
Vol.:(0123456789)1 3

Automotive Innovation (2021) 4:373–389
https://doi.org/10.1007/s42154-021-00161-1

Simulator Coupled with Distributed Co‑Simulation Protocol
for Automated Driving Tests

Max‑Arno Meyer1  · Lina Sauter1 · Christian Granrath1 · Hassen Hadj‑Amor2 · Jakob Andert1

Received: 18 December 2020 / Accepted: 30 August 2021 / Published online: 16 October 2021
© The Author(s) 2021

Abstract
To meet the challenges in software testing for automated vehicles, such as increasing system complexity and an infinite
number of operating scenarios, new simulation methods must be developed. Closed-loop simulations for automated driving
(AD) require highly complex simulation models for multiple controlled vehicles with their perception systems as well as their
surrounding context. For the realization of such models, different simulation domains must be coupled with co-simulation.
However, widely supported model integration standards such as functional mock-up interface (FMI) lack native support for
distributed platforms, which is a key feature for AD due to the computational intensity and platform exclusivity of certain
models. The newer FMI companion standard distributed co-simulation protocol (DCP) introduces platform coupling but
must still be used in conjunction with AD co-simulations. As part of an assessment framework for AD, this paper presents
a DCP compliant implementation of an interoperable interface between a 3D environment and vehicle simulator and a co-
simulation platform. A universal Python wrapper is implemented and connected to the simulator to allow its control as a
DCP slave. A C-code-based interface enables the co-simulation platform to act as a DCP master and to realize cross-platform
data exchange and time synchronization of the environment simulation with other integrated models. A model-in-the-loop
use case is performed with the traffic simulator CARLA running on a Linux machine connected to the co-simulation master
xMOD on a Windows computer via DCP. Several virtual vehicles are successfully controlled by cooperative adaptive cruise
controllers executed outside of CARLA. The standard compliance of the implementation is verified by exemplary connection
to prototypic DCP solutions from 3rd party vendors. This exemplary application demonstrates the benefits of DCP compliant
tool coupling for AD simulation with increased tool interoperability, reuse potential, and performance.

Keywords  Distributed co-simulation protocol · Co-simulation · Automated driving · Traffic simulation · Tool coupling

Abbreviations
ADS	� Automated driving system
API	� Application programming interface
CACC​	� Cooperative adaptive cruise control
DCP	� Distributed co-simulation protocol
FMI	� Functional mock-up interface
FMU	� Functional mock-up unit
HIL	� Hardware-in-the-loop
HRT	� Hard real-time
MIL	� Model-in-the-loop
NRT	� Non-real-time

PDU	� Protocol data unit
SIL	� Software-in-the-loop
SRT	� Soft real-time
SUT	� System under test
TCP	� Transmission control protocol
UDP	� User datagram protocol

1  Introduction

Virtual testing by the means of simulation is essential
for the verification and validation of automated vehicles
as solely physical testing is time and resource consum-
ing to cope with large test scopes [1–4]. The safety of
the intended functionality (SOTIF) certification of auto-
mated driving systems (ADS) recommends a mixture of
simulation-based tests, tests in controlled environments,
and real-world driving to achieve a meaningful coverage

 *	 Max‑Arno Meyer
	 meyer_max@vka.rwth-aachen.de

1	 Teaching and Research Area Mechatronics in Mobile
Propulsion, RWTH Aachen University, Aachen, Germany

2	 FEV Software and Testing Solutions SAS, Trappes, France

http://orcid.org/0000-0003-4420-0357
http://crossmark.crossref.org/dialog/?doi=10.1007/s42154-021-00161-1&domain=pdf

374	 M.-A. Meyer et al.

1 3

of possible driving scenarios [5]. Due to increasing testing
efforts with the degree of automation, simulation methods
are being developed which allow a frontloading of test
activities to perform more tests per time [6, 7]. At the
same, a key challenge in virtual prototyping of upcoming
highly automated driving systems (HADSs) is capturing
the diversity of a vehicle’s environment with respect to
the entirety of possible operating scenarios of the system
under test (SUT) [8]. High complexity, perceptual range,
and degree of environmental interaction of HADS require
complex cyber-physical plant models for closed-loop
testing in simulation. A virtual test frame is composed
of the controlled vehicle with its sensors and motion con-
trol as well as the controlled vehicle’s context including
the perceived environment and all actors interacting with
the SUT such as the driver and other traffic participants
[3]. Sophisticated context models include behavior and
uncertainty simulation, further increasing model complex-
ity [9]. For collaborative embedded systems (CES), mul-
tiple controlled vehicles and data exchange via networks
between vehicles and roadside units have to be considered
additionally in the test frame to analyze the SUT behavior
in collaborative system groups [3].

Models that form a suitable virtual test frame require dif-
ferent cyber-physical simulation disciplines such as kinemat-
ics simulation, powertrain simulation, and communication
network simulation [9]. Often it is necessary to model a 3D
representation of the world and render the scene to realisti-
cally simulate sensor data streams such as camera images
and Radar or Lidar point clouds. The different plant model
components, features, and simulation disciplines require
specialized tools for model implementation and execution,
which is why sophisticated closed-loop simulations for ADS
often rely on co-simulation to combine and run heterogene-
ous component models in a single test frame. The large land-
scape of available specialized tools for individual simulation
disciplines strengthens this trend [9].

Striving for fast and at the same time highly complex and
numerically correct co-simulations leads to a field of tension
as higher model complexity and fidelity result in more com-
putationally intensive models with slower execution times.
These problems have to be counteracted by new methods
to speed up models and efficiently co-simulate model com-
ponents and by new platforms to run the respective simu-
lations. This is especially applicable for model-in-the-loop
(MIL) and software-in-the-loop (SIL) simulations where the
upper limit of simulation speed is not defined by real time.

For the realization of virtual test frameworks for ADS by
the means of co-simulation, interfaces between heterogene-
ous component models are established to enable interoper-
ability. The dynamic mutual exchange of several simulation
tools to calculate the global behavior of a system consisting
of several subsystems is referred to as a coupling of these

tools. Each subsystem's behavior depends on the behavior
and generated outputs of the other subsystems [10].

Apart from proprietary solutions being established on the
basis of specific use cases, several co-simulation standards
exist, which can be applied for ADS simulations. Standards
such as high-level architecture (HLA) [11] or functional
mock-up interface (FMI) [12], are tool independent and
define non-functional interoperability via metadata formats
for model exchange, data models, application layer proto-
cols, or synchronization patterns to make simulation models
interoperable [9, 13]. These standards often rely on a mas-
ter–slave model architecture to achieve synchronization [14].
While already widely utilized standards such as FMI focus
on interoperability only on the model level, the more recent
distributed co-simulation protocol (DCP) [15] extends this
concept to standardized interoperability on an application
protocol level to run simulations on distributed hardware
platforms [13].

The usage of DCP has previously focused on real-time
simulations incorporating a plant model and real hardware
operated on test benches combined in one test frame. For
instance, Baumann et al. [16] coupled a small-scale vehicle
testbed with a cross-domain simulation model. Krammer
et al. [17] showed how DCP can be generally applied to cou-
ple different simulation tools and platforms in co-simulation
for the realization of X-in-the-Loop use cases.

The DCP technology is of great potential value for cou-
pling heterogeneous models and simulators for virtual ADS
testing which highly depends on co-simulation, but it is
yet to be applied in this field. Due to the highly specialized
models, many of them are platform exclusive and incompat-
ible with model exchange formats. This is especially true
for 3D-rendered environment models that rely on a specific
graphics engine to run as well as network simulators [9].
In order to combine these models with others and the SUT
without the usage of standardization, tailor-made interfaces
for a specific combination of tools must be developed that
are limited to one toolset and use case. Such tool coupling
solutions have recently been integrated into a lot of com-
mercial products for simulation-based ADS testing. The lack
of standardized tool and platform coupling options limits
the flexibility with respect to model and tool choices and
increases the effort for setting up virtual test frames which
vary strongly with the SUT and test scenarios. A standardi-
zation of non-functional interoperability on the platform
level would enable fully modular test frames incorporating
not only FMI compatible models, but also models previously
bound to specific tools and platforms. It would ease the real-
ization of hardware-in-the-loop (HIL) and vehicle-in-the-
loop (VIL) applications as virtual test frame components can
be interfaced with hardware test benches or test vehicles. At
the same time, it allows for an efficient distribution of mod-
els across platforms to speed up MIL and SIL simulations,

375Simulator Coupled with Distributed Co‑Simulation Protocol for Automated Driving Tests﻿	

1 3

e.g., up to the point of coupling virtual machines running
different simulators and models in cloud environments.

In this paper, the focus is on the development of a DCP
compliant implementation to ease and enhance the coupling
of simulators and platforms for simulation-based testing of
ADS. The implementation shall cover an interface for a
co-simulation master which enables it to communicate via
DCP as well as a reusable DCP slave skeleton which is to be
used to interface to a 3D environment and vehicle simulator
including rendering.

The paper is structured as follows. First, it is explained
how DCP addresses requirements of this tool coupling use
case which are not covered by other co-simulation stand-
ards. Related works concerning the implementation and
application of co-simulation standards are reviewed. Tech-
nical requirements for the DCP implementation are raised,
followed by deriving the implementation concept. Subse-
quently, two software components developed for realizing
simulator coupling for ADS testing with DCP are presented.
The implementation is then evaluated with respect to stand-
ard compliance and by the means of a demonstrator which
is developed to enable virtual testing of CES.

2 � Related Works

With the high need for model integration methods, a lot of
distributed co-simulation involving different tools or plat-
forms has previously been realized in the field of ADS test-
ing. Tool coupling has proven to be of great value especially
for cross-simulation-domain use cases such as combined
vehicle dynamics and network simulation or for the integra-
tion of rendering into simulations.

Buse et al. [18] connected a HIL test bench to a micro-
scopic traffic simulator and a network simulator via a tailor-
made interface creating a platform for testing control units
relying on real-time interactive vehicle-to-X communication.
The implemented interface coordinates all three simulators
and is proved to be soft real-time capable in a demonstra-
tor scenario. A similar co-simulation solution incorporating
tool coupling of MATLAB with the traffic simulator VIS-
SIM running on Windows operating system and the network
simulator ns-3 running on Linux was developed by Choud-
hury et al. [19]. The coupling was established with virtual
machines coupled via the sockets application programming
interface (API), and the utilization of the framework was
shown with the impact assessment of infrastructure-to-vehi-
cle data. The authors have identified that the implemented
non-standardized coupling is not flexible and propose estab-
lishing a generic runtime infrastructure instead.

A tool coupling solution for the 3D vehicle and environ-
ment simulator CARLA, which is also used in this paper,
is presented by Stevic et al. [20]. ROS and Autoware as

prototyping platforms were connected to CARLA using a
ROS bridge component for the simulator. Yamaura et al.
[21] highlighted the benefits of 3D engines in simulation
frameworks for ADS and realized a co-simulation integrat-
ing Simulink, Dymola, and the Unity game engine using the
OpenMETA tool suite which provides horizontal integration
between design tools [22]. As a tool suite, OpenMETA is not
designed as a standard prescribing the way interoperability
is achieved. In order to interface with a tool, an interpreter
must be created that is specific for each tool. Luttkus et al.
[23] highlight the need for a unified interface to integrate
different virtual test vehicles in a co-simulation to reduce the
model integration efforts for multi ego simulations.

The presented research shows the high integration efforts
for setting up prototypes for tool coupling solutions, and
some papers also highlight the limited flexibility of propri-
etary interfaces. Especially Yamaura et al. [21] derived the
requirement of a unified approach for coupling interfaces.
Similar challenges have also been identified in the area of
HIL testing, when it comes to integrating real-time systems
such as testbeds with simulation models. This was one of the
motivations for the development of the DCP standard which
is currently the only standard covering the communication
layer that is mandatory for tools and platforms to interoper-
ate [16]. Establishing DCP support in a tool or platform is
meant to guarantee the non-functional interoperability with
other tools supporting the standard. As such, the standard
is also promising for ADS co-simulations considering the
large tool landscape.

DCP has been successfully implemented by Baumann
et al. [16] and Krammer et al. [24] with the focus on proving
the concept of DCP itself for the integration of real-time sys-
tems into simulations. The work aims at proving individual
aspects of DCP, e.g., the reduction of configuration efforts.
This paper focuses on evaluating the suitability of DCP to
ease tool integration efforts for co-simulations in the ADS
domain. Therefore, this new DCP implementation targets the
prominent use case of integrating 3D simulators. It will also
be investigated to what extent components of a DCP imple-
mentation can potentially be reused for future tool couplings
in case DCP support is not already established.

3 � Interoperability Concept

In Section 1, some benefits of DCP usage for simulation-
based ADS testing have been highlighted. In this section
the requirements leading to the applicability of the standard
in this field are elaborated, leading to a concept for a new
DCP implementation. Additionally, a representative and
frequently occurring use case and a toolchain are selected,
which reflect these requirements.

376	 M.-A. Meyer et al.

1 3

3.1 � Requirements Definition

The following requirements have been raised for tool cou-
pling interfaces and the involved tools in the field of ADS
co-simulation based on the presented high-level goals and
characteristics of ADS co-simulation. The requirements are
written to take into account both the established approaches
as well as the lack of more unified interfaces between ADS
simulators identified in the analysis of relevant research.

(1)	 RQ1 (master–slave scheme)
	  The first requirement is that the co-simulation shall

use a master–slave synchronization scheme incorpo-
rating one simulation master and multiple simulation
slaves in order to synchronize multiple heterogeneous
models. The simulated time is synchronized by the
master across all simulation slaves. Thus, the following
requirements apply to the master, the slave, or the inter-
operability interface to be implemented that connects
both of them. This synchronization scheme is the most
widespread one in the ADS and automotive domain
including commercial simulators, standards, and state-
of-the-art research.

(2)	 RQ2 (support for software and model formats)
	  A co-simulation master is required that supports

the integration and performant execution of multiple
models on its platform with native support for software
and model formats widespread in the ADS domain.
At least the master shall support the integration of
C/C +  + code, MATLAB/Simulink models, and func-
tional mock-up units (FMUs).

(3)	 RQ3 (standardized communication layer for tool cou-
pling)

	  In order to support the incorporation of models,
software, or hardware that are incompatible with the
co-simulation master tool or platform and therefore
cannot be integrated using established methods, a
standardized, non-functional interoperability interface
shall be implemented that allows for the integration
of autonomous tools and platforms as co-simulation
slaves. In case an external tool or platform is required
for simulating a slave model, a direct execution within
the master is not possible as it requires the execution
within a single multithreaded process [9]. Standardi-
zation of the communication shall enable the master
to delegate any standard-compliant tool on which the
particular model is executed no matter if it is running
on the same or a stand-alone hardware platform.

(4)	 RQ4 (tool coupling pre-conditions)
	  In order to establish this standardized interface, both

the master as well as potential slaves must enable inter-
action with external platforms, e.g., via an API. This
includes reading and writing model variables as well as

monitoring or controlling different states of the simula-
tion.

(5)	 RQ5 (functional independence of interface)
	  The selected interface standard shall be non-func-

tional and applicable independent of the model func-
tionality inside the slave. The implementation inside
the master shall be independent of the specific co-simu-
lation slave to be integrated with respect to the tool and
the functionality. The interface for different slaves shall
use a unified structure to ease the configuration of the
master and to enable the reuse of implemented compo-
nents for interfacing new slaves. This satisfies the need
for high flexibility of multi-platform co-simulation for
ADS testing.

(6)	 RQ6 (execution modes)
	  Also, the co-simulation master and interface must

support faster-than-real-time or non-real-time (NRT),
soft real-time (SRT), and hard real-time (HRT) simu-
lation to ensure maximum flexibility with respect to
potential test environments and software or hardware
under test.

(7)	 RQ7 (enabling time synchronization)
	  The master as well as the application and presenta-

tion layer protocol of the interface, which provides the
cooperation pattern for the communication partners and
data syntax, must enable the time synchronization of
both platforms for NRT, SRT, and HRT use cases [25].

(8)	 RQ8 (data exchange and parametrization)
	  Moreover, the interface has to enable the exchange

of data during runtime and provide an option for the
master to initialize, parametrize and terminate the
externally running slave model.

(9)	 RQ9 (transport layer protocols for tool coupling)
	  The interoperability interface shall support multiple

applicable transport layer protocols, but at least the
two IP network standards Transmission Control Pro-
tocol (TCP) and user datagram protocol (UDP). TCP
can be used to natively ensure data integrity featuring
sequence numbers, an acknowledgment system, and
checksums while UDP can be effectively used if data
transfer speed is prioritized over integrity.

3.2 � Technical Concept

This work focuses on the added value of a standardized com-
munication layer between co-simulation tools as it is only
provided by the DCP standard for ADS testing use cases
[13]. Based on the presented requirements, the DCP standard
has been analyzed with respect to its applicability. To inves-
tigate the potential added value it is also exemplary to be
compared with the FMI standard. A use case and a feasible
toolchain have been identified to serve as the baseline for the
implementation of the standardized tool coupling interface.

377Simulator Coupled with Distributed Co‑Simulation Protocol for Automated Driving Tests﻿	

1 3

3.2.1 � Applicability of the DCP Standard

As a companion standard, DCP is designed to be compatible
with the commonly used FMI standard in the way that FMUs
can be integrated within DCP slaves [15]. Table 1 shows a
comparison of the two standards with respect to the applica-
ble raised requirements. While FMI does allow for tool cou-
pling by embedding a bridge to external software or hard-
ware inside an FMU, in contrast to DCP, it does not define
any constraints for the communication between the master
and slave tools or platforms. As a result, while the model
interface is standardized with FMI, the tool or platform cou-
pling is proprietary and invisible to the master. DCP covers
this aspect and standardizes the integration of real-time and
non-real-time systems into simulation environments and
is using a master–slave interoperability scheme [17]. Sys-
tems can represent either complete hardware platforms or
simulation tools running on a single platform which can be
executed in NRT, SRT, or HRT mode. In contrast to FMI,
the supported execution modes for DCP slaves are shared
with the master. As such, the DCP standard satisfies RQ1,
RQ3, and RQ6. DCP utilizes messaging as an integration
mechanism by exchanging packages of data called protocol
data units (PDU). It provides an unambiguous structure for
the slave and incorporates the slave model functionality into
the system simulation. Therefore a state machine is stand-
ardized which has to be implemented to control the slave’s
internal behavior and to set up the master–slave coordination
and data exchange [15]. State changes are either actively
called by the master or handled internally by the slave. In
any case, after each state change, the master needs to be noti-
fied about the new status. States are provided inter alia for
the parametrization of the slave and handling of runtime syn-
chronization and data exchange, which meets RQ7 and RQ8.
Interoperability is achieved without the standardization of
any functionality realized by the slave. Instead, functional

aspects such as the inputs, outputs, and parameters are docu-
mented in the DCP slave description file which provides all
static configuration data of the slave to the master [16]. Only
the schema of such a DCP slave description file is explicitly
defined as part of the DCP standard while it has to be filled
by the implementer of the slave. As a result, DCP supports
the exchange of master or slave in line with RQ5. It does also
guarantee the support of various transport layer protocols
covering TCP and UDP (RQ9).

3.2.2 � Use Case Definition

The theoretical analysis of the DCP standard suggests that it
is a good candidate to achieve standardized and flexible tool
coupling solutions for ADS co-simulations. To investigate
this in practice, a use case is designed incorporating a DCP
compliant interface between a co-simulation master and an
external co-simulation slave from the ADS domain. Fig. 1
shows an overview of the realized use case including the
features of DCP and the selected tools linked to the raised
requirements. A 3D vehicle and environment simulator with
runtime rendering is chosen to be integrated as a DCP slave
for this work as it represents one of the most prominent cases
of tool- or platform-bound models required in ADS simula-
tion, and there is a large diversity in available simulators.

Based on RQ1, RQ2, RQ4, RQ6, and RQ7 the tool xMOD
by FEV Software and Testing Solutions GmbH was selected
as a co-simulation master. The tool is specifically built for
this role and designed to support a wide range of different
model integration use cases in the automotive domain [9],
[27], [28]. DCP is unspecific in the implementation of the
master. This freedom on the master’s side allows for the
parallel usage of DCP and other model integration meth-
ods, e.g., model exchange according to the FMI standard,
in a single co-simulation. In spite of not providing specific
implementation rules for the master, DCP provides certain

Table 1   Comparison of FMI and DCP standard with respect to raised requirements for tool coupling in the field of ADS simulation

RQs FMI DCP

RQ1 (master–slave scheme) Yes Yes
RQ3 (standardized communication layer for

tool coupling)
Tool coupling option via interface FMU, but no

standardized master–slave communication
Yes

RQ5 (functional independence of interface) Yes Yes
RQ6 (execution modes) Supported modes are undefined and not in the

standard scope
Communication layer supports NRT, SRT and

HRT, supported modes are defined for each
slave

RQ7 (enabling time synchronization) Definition of fixed communication points of a
tool coupling FMU, master is responsible for
synchronization mechanism

Synchronization states for slaves are defined,
synchronization mechanism is not defined,
master is responsible for synchronization

RQ8 (data exchange and parametrization) Yes Yes
RQ9 (transport layer protocols) Not addressed by FMI Native support of TCP, UDP, Bluetooth, USB

and CAN

378	 M.-A. Meyer et al.

1 3

tasks for the master that has to be realized to turn the co-
simulation master into a DCP master. One task is analyzing
the DCP slave description file. Other tasks for the master
contain to establish a connection to the slave, to provide it
with configuration data, to trigger certain state changes, and
to handle time synchronization depending on the execution
mode which can be NRT, SRT, or HRT [17].

For the role of the vehicle and environment simulation
as well as 3D rendering software that is going to be trans-
formed into a DCP slave, the open-source tool CARLA
[29] is chosen. CARLA is tailored to the evaluation of
automated driving functions. It simulates the road, infra-
structure as well as vehicles and their motion which can
be controlled manually by a SUT or by traffic behavior
models. The scenery and traffic scenario are also rendered
based on Unreal Engine [30]. The virtual environment and
objects can be captured by several simulated sensors [9].
Bound to the Unreal Engine, CARLA’s simulation models
are incompatible with standardized model export and rely
on tool or platform coupling solutions to be integrated
with other models or software, which makes it a good fit
for tool coupling solutions (RQ1). The simulation runs on
a local server and can be manipulated before and during
runtime by a client via APIs which allows for the DCP
slave implementation as the client that can be partly reused
and serve as a baseline for future implementations. It is
mainly designed for SRT execution with real-time visuali-
zation, but as the simulated time can be controlled from

the outside, NRT execution is also supported. As such, the
simulator also fulfills RQ4 and RQ7. With the presented
feature set and as one of the most widely used simulators
in ADS development (see Refs. [9], [31], [20]), CARLA
qualifies for the DCP slave role.

4 � Software Implementation

The software implementation of the tool coupling consists
of two main components, a communication interface in
xMOD functioning as a DCP master and a client to con-
trol CARLA’s simulation server and transform it into a
DCP slave (see Fig. 2). DCP compliance of the client has
been achieved by creating a reusable DCP wrapper as
described in Sect. 4.1. Subsequently, the original client
which controls the server of the simulator is embedded
into this wrapper. The communication interface that ena-
bles the master to act as a DCP master has been embedded
into the structure of a proprietary C-code template for
co-simulation slaves in xMOD. The main functionalities
of the DCP master are analyzing an XML file to gather
all necessary information on the DCP slave and provid-
ing communication with the DCP slave, as described in
Sect. 3.2. In the last step, the DCP slave and master are
coupled to achieve time synchronization and communica-
tion during runtime.

Fig. 1   Technical concept of co-simulation interface (modified based on Ref. [26])

379Simulator Coupled with Distributed Co‑Simulation Protocol for Automated Driving Tests﻿	

1 3

4.1 � DCP Wrapper

The server of the vehicle and environment simulator
CARLA can be controlled by a client via an API (see Fig. 2).
This client is realized as a DCP slave. To make the solution
tool independent, a DCP wrapper is implemented. The DCP
wrapper provides the state chart structure of the slave and
the communication in the form of protocol data units (PDU)
as defined in the DCP standard. Each state is implemented
as a class in Python. A super-state is realized via inheritance
of functions and parameters. Each class in the DCP wrapper
has the same main structure. It consists of three main func-
tions. The first function, “init”, is called after entering a state
and sends a notification PDU to communicate the success-
ful entering of the new state. Afterward the main function,
“run”, defines the state-dependent behavior. This includes
waiting for signals from the master, calculating outputs, or
enabling communication via additional ports. The last main
function, “state_change”, triggers state changes.

In DCP, two kinds of state change triggers exist, inter-
nal and external. External state changes are triggered by a

state change PDU sent by the master. Internal state changes
are triggered by the slave fulfilling specific tasks of a state.
Thus the slave either checks constantly in the main function
“run” for a PDU from the master, as shown in Fig. 3, or
processes all internal calculations to fulfill the tasks defined
in the “run” function. The received PDUs are checked by
If-queries, according to the protocol. In any case, the slave
informs the master about state changes.

Additionally, all sent messages by the slave also have to
be packed into PDUs according to the protocol. The PDUs
are created in PDU-type-specific functions inside the wrap-
per by packing the data into bytes following the protocol’s
rules. The DCP specific rules include the exact order and
size of the data for each type of PDU that has to be sent in
one packet. For output and input PDUs which contain the
functional variables exchanges between the master and the
slave, only the header is predefined by the protocol. The
packaging of the data itself is determined by the master and
communicated to the wrapper via a configuration PDU. The
wrapper also receives the number of sockets and their set-
tings which are used to transfer outputs and inputs from the

Fig. 2   Overview of tool cou-
pling implementation

Fig. 3   Continuously executed
If-queries in function “run” for
externally triggered state change

380	 M.-A. Meyer et al.

1 3

master via configuration PDUs. The master reads supported
transport protocols from the XML slave description. In gen-
eral, DCP allows UDP, TCP, Bluetooth, USB, and CAN for
communication [15]. The implemented wrapper is prepared
for TCP and UDP communication.

The general state chart defined in the DCP standard con-
sists of 19 states, 15 of which are integrated into the devel-
oped Python wrapper according to the described method.
The creation of the superstate “NonRealTime” and its three
sub-states which can only be used in DCP’s NRT mode for
sample-based synchronization of master and slave is cur-
rently omitted. The reason for that is the implementation
of a sample-based synchronization mechanism not only for
NRT but also for SRT and HRT execution. It guarantees the
synchronization of the simulated time in the DCP slave with
the co-simulation master’s simulated time while the master
controls whether the simulated time progresses as fast as
possible (NRT) or is synchronized to absolute time (SRT,
HRT) outside of the DCP coupling. Although the devel-
oped mechanism theoretically is compatible with the NRT
superstate (see Section 4.4), an integrated solution could
not have been applied for DCP’s SRT and HRT mode due
to the missing states. Due to the use case focusing on SRT
operation with real-time visualization in CARLA, a sepa-
rate version including the “NonRealTime” superstate is not
implemented.

Another DCP state that is not considered is “ERROR-
RESOLVED”. This state shall enable a reset of the DCP
slave and can be internally entered if an error occurred but
is healed. This mechanism can prevent the termination of
the slave. As the implemented DCP slave does not feature
such self-healing functionalities, this state is not relevant.

4.2 � Client Integration into DCP Wrapper

To use the environment simulation, a client has to be imple-
mented and connected to the simulator’s server. The server
runs the simulation itself and does all necessary calcula-
tions. The client controls the server and its settings. Also, it
provides an interface to provide data for the calculations and
receive data from the server.

In order to read and set values in the simulation, a Python
API is provided by the tool vendor to connect to the server
during runtime. To simulate the vehicle, environment, and
SUT, the client has to set up the simulation via the Python
API accordingly to the use case. To follow the DCP stand-
ard, the client is embedded into the DCP wrapper. Thus, the
phases of the simulator (Initialization, Running, Stopping)
are mapped to specific DCP states.

These implemented connections of the DCP states and
the communication between client and server are shown in
Fig. 4. During the initialization phase of CARLA general
parameters, such as sample time and operation mode as

well as scenario-specific parameters, such as the number
of vehicles, weather, and map, must be set. These settings
have to be known to the clients that communicate them to
the server. Thus, the first step of the initialization phase is to
connect the server and client of the vehicle and environment
simulation. In that DCP defines that the output variables are
sent to the master in state “SENDING_I” for the first time,
the initialization must be completed at last when this state is
entered. Additionally, exiting the state “CONFIGURING” is
only possible if a predefined start condition is met. This start
condition depends on the parameters received by the master
in the state “CONFIGURATION”. The configuration param-
eters can be divided into two groups. The first group consists
of DCP specific parameters such as resolution or sample
time, which is defined as the fixed time step length used
for the iterative calculation inside the DCP slave, transport
protocol parameters and communication type. The second
group is used to parametrize the DCP slave’s functionality
from the master and e.g. includes the sample time, number
of ego vehicles, traffic participants, and map choice in the
CARLA simulator.

The execution time of the vehicle and environment
simulation is controlled by the client via the Python API
by triggering each calculation sample individually during
runtime (CARLA synchronous mode). According to DCP,
the execution time is only allowed to proceed during the
superstate “Run”. During runtime the slave exchanges inputs
and outputs for the simulated scenario with the master. For
the vehicle and environment simulation in CARLA, these
include motion data such as the position, orientation, veloc-
ity, and acceleration of vehicles provided to the master and
vehicle control data such as acceleration, brake, and steering
received from the master. The DCP compliant client continu-
ously forwards new input variables to the simulation server
and reads the recent output variables from it. Static data as
the position of infrastructure is provided only once during
the state “SENDING_I”.

During CARLA’s stopping phase, the scenario which was
built during the initialization phase has to be dismantled
for the server to be closed safely. Thus, this phase is han-
dled during the DCP state “STOPPING”. The dismantling
includes the deletion of vehicles and traffic participants as
well as changing back the operation mode to unsynchronized
mode.

4.3 � Preparation of DCP Master

The co-simulation master software xMOD is adapted to
function as a DCP Master. To achieve the functionalities of
a DCP Master, which are listed in Section 3.2, the option of
the software to include C-code into the co-simulation as a
slave is used. As DCP does not provide a specific structure
for the master, the C-code structure provided by xMOD is

381Simulator Coupled with Distributed Co‑Simulation Protocol for Automated Driving Tests﻿	

1 3

Fig. 4   Implemented DCP slave functionality mapped to co-simulation master functions (realized DCP states as defined in Ref. [15])

382	 M.-A. Meyer et al.

1 3

used. The resulting architecture of the master interface is a
series of states called in a specific sequence shown on the
left-hand side of Fig. 4.

During the “MdlInit” function all available data of the
slave is stored in objects. This is done by an implementa-
tion of a new class that has objects and parameters for all
possible data types of a DCP slave. This concept provides
the master with the data at any time after the initial analy-
sis of the DCP slave description file. The master reads the
XML file and extracts the information, where protocols and
operating modes are supported by the slave and what kind
of parameters, inputs, and outputs are available. This data is
used to create sockets for communication with the slave. The
master dynamically adapts to the number and type of inputs
and outputs specified in the file and accordingly passes the
data to other tools in the simulation platform.

The messages sent to and received from the slave have
to be in PDU format. To transform the data into PDUs and
to extract it from PDUs, a function for each kind of PDU is
implemented that writes the data into a buffer in accordance
with DCP and returns a pointer to the message. Thus, the
master can access these functions at any time during the
simulation to send any kind of PDU to the slave.

The master uses a fixed-step time discretization. The
function “rt_OneStep” is called for each time step once the
initialization phase is finished and the simulation is running.
For the DCP implementation, it is divided into two parts
because the parameters that have to be communicated to the
slave in order to finish the configuration phase of DCP and
switch from the state “CONFIGURED” to the superstate
“Run” are only available from the first call of “rt_OneStep”
in the master. However, the parameters only have to be
transmitted once before the simulation starts. Therefore, the
parameters are transmitted in the sub-function “first_step”
which is called only once while the sub-function “runtime_
step” handles repetitive tasks because it is called each time
step. To define which sub-function is called an if-query is
used.

4.4 � Master–Slave Interaction

To achieve proper interoperability the states of the prepared
DCP master and the vehicle and environment simulator pre-
pared as a DCP slave must be mapped to each other. Addi-
tionally, a DCP compliant time synchronization mechanism
has to be set up. Based on the DCP data model, the master
is informed at any time about the current state of the slave.
Also, the master has to trigger state changes regularly and
exchange PDUs which do not trigger state changes but are
used to exchange simulation model data (see Fig. 4).

While the master executes the function “first_step”, the
slave runs through all states until the superstate “Run” is
entered. During simulation runtime, the master is in the

function “runtime_step” and the slave is in super state “Run-
ning”. In these states, the simulated time synchronization of
the co-simulation master and the environment simulator is
handled. This means that the slave’s calculation steps that
represent a fixed simulated time interval are aligned with
the calculated simulated time inside the master. The simu-
lated time is generally independent of absolute time. For
NRT operation, the simulated time is normally accelerated
as much as possible on the respective platform. For real-
time simulation, a synchronization must be performed to
achieve that one unit of elapsed simulated time corresponds
to the same unit of absolute time [17]. To operate properly,
DCP requires time synchronization in its superstate “Run”,
but according to the specification it explicitly excludes
mechanisms to achieve synchronization [15]. However, as
explained in Section 4.1, the additional super state “Non-
RealTime” defines a time-step-based computation of results
by the slave for DCP’s NRT execution mode. As triggering
the execution of calculation steps by the master impacts the
progression of simulated time in the slave, the states inside
this super state are inseparable from a solution for synchro-
nization. Due to the high relevance of SRT simulation for
the use case, a synchronization mechanism was implemented
instead, which is based on the exchange of data PDUs in the
state “Running” and is applicable for NRT, SRT, and HRT
operation, while xMOD as a master supports the control-
ling of the relation between simulated and absolute time.
Formal support of the “NonRealTime” superstate requires
a new implementation variant where data PDUs used for
synchronization must be partly converted into control PDUs
for state changes, and time step operations must be wrapped
in additional states.

To realize synchronization of simulated times for fixed
step time discretization, xMOD determines an execution
order for all slaves based on their sample times and signal
dependency. A slave must provide the possibility to trig-
ger a calculation step and must provide the information that
a calculation step has been conducted to enable xMOD to
arrange the parallel and serial execution of models and keep
the simulated time of each slave synchronized to its own
simulated time which can optionally be synchronized with
absolute time. The eventual wait times between time steps
for each tool are not known before runtime, because the cal-
culation speeds vary and the execution order is unknown to
the slaves.

Slave and master need to interchange data to calculate the
next simulation step. As shown in Fig. 5, the slave listens for
inputs from the master, sent as PDUs. Afterward, the DCP
communication interface in the master transitions into an idle
state until it receives further notifications from the DCP slave.
During this waiting period, xMOD performs other tasks such as
executing other models included in the co-simulation. The slave
sends the received data to the environment simulation server,

383Simulator Coupled with Distributed Co‑Simulation Protocol for Automated Driving Tests﻿	

1 3

triggers the next time step, and then waits until the server fin-
ished processing the data and calculating the time step. Sub-
sequently, the server provides the data to the DCP compliant
client which sends a signal to the master to notify it that the
output data is available. The master communication interface
leaves its idle state and starts listening again on the specific
ports where it receives the PDUs the slave is sending. By apply-
ing this method, the master is not loaded by constantly listening
on all ports. Once all output data has been received the master’s
communication interface is ready for the next “runtime_step”
which is triggered by xMOD when the DCP slave shall perform
the next calculation step. The DCP slave client automatically
starts listening for new inputs from the master again. As such,
the process is repeated each time step.

By utilizing data exchanged as PDUs in the explained
manner, time synchronization is achieved. This architecture is
applicable for HRT, SRT, and NRT execution. For real-time
operation, additional pre-conditions must be guaranteed. The
co-simulation master has to be capable of synchronizing the
global simulated time to real-time, and all slaves including
the DCP slave have to finish a calculation step and provide
the output data to the master in a shorter time frame than the
chosen step size for the specific slave model.

5 � Validation

For the validation of the implementation, two main steps
were processed. First, the wrapper was tested on DCP
compliance. Second, the interoperability interface between
the co-simulation master (DCP Master) and the 3D vehi-
cle and environment simulator (DCP Slave) was tested in
a MIL simulation for the evaluation of the collaborative
cruise control (CACC) function.

5.1 � Verification of Standard Compliance of DCP
Slave Wrapper

The DCP wrapper was tested during an interoperability
verification event at the Jubilee Symposium in Lund/
Sweden in 2019 of the Modelica Association responsi-
ble for the DCP standard. The goal of the event was to
cross-test different DCP slave or master implementations
and to perform a protocol-based verification of these as
described by Krammer et al. [32] in a joint operation to
ensure their correctness and also the applicability of the
standard specification. Multiple scenarios for testing the

Fig. 5   DCP compliant mechanism for synchronization of simulated times for xMOD (DCP Master) and CARLA (DCP Slave)

384	 M.-A. Meyer et al.

1 3

participants’ solutions were decided on, two of which are
shown in Fig. 6.

In the first test scenario, the output of one DCP slave
is fed back to the input of the same slave while this slave
is controlled by a DCP master. The expected functional-
ity during runtime was transforming a single input variable
to a single output variable with a trigonometric function
including various parameters. In the second test scenario,
a DCP slave with this functionality had to be executed in
series in a closed-loop with another DCP slave applying
an offset to the input signal. The functionality inside the
implemented DCP wrapper had to be changed to fit into the
scenarios. Instead of operating as the CARLA client, the
provided trigonometric function is calculated. The number
of outputs and inputs had to be reduced to one, respectively,
and the number of parameters to three to cover amplitude,
offset and phase. Accordingly, the main function of the states
“CONFIGURATION”, “CONFIGURING”, “INITIALIZ-
ING”, “SENDING_I”, and “RUNNING” was adjusted. The
UDP transport protocol was used in all test scenarios for the
exchange of input and output data. The transport protocol
utilized by the implemented wrapper is selected by adjusting
one parameter that can be set by the master when creating
the communication sockets.

The communication protocol, the state machine with its
transitions, and the configuration of the implemented slave
were successively tested using two masters to stimulate it
by sending PDUs. The set-up during the plugfest included
one local network which connected different PCs running
DCP masters and slaves via a network switch. During the
test run the state transitions as well as the requested and
responded PDUs including the inputs and outputs were
monitored manually. By now, protocol-based DCP verifica-
tions can alternatively be carried out automatically using the
DCP Tester [32].

During the DCP plugfest it was possible to verify the
creation of communication sockets, correct sending and

receiving of PDUs, and the correct series of state changes.
Therefore, the listed functionality was cross-checked and the
intended functionality was shown. These test results confirm
that the DCP slave is able to handle the executed sequences
of sent and received PDUs. However, it does not guarantee
that it is fault-free and will never violate the standard speci-
fication [32].

5.2 � Validation Through a Demonstrator

In order to validate the coupled implementations including
both the DCP master in xMOD and the DCP slave client
controlling CARLA, a demonstrator was set up.

5.2.1 � Demonstrator Scenario

The co-simulation master and slave were executed on two
different workstations to benefit from the performance
increase with distributed platform support of DCP. The
co-simulation master xMOD was executed on a worksta-
tion running Windows 10 as an operating system. The
other workstation ran the DCP wrapper with the embedded
CARLA client and the 3D vehicle and environment simula-
tion on the CARLA server on a Linux operating system.
These two workstations were connected via a local area
network (LAN) to enable communication via TCP sockets.

The SUT for the demonstrator was a cooperative adaptive
cruise control (CACC) function. CACC regulates the veloc-
ity of a vehicle to keep the safety distance to the preceding
vehicle based on sensor and vehicle-to-vehicle communica-
tion data. The safety distance is defined as the time interval
needed to close the gap to the preceding vehicle at the cur-
rent velocity considering the reaction time [3].

This model was programmed in MATLAB/Simulink,
and multiple instances were imported into the co-simula-
tion set-up as FMUs. The CACC models are used to control
vehicles in the scenario simulation in CARLA. The output

Fig. 6   Two exemplary test scenarios defined for DCP interoperability verification [33]

385Simulator Coupled with Distributed Co‑Simulation Protocol for Automated Driving Tests﻿	

1 3

variables from the vehicle and environment simulation pro-
cessed by the DCP slave client are object-based, thus the
world coordinates of each object are provided. The CACC
model needs relative values such as a sensor would provide.
Therefore an object-based sensor model is integrated into the
co-simulation between the DCP communication interface
and the CACC model in xMOD which results in the final
model configuration (see Fig. 7). The sensor model converts
absolute positions into the distance and relative speed with
respect to the target as they would be provided by real sen-
sors. The vehicle-to-vehicle communication is simulated in

a simplified way by providing both CACC models with the
actual acceleration of the platoon leader from CARLA that
would be provided via an ad-hoc network in reality. The
throttle and brake of the following vehicles are calculated
by the two corresponding CACC models and provided as
input to the DCP communication interface which forwards
the information to CARLA.

A platooning scenario on a highway was chosen as a typi-
cal use case of CACC. The platoon consists of three vehicles
that are initialized at a distance of 300 m from a roadblock
as shown in Fig. 8 (left). The vehicle models are provided

Fig. 7   Co-simulation model setup for testing DCP implementation

386	 M.-A. Meyer et al.

1 3

by CARLA as well as the map and layout of the highway.
The platoon leader is controlled by CARLA and configured
to approach the roadblock starting at a constant speed before
decelerating and coming to a still stand before the roadblock.
The two following vehicles are controlled by the CACC
models. The integrated CACC prototype FMU has been
developed and tested in the CrESt research project and was
previously described and analyzed in depth [3], [34]. Thus,
this evaluation focuses on the established DCP tool coupling
solution between xMOD and CARLA and its applicability
for tool integration in ADS co-simulations, while simula-
tion results are not analyzed for functional correctness. In
particular, the DCP implementation is also analyzed with
respect to execution modes, data exchange, and synchroni-
zation of simulated time. The presented solution has also
been integrated into a tool platform for co-simulation-based
analysis of collaborative embedded systems [9].

5.2.2 � Demonstrator Results

The execution of a demonstrator scenario running the DCP
slave with other, non-DCP slave models was successful (cv.
Fig. 8 (right)). The demonstrator verifies multiple require-
ments of the implemented interoperability interface. Via the
standardized DCP interface, the functionality of a vehicle
and environment simulator including rendering was inte-
grated into the co-simulation for CACC testing without the
need for proprietary solutions for synchronization or data
exchange. The distribution of the models on different hard-
ware platforms such as PCs, enabled by DCP, is demon-
strated. Distributing the models is an advantage in terms of
calculation speed due to the extra performance an additional

system provides. Also, the tools do not all need to be compli-
ant with the same operating system.

The demonstrator was run in NRT as well as SRT mode
successfully. The implemented data exchange and synchro-
nization mechanisms for simulated times were investigated.
It was found that the received and sent data between the
DCP master and slave at the beginning and at the end of
each time step, as described in Sect. 4.4, match and always
correspond to the correct simulated times. This proves that
the simulated times in xMOD and CARLA are synchronous,
and data exchange is reliable. The TCP transport protocol
was used for this analysis to exclude information loss on the
physical layer of communication.

The execution of the simulation revealed that the simu-
lated time could not be synchronized to absolute time as the
absolute time to carry out a step occasionally exceeds the
sample time. This means the simulation cannot be run in
SRT or faster-than-real-time mode on the current platform.
A detailed analysis to what extent the calculation speed is
related to the interoperability interface has not yet been con-
ducted as the speed is not only impacted by the interface, but
also by the computation power of the machines, the com-
plexity of the models, and the efficiency of the simulators.
However, it was found that Python as a programming lan-
guage used for the DCP slave and CARLA API slows down
the overall simulation. This was proven by implementing an
alternative client in C++ using CARLA’s newer C++ API
that showed a significant acceleration of the simulated time.
The C++ implementation was not fully DCP compliant, but
it provided proprietary communication for the presented test
scenario using the same sample time and data exchanged at
simulation runtime. In this specific scenario, the average
absolute time to calculate a simulation step was reduced by

Fig. 8   Defined (left) and simulated (right) scenario for testing xMOD – CARLA DCP implementation

387Simulator Coupled with Distributed Co‑Simulation Protocol for Automated Driving Tests﻿	

1 3

approximately 30%, enabling faster-than-real-time simula-
tion. Additionally, it was found that it is possible to acceler-
ate the simulation by increasing the number of PDUs sent
via a single socket and by reducing the number of sockets as
this saves resources spent for listening on ports and estab-
lishing connections. If the number of sockets is reduced too
much, the likelihood of packet collisions increases. Thus,
by reducing the number of sockets, not all sent packets will
be received correctly. For TCP connections, this leads to
the retransmission of PDUs, which costs performance and
counteracts the positive effect.

6 � Critical Reflection

This paper focuses on the application of the DCP standard
in the development of automated driving functions with the
example of a CACC controller. To prove the usability of the
standard in this domain, a DCP interoperability interface
was implemented and demonstrated in the use case of the
CACC development. The scope is limited to the non-func-
tional coupling of software tools for the realization of the
use case. In particular, the DCP standard was implemented
for the coupling of the co-simulation platform xMOD as a
master with a 3D vehicle and environment simulation in
CARLA as a slave. The non-functional compatibility and
successful realization of a distributed co-simulation on two
platforms were successfully demonstrated with the imple-
mented toolchain. This illustrates how standardized, non-
functional tool or platform coupling via DCP can be used
effectively in co-simulation for virtual testing of ADS. The
spreading of DCP implementations in this field eases the set-
up of co-simulations, especially considering the large tool
landscape, as non-functional interoperability of DCP com-
patible simulators is guaranteed. Functional compatibility
of the two simulation components is not focused or ensured
by the described concept as it is not standardized by DCP
and must therefore be ensured manually for specific applica-
tions. Opaque data types, which are relevant in specific SIL
use cases for inter- or intra-communication of virtualized
ECUs, are currently not considered by the DCP standard.
Thus DCP is not applicable for co-simulation interfaces
between these SIL components. To cover such use cases
opaque data types could be considered in future revisions
of DCP, e.g., by using dynamic length byte arrays in the
PDU-oriented data model. Alternatively, a data exchange
mechanism relying on a serialization library could be inves-
tigated. This would increase the flexibility to exchange more
complex data structures between co-simulation partners and
could reduce the DCP implementation effort, but would
also potentially negatively impact the performance depend-
ing on the chosen library. The highlighted standardization
gaps such as functional standardization for ADS simulation

components as well as non-functional extensions could be
filled by following the idea of layered standards introduced
by FMI. Extensions of a standard’s, e.g., DCP’s base defi-
nitions could be defined and, in case of achieving a high
degree of adoption and importance, could be integrated as
optional or mandatory in future revisions.

The implemented toolchain uses the commercial tool
xMOD as a co-simulation master. This tool has been
extended by the functionality of the DCP capability. The use
of other co-simulation platforms as masters is not considered
in this publication. Even if other platforms exist and are
basically suitable, adaptations for DCP compatibility must
be implemented to enable suitability.

For the DCP slave realization, the client of the tool
CARLA was combined with a universal DCP wrapper. The
validity and reuse potential of the wrapper concept could be
proven within the plugfest and by the examined use case.
Nevertheless, further validation with other tools is useful to
show the general validity. This is especially true since the
plugfest uses firmly simplified and functionally primitive
models and the focus was on the examination of formal com-
patibility. The investigation of functionally complex models
of other tools should therefore be additionally validated in
further steps. The implemented wrapper and synchronization
mechanism do not support the superstate “NonRealTime”
for DCP’s NRT execution mode in their current state, which
should be adjusted in a future revision. It was found that
DCP’s NRT mode is currently not compatible with a uni-
versal, step-based synchronization mechanism based on data
PDUs that satisfies DCP’s SRT and HRT modes, although it
is also applicable for NRT simulations. In the light of ongo-
ing investigation on the topic of synchronization with DCP
(see [35]) and aiming for a unified solution, an issue was
raised in the DCP standardization group.

Furthermore, the studies were limited to co-simulation
incorporating software models as test objects. A coupling
with real hardware components such as sensors was not part
of the consideration and the theoretical benefits provided by
a DCP compliant tool coupling for such use cases should be
investigated in more detail in the future.

Especially the use of hardware components requires the
HRT capability of the co-simulation. It should be further
evaluated to what extent the discovered simulation speed
behavior is related to the DCP implementation. Further
investigations are necessary to investigate HRT which is not
supported by CARLA in addition to SRT and NRT. Espe-
cially the use of the UDP instead of TCP to potentially speed
up the simulation should be additionally investigated in this
context. When using UDP, the previously explained possi-
ble packet collisions in case of high socket loads should be
considered as these can lead to PDUs being lost. Therefore,
the communication and thus the calculations will become
less reliable which must be investigated for the specific

388	 M.-A. Meyer et al.

1 3

application with respect to countermeasures and acceptable
drop rates.

7 � Conclusions

The main goal of this work is to develop a DCP implemen-
tation to achieve a standardized integration of autonomous
simulation tools into a co-simulation. The realization of a
DCP master functionality inside the co-simulation master
xMOD and transformation of the CARLA simulator into a
DCP slave demonstrate the applicability of DCP for ADS
use cases successfully. It is shown that different simula-
tors can be coupled effectively for co-simulation using this
approach. Widespread industrialization of the DCP technol-
ogy in ADS simulation tools could potentially drastically
minimize the efforts for creating tool coupling interfaces
by ensuring interoperability on the communication layer.
As a next step, a detailed study of the saved efforts, and
also advantages and disadvantages in general when using
DCP or alternative coupling standards instead of proprietary
simulator couplings should be conducted. K. Albers et al.
presented the first analysis of this in Ref. [9] and found a
higher implementation effort for implementing standard-
ized simulator couplings and effort savings when reusing it.
Under this assumption, the overall efficiency is increased in
the long term which is an argument for using standardized
solutions such as DCP in new simulation domains as long
as the technical boundaries of a standard do not contradict
the requirements of the use case.

It is demonstrated that DCP fulfills all major requirements
of interfaces between ADS simulation tools and can be used
by co-simulation masters alongside other co-simulation and
model exchange methods. The chosen approach for the DCP
slave using a functionally independent wrapper shows how
components of a DCP implementation can be reused for
future realizations.

Finally, some technical aspects have been identified
that are worth investigating further such as the carry-over
of the implementation to other tools and platforms or time
synchronization mechanisms with DCP. Specifically, the
applicability of DCP in cloud environments, e.g., to cou-
ple virtual machines, should be investigated as there is a
need in ADS development to provide highly time-efficient
software-in-the-loop frameworks. Regarding the impact of
DCP compliance on the overall calculation speed, an in-
depth analysis should be performed. This includes tracking
of absolute times for the individual operations within one
time step such as communication delays, processing times,
and calculations performed by the simulators. Furthermore,
the options for HRT simulations in the field of ADS can be
explored including the evaluation of UDP and other trans-
port layer protocols.

Funding  Open Access funding enabled and organized by Projekt
DEAL. This work was supported in part by the German Ministry of
Education and Research (BMBF) under grant 01IS16043.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 ECE/TRANS/WP. 29/2019/34/Rev. 1: Framework document
on automated/autonomous vehicles. Economic Commission for
Europe, Inland Transport Committee, World Forum for Harmoni-
zation of Vehicle Regulations, 178th session, Geneva, June 2019

	 2.	 Wood, M., Wittmann, D., Liu, S., et al.: Safety first for automated
driving. https://​www.​daiml​er.​com/​dokum​ente/​innov​ation/​sonst​
iges/​safety-​first-​for-​autom​ated-​drivi​ng.​pdf (2019). Accessed 25
October 2020

	 3.	 Meyer, M., Granrath, C., Feyerl, G., Richenhagen, J., Kaths, J.,
Andert, J.: Closed-loop platoon simulation with cooperative intel-
ligent transportation systems based on vehicle-to-x communica-
tion. Simul Model Pract Theory (2021). https://​doi.​org/​10.​1016/j.​
simpat.​2020.​102173

	 4.	 Cioroaica, E., Albers, K., Boehm, W., Pudlitz, F., Granrath, C.,
Rosen, R., Wehrstedt, J.C.: Development and evaluation of col-
laborative embedded systems using simulation. In: Böhm, W.,
Broy, M., Klein, C., Pohl, K., Rumpe, B., Schröck, S. (eds.)
Model-Based Engineering of Collaborative Embedded Systems.
Springer, Berlin (2021)

	 5.	 ISO PAS 21448:2019: Road vehicles – Safety of the intended
functionality. International Organization for Standardization,
Geneva, Switzerland (2019). https://​www.​iso.​org/​stand​ard/​70939.​
html

	 6.	 Schmidt, S., Elbs, M.: Automotive systems engineering enabled
by virtual prototypes. In: Bargende, M., Reuss, H., Wiedemann,
J. (eds.) Internationales stuttgarter symposium proceedings.
Springer, Wiesbaden (2018)

	 7.	 Kapinski, J., Deshmukh, J.V., Xiaoqing, J., Hisahiro, I., Butts, K.:
Simulation-based approaches for verification of embedded control
systems: An overview of traditional and advanced modeling, test-
ing, and verification techniques. IEEE Control Syst. Mag. 36(6),
45–64 (2016)

	 8.	 Hakuli, S., Krug, M.: Virtual integration in the development pro-
cess of ADAS. In: Winner, H., Hakuli, S., Lotz, F., Singer, C.
(eds.) Handbook of Driver Assistance Systems. Springer, Berlin
(2015)

	 9.	 Albers, K., Bolte, B., Meyer, M., Terfloth, A., Wißdorf, A.: Tool
support for co-simulation-based analysis. In: Böhm, W., Broy, M.,
Klein, C., Pohl, K., Rumpe, B., Schröck, S. (eds.) Model-based

http://creativecommons.org/licenses/by/4.0/
https://www.daimler.com/dokumente/innovation/sonstiges/safety-first-for-automated-driving.pdf
https://www.daimler.com/dokumente/innovation/sonstiges/safety-first-for-automated-driving.pdf
https://doi.org/10.1016/j.simpat.2020.102173
https://doi.org/10.1016/j.simpat.2020.102173
https://www.iso.org/standard/70939.html
https://www.iso.org/standard/70939.html

389Simulator Coupled with Distributed Co‑Simulation Protocol for Automated Driving Tests﻿	

1 3

engineering of collaborative embedded systems. Springer, Berlin
(2021)

	10.	 Modelica Association Project FMI: Functional mock-up interface
specification. Version 64748c4. Modelica Association, Linköping,
Sweden. https://​fmi-​stand​ard.​org/​docs/3.​0-​dev (2021). Accessed
3 March 2021. Licensed under CC BY-SA 4.0 (https://​creat​iveco​
mmons.​org/​licen​ses/​by-​sa/4.​0/​legal​code)

	11.	 Morse, K.L., Petty, M.D.: High level architecture data distribution
management migration from DoD 1.3 to IEEE 1516. Concurrency
and Computation: Pract. & Exper. 16, 1527–1543 (2004)

	12.	 Blochwitz, T., Otter, M., Akesson, J., et al.: Functional Mockup
Interface 2.0: The standard for tool independent exchange of simu-
lation models. In: Otter, M., Zimmer, D. (Eds.) Proceedings of
the 9th International MODELICA Conference, Munich, Germany,
3–5 September 2012. Linköping Electronic Conference Proceed-
ings, vol. 76, pp. 173–184. Modelica Association and Linköping
University Electronic Press, Linköping (2012)

	13.	 Granrath, C., Meyer, M., Ewald, J., et al.: EleMA: A reference
simulation model architecture and interface standard for modeling
and testing of electric vehicles. Transportation (2020). https://​doi.​
org/​10.​1016/j.​etran.​2020.​100060

	14.	 Nguyen, V.H., Besanger, Y., Tran, Q.T., et al.: Using power-hard-
ware-in-the-loop experiments together with co-simulation for the
holistic validation of cyber-physical energy systems. In: IEEE PES
Innovative Smart Grid Technologies Conference Europe (ISGT-
Europe), Torino, Italy, 26–29 September 2017. Conference Pro-
ceedings, pp. 1–6 (2017)

	15.	 Modelica Association Project DCP: Distributed Co-simulation
Protocol (DCP). Specification Document 1.0.0. Modelica Asso-
ciation, Linköping, Sweden. https://​dcp-​stand​ard.​org/​assets/​speci​
ficat​ion/​DCP_​Speci​ficat​ion_​v1.0.​pdf (2019). Accessed 5 October
2020. Licensed under CC BY-SA 4.0 (https://​creat​iveco​mmons.​
org/​licen​ses/​by-​sa/4.​0/​legal​code)

	16.	 Baumann, P., Krammer, M., Driussi, M., et al.: Using the distrib-
uted co-simulation protocol for a mixed real-virtual prototype.
In: 2019 IEEE International Conference on Mechatronics (ICM),
Ilmenau, Germany, 18–20 March 2019. Conference Proceedings,
pp. 440–445 (2019)

	17.	 Krammer, M., Benedikt, M., Blochwitz, T., et al.: The distributed
co-simulation protocol for the integration of real-time systems and
simulation environments. In: Proceedings of the 50th Computer
Simulation Conference, Bordeaux, France, 9–12 July 2018

	18.	 Buse, D.S., Dressler, F.: Towards real-time interactive V2X simu-
lation. In: 2019 IEEE Vehicular Networking Conference (VNC),
Los Angeles, CA, USA, December 2019. Conference Proceedings,
pp. 114–121 (2019)

	19.	 Choudhury, A., Maszczyk, T., Math, C.B., Li, H., Dauwels, J.: An
integrated simulation environment for testing V2X protocols and
applications. Procedia Comput. Sci. 80, 2042–2052 (2016)

	20.	 Stević, S., Krunić, M., Dragojević, M., Kaprocki, N.: Develop-
ment and validation of ADAS perception application in ROS
environment integrated with CARLA simulator. In: 2019 27th
Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27
November 2019

	21.	 Yamaura, M., Aréchiga, N., Shiraishi, S., et al.: ADAS virtual pro-
totyping using Modelica and Unity co-simulation via OpenMETA.
In: The First Japanese Modelica Conferences, Tokyo, Japan, 23-24
May 2014. Linköping Electronic Conference Proceedings, vol.
124, pp. 43-49. Modelica Association and Linköping University
Electronic Press, Linköping (2014)

	22.	 Sztipanovits, J., Bapty, T., Neema, S., Howard, L., Jackson, E.:
OpenMETA: A model- and component-based design tool chain
for cyber-physical systems. In: Bensalem, S., Lakhneck, Y., Legay,
A. (eds.) From programs to systems. The systems perspective in
computing lecture notes in computer science. Springer, Berlin
(2014)

	23.	 Luttkus, L., Mikelsons, L., Baumann, P., Kotte, O.: A simulation
based interaction analysis of automated vehicles. In: SummerSim
'19: Proceedings of the 2019 Summer Simulation Conference,
Berlin, Germany, July 2019. Article 6, pp. 1–11. Society for Com-
puter Simulation International (2019)

	24.	 Krammer, M., Schuch, K., Kater, C., et al.: Standardized integra-
tion of real-time and non-real-time systems: The Distributed Co-
simulation Protocol. In: 13th International Modelica Conference,
Regensburg, Deutschland, 4–6 March 2019

	25.	 Kumar, S., Dalal, S., Dixit, V.: The OSI model: Overview on the
seven layers of computer networks. Int. J. Innov. Res. Sci. Tech-
nol. (IJIRST) 2(3), 461–466 (2014)

	26.	 Meyer, M., Granrath, C., Jäckel, N., Wachtmeister, L.: Methods
for the development of collaborative embedded systems in auto-
mated vehicles. ATZ Electron. Worldw. 15, 58–63 (2020). https://​
doi.​org/​10.​1007/​s38314-​020-​0294-z

	27.	 Ewald, J., Orth, P., Granrath, C., Andert, J.: Model-based systems
engineering for standardized simulation frameworks: Case study
development of electrical vehicles. In: Proceedings of the 41st
International Vienna Motor Symposium, 22–24 April 2020

	28.	 Ben Gaid, M., Corde, G., Chasse, A., et al.: Heterogeneous model
integration and virtual experimentation using xMOD: Application
to hybrid powertrain design and validation. In: 7th EUROSIM
Congress on Modeling and Simulation (EUROSIM'10), Prague,
Czech Republic, September 2010

	29.	 Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.:
CARLA: An open urban driving simulator. In: 1st Conference on
Robot Learning (CoRL), Mountain View, California, USA, 13–15
November 2017

	30.	 Epic Games, Inc.: Unreal Engine. https://​www.​unrea​lengi​ne.​com.
Accessed 25 October 2020.

	31.	 Codevilla, F., Müller, M., López, A., Koltun, V., Dosovitskiy, A.:
End-to-end driving via conditional imitation learning. In: 2018
IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, QLD, Australia, 21–25 May 2018. Conference
Proceedings, pp. 4693–4700 (2018)

	32.	 Krammer, M., Kater, C., Schiffer, C., Benedikt, M.: A potocol-
based verification approach for standard-compliant distributed co-
simulation. In: Proceedings of Asian Modelica Conference 2020,
Tokyo, Japan, 8–9 October 2020

	33.	 Modelica Association: DCP Plug Fest 2019 announcement.
https://​dcp-​stand​ard.​org/​news/​2019/​06/​19/​plug-​fest-​annou​nceme​
nt.​html. Accessed 25 October 2020

	34.	 Kaths, J., Meyer, M., Granrath, et al.: Virtual test drives with mul-
tiple vehicles under test for the evaluation of collaborative assisted
and automated driving functions. In: Proceedings of ATZlive -
Automated Driving 2020, 13–14 October 2020

	35.	 Krammer, M., Ferner, P., Watzenig, D.: Clock synchronization
in context of the Distributed Co-Simulation Protocol. In: 2019
IEEE International Conference on Connected Vehicles and Expo
(ICCVE), Graz, Austria, 4–8 November 2019. Conference Pro-
ceedings, pp. 1–6 (2019)

https://fmi-standard.org/docs/3.0-dev
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://doi.org/10.1016/j.etran.2020.100060
https://doi.org/10.1016/j.etran.2020.100060
https://dcp-standard.org/assets/specification/DCP_Specification_v1.0.pdf
https://dcp-standard.org/assets/specification/DCP_Specification_v1.0.pdf
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://doi.org/10.1007/s38314-020-0294-z
https://doi.org/10.1007/s38314-020-0294-z
https://www.unrealengine.com
https://dcp-standard.org/news/2019/06/19/plug-fest-announcement.html
https://dcp-standard.org/news/2019/06/19/plug-fest-announcement.html

	Simulator Coupled with Distributed Co-Simulation Protocol for Automated Driving Tests
	Abstract
	1 Introduction
	2 Related Works
	3 Interoperability Concept
	3.1 Requirements Definition
	3.2 Technical Concept
	3.2.1 Applicability of the DCP Standard
	3.2.2 Use Case Definition

	4 Software Implementation
	4.1 DCP Wrapper
	4.2 Client Integration into DCP Wrapper
	4.3 Preparation of DCP Master
	4.4 Master–Slave Interaction

	5 Validation
	5.1 Verification of Standard Compliance of DCP Slave Wrapper
	5.2 Validation Through a Demonstrator
	5.2.1 Demonstrator Scenario
	5.2.2 Demonstrator Results

	6 Critical Reflection
	7 Conclusions
	References

