG, 
and Vis, the corresponding importance ranking is visualized 
in Fig. 12. Quantitatively, the quantified importance values 
of StLR and Vis are 0.051 and 0.049, which are higher than 
that from other parameters. This implies that StLR and Vis 
are the two most important process parameters to determine 
battery electrode porosity. In contrast, MC shows the mini-
mum Gini index with 0.032, which means that it provides 
the lowest effects on the classification/prediction of battery 
electrode porosity.

To quantify the correlations of each parameter pair for 
porosity case, the PMOAs of all pairs are calculated and 
visualized with a heat map matrix, as illustrated in Fig. 13. 
Obviously, the PMOA of MC and StLR pair gives the larg-
est value around 0.9, indicating that there exists relatively 
strong correlations between these two process parameters. 
This result is expected as the mass ratio of slurry solid and 
mass present strong correlations with the electrode porosity 
in theory. For other parameter pairs, their PMOAs are all 
lower than 0.6, indicating that no strong correlations of these 
parameter pairs exist in determining the battery electrode 
porosity.

4.2.3 � Classification Performance Evaluation

After using all three well-trained tree boosting-based models 
to forecast/classify battery electrode porosity, their relevant 
confusion matrices and microF1 values are illustrated in 

Fig. 9   ROC curves of battery electrode mass loading classification 
under different tree-based models
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Fig. 14 and Table 2, respectively. Quantitatively, AdaBoost-
based model presents the worst classification result with 
71.2% microF1 , while TotalBoost-based model achieves 
the best result of 74.1% microF1 , which is 2.1% better than 
that of LPBoost. Figure 15 illustrates the ROC curves of 
battery electrode porosity classification results through vari-
ous tree-based models. It can be noted that the AUC values 
of all models are higher than 0.9. Quantitatively, AUC of 
TotalBoost-based model presents the largest value with 0.94, 
which is 2.2% and 3.3% larger than that of LPBoost-based 
model and AdaBoost-based model, respectively. Therefore, 
the proposed tree boosting-based interpretable machine 
learning framework is able to forecast/classify the battery 
electrode porosity with satisfactory AUC values at the early 
mixing and coating stages, while TotalBoost-based model 
also shows the most competent performance among these 
three adopted boosting techniques. Besides, it can be noticed 
that the prediction performance of “high” label gets worse 
than others for both electrode mass loading and porosity 
cases. This is mainly because the natures of “high” and 
“very high” classes determined by battery manufacturer are 

similar, while some observations with “high” label are clas-
sified into “very high” class.

4.3 � Discussion of Performance and Benefits

4.3.1 � Comparisons with Other Approaches

To further evaluate the performance of designed boosting-
tree-based models, another three widely utilized existing 
approaches including the decision tree (DT), k-nearest 
neighbors (KNN), and support vector machine (SVM) are 
compared here. Specifically, DT is a single tree. KNN is 
a typical instance learning-based approach relying on the 
instance for classification. SVM is a kernel-based classifi-
cation method through mapping inputs to high-dimensional 
space [35]. Without the loss of generality, five-fold cross-
validation is utilized for these comparisons, and their per-
formance indicators for both electrode mass loading and 
porosity are illustrated in Table 3. It can be noticed that DT 
presents the worst results, while SVM gives the best results 
of 89.3% microF1 and 68.3% microF1 for electrode mass 
loading and porosity cases, respectively. However, all these 
results are worse than boosting-tree-based models. In this 
context, due to the benefits of boosting solution, the pro-
posed framework provides competent predictions of battery 
electrode mass loading and porosity.

4.3.2 � Further Discussions

According to the predictions of both electrode mass load-
ing and porosity, TotalBoost-based model presents the best 
results while AdaBoost-base model is the worst one for both 
these two cases. This is mainly due to the fact that compared 
with AdaBoost, both LPBoost and TotalBoost have the abili-
ties to automatically adjust weights. Here the TotalBoost is 
also able to realize the classification by maximizing the min-
imal margin, further generalizing well for battery electrode 
property predictions. The statistical metrics obtained from 
the designed tree boosting model-based framework presents 
extensive connection to the battery production management 
strategy. For example, as battery manufacturing line owns 
numerous strongly-coupled feature parameters, monitoring 
all these feature parameters all the time is inefficient and 
would cause large cost. The battery manufacturer can uti-
lize the feature importance and correlation information from 
the proposed approach to readjust the monitored features 
and better understand dependency among these features. 
Moreover, according to the prediction results of electrode 
properties, battery manufacturer is able to reoptimize related 
parameters to improve the qualities of battery product at 
early manufacturing stage, further enhancing battery manu-
facturing efficiency.
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5 � Conclusions

Electrode is a crucial part for determining the performance 
of batteries and related automotive applications. In this 
study, an effective tree boosting-based interpretable machine 
learning framework is designed for effective sensitivity anal-
ysis of process parameters and forecast/classify the battery 
electrode mass loading and porosity for the first time.

Some conclusions can be drawn as follows:

(1)	 StLR is a key process parameter to determine both elec-
trode mass loading and porosity. CG is important for 
electrode mass loading while Vis is crucial for elec-
trode porosity case.

(2)	 With the largest PMOA value, there is a relatively 
strong correlation between MC and StLR pair for both 
electrode mass loading and porosity cases.

(3)	 Electrode mass loading can be well captured by using 
process parameters of MC, StLR, CG, and Vis, while 
more other process parameters should be considered to 

Fig. 14   Confusion matrix 
of battery electrode porosity 
classification under different 
tree-based models
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Table 2   Performance indicator 
of all these three tree boosting-
based models for electrode 
porosity case

Boosting-based 
models

microF1 
values 
(%)

AdaBoost 71.2
LPBoost 72.6
TotalBoost 74.1
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improve the quality classification of battery electrode 
porosity.

Due to the advantage of data-driven nature and sensi-
tivity analysis ability, the designed tree boosting model-
based framework can be utilized to analyze more battery 
manufacturing parameters when related data are available, 
further benefitting the understanding of battery electrode 
properties and wider applications of battery-based automo-
tive applications.
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