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Abstract
To meet the challenges in software testing for automated vehicles, such as increasing system complexity and an infinite 
number of operating scenarios, new simulation methods must be developed. Closed-loop simulations for automated driving 
(AD) require highly complex simulation models for multiple controlled vehicles with their perception systems as well as their 
surrounding context. For the realization of such models, different simulation domains must be coupled with co-simulation. 
However, widely supported model integration standards such as functional mock-up interface (FMI) lack native support for 
distributed platforms, which is a key feature for AD due to the computational intensity and platform exclusivity of certain 
models. The newer FMI companion standard distributed co-simulation protocol (DCP) introduces platform coupling but 
must still be used in conjunction with AD co-simulations. As part of an assessment framework for AD, this paper presents 
a DCP compliant implementation of an interoperable interface between a 3D environment and vehicle simulator and a co-
simulation platform. A universal Python wrapper is implemented and connected to the simulator to allow its control as a 
DCP slave. A C-code-based interface enables the co-simulation platform to act as a DCP master and to realize cross-platform 
data exchange and time synchronization of the environment simulation with other integrated models. A model-in-the-loop 
use case is performed with the traffic simulator CARLA running on a Linux machine connected to the co-simulation master 
xMOD on a Windows computer via DCP. Several virtual vehicles are successfully controlled by cooperative adaptive cruise 
controllers executed outside of CARLA. The standard compliance of the implementation is verified by exemplary connection 
to prototypic DCP solutions from 3rd party vendors. This exemplary application demonstrates the benefits of DCP compliant 
tool coupling for AD simulation with increased tool interoperability, reuse potential, and performance.

Keywords  Distributed co-simulation protocol · Co-simulation · Automated driving · Traffic simulation · Tool coupling

Abbreviations
ADS	� Automated driving system
API	� Application programming interface
CACC​	� Cooperative adaptive cruise control
DCP	� Distributed co-simulation protocol
FMI	� Functional mock-up interface
FMU	� Functional mock-up unit
HIL	� Hardware-in-the-loop
HRT	� Hard real-time
MIL	� Model-in-the-loop
NRT	� Non-real-time

PDU	� Protocol data unit
SIL	� Software-in-the-loop
SRT	� Soft real-time
SUT	� System under test
TCP	� Transmission control protocol
UDP	� User datagram protocol

1  Introduction

Virtual testing by the means of simulation is essential 
for the verification and validation of automated vehicles 
as solely physical testing is time and resource consum-
ing to cope with large test scopes [1–4]. The safety of 
the intended functionality (SOTIF) certification of auto-
mated driving systems (ADS) recommends a mixture of 
simulation-based tests, tests in controlled environments, 
and real-world driving to achieve a meaningful coverage 
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of possible driving scenarios [5]. Due to increasing testing 
efforts with the degree of automation, simulation methods 
are being developed which allow a frontloading of test 
activities to perform more tests per time [6, 7]. At the 
same, a key challenge in virtual prototyping of upcoming 
highly automated driving systems (HADSs) is capturing 
the diversity of a vehicle’s environment with respect to 
the entirety of possible operating scenarios of the system 
under test (SUT) [8]. High complexity, perceptual range, 
and degree of environmental interaction of HADS require 
complex cyber-physical plant models for closed-loop 
testing in simulation. A virtual test frame is composed 
of the controlled vehicle with its sensors and motion con-
trol as well as the controlled vehicle’s context including 
the perceived environment and all actors interacting with 
the SUT such as the driver and other traffic participants 
[3]. Sophisticated context models include behavior and 
uncertainty simulation, further increasing model complex-
ity [9]. For collaborative embedded systems (CES), mul-
tiple controlled vehicles and data exchange via networks 
between vehicles and roadside units have to be considered 
additionally in the test frame to analyze the SUT behavior 
in collaborative system groups [3].

Models that form a suitable virtual test frame require dif-
ferent cyber-physical simulation disciplines such as kinemat-
ics simulation, powertrain simulation, and communication 
network simulation [9]. Often it is necessary to model a 3D 
representation of the world and render the scene to realisti-
cally simulate sensor data streams such as camera images 
and Radar or Lidar point clouds. The different plant model 
components, features, and simulation disciplines require 
specialized tools for model implementation and execution, 
which is why sophisticated closed-loop simulations for ADS 
often rely on co-simulation to combine and run heterogene-
ous component models in a single test frame. The large land-
scape of available specialized tools for individual simulation 
disciplines strengthens this trend [9].

Striving for fast and at the same time highly complex and 
numerically correct co-simulations leads to a field of tension 
as higher model complexity and fidelity result in more com-
putationally intensive models with slower execution times. 
These problems have to be counteracted by new methods 
to speed up models and efficiently co-simulate model com-
ponents and by new platforms to run the respective simu-
lations. This is especially applicable for model-in-the-loop 
(MIL) and software-in-the-loop (SIL) simulations where the 
upper limit of simulation speed is not defined by real time.

For the realization of virtual test frameworks for ADS by 
the means of co-simulation, interfaces between heterogene-
ous component models are established to enable interoper-
ability. The dynamic mutual exchange of several simulation 
tools to calculate the global behavior of a system consisting 
of several subsystems is referred to as a coupling of these 

tools. Each subsystem's behavior depends on the behavior 
and generated outputs of the other subsystems [10].

Apart from proprietary solutions being established on the 
basis of specific use cases, several co-simulation standards 
exist, which can be applied for ADS simulations. Standards 
such as high-level architecture (HLA) [11] or functional 
mock-up interface (FMI) [12], are tool independent and 
define non-functional interoperability via metadata formats 
for model exchange, data models, application layer proto-
cols, or synchronization patterns to make simulation models 
interoperable [9, 13]. These standards often rely on a mas-
ter–slave model architecture to achieve synchronization [14]. 
While already widely utilized standards such as FMI focus 
on interoperability only on the model level, the more recent 
distributed co-simulation protocol (DCP) [15] extends this 
concept to standardized interoperability on an application 
protocol level to run simulations on distributed hardware 
platforms [13].

The usage of DCP has previously focused on real-time 
simulations incorporating a plant model and real hardware 
operated on test benches combined in one test frame. For 
instance, Baumann et al. [16] coupled a small-scale vehicle 
testbed with a cross-domain simulation model. Krammer 
et al. [17] showed how DCP can be generally applied to cou-
ple different simulation tools and platforms in co-simulation 
for the realization of X-in-the-Loop use cases.

The DCP technology is of great potential value for cou-
pling heterogeneous models and simulators for virtual ADS 
testing which highly depends on co-simulation, but it is 
yet to be applied in this field. Due to the highly specialized 
models, many of them are platform exclusive and incompat-
ible with model exchange formats. This is especially true 
for 3D-rendered environment models that rely on a specific 
graphics engine to run as well as network simulators [9]. 
In order to combine these models with others and the SUT 
without the usage of standardization, tailor-made interfaces 
for a specific combination of tools must be developed that 
are limited to one toolset and use case. Such tool coupling 
solutions have recently been integrated into a lot of com-
mercial products for simulation-based ADS testing. The lack 
of standardized tool and platform coupling options limits 
the flexibility with respect to model and tool choices and 
increases the effort for setting up virtual test frames which 
vary strongly with the SUT and test scenarios. A standardi-
zation of non-functional interoperability on the platform 
level would enable fully modular test frames incorporating 
not only FMI compatible models, but also models previously 
bound to specific tools and platforms. It would ease the real-
ization of hardware-in-the-loop (HIL) and vehicle-in-the-
loop (VIL) applications as virtual test frame components can 
be interfaced with hardware test benches or test vehicles. At 
the same time, it allows for an efficient distribution of mod-
els across platforms to speed up MIL and SIL simulations, 
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e.g., up to the point of coupling virtual machines running 
different simulators and models in cloud environments.

In this paper, the focus is on the development of a DCP 
compliant implementation to ease and enhance the coupling 
of simulators and platforms for simulation-based testing of 
ADS. The implementation shall cover an interface for a 
co-simulation master which enables it to communicate via 
DCP as well as a reusable DCP slave skeleton which is to be 
used to interface to a 3D environment and vehicle simulator 
including rendering.

The paper is structured as follows. First, it is explained 
how DCP addresses requirements of this tool coupling use 
case which are not covered by other co-simulation stand-
ards. Related works concerning the implementation and 
application of co-simulation standards are reviewed. Tech-
nical requirements for the DCP implementation are raised, 
followed by deriving the implementation concept. Subse-
quently, two software components developed for realizing 
simulator coupling for ADS testing with DCP are presented. 
The implementation is then evaluated with respect to stand-
ard compliance and by the means of a demonstrator which 
is developed to enable virtual testing of CES.

2 � Related Works

With the high need for model integration methods, a lot of 
distributed co-simulation involving different tools or plat-
forms has previously been realized in the field of ADS test-
ing. Tool coupling has proven to be of great value especially 
for cross-simulation-domain use cases such as combined 
vehicle dynamics and network simulation or for the integra-
tion of rendering into simulations.

Buse et al. [18] connected a HIL test bench to a micro-
scopic traffic simulator and a network simulator via a tailor-
made interface creating a platform for testing control units 
relying on real-time interactive vehicle-to-X communication. 
The implemented interface coordinates all three simulators 
and is proved to be soft real-time capable in a demonstra-
tor scenario. A similar co-simulation solution incorporating 
tool coupling of MATLAB with the traffic simulator VIS-
SIM running on Windows operating system and the network 
simulator ns-3 running on Linux was developed by Choud-
hury et al. [19]. The coupling was established with virtual 
machines coupled via the sockets application programming 
interface (API), and the utilization of the framework was 
shown with the impact assessment of infrastructure-to-vehi-
cle data. The authors have identified that the implemented 
non-standardized coupling is not flexible and propose estab-
lishing a generic runtime infrastructure instead.

A tool coupling solution for the 3D vehicle and environ-
ment simulator CARLA, which is also used in this paper, 
is presented by Stevic et al. [20]. ROS and Autoware as 

prototyping platforms were connected to CARLA using a 
ROS bridge component for the simulator. Yamaura et al. 
[21] highlighted the benefits of 3D engines in simulation 
frameworks for ADS and realized a co-simulation integrat-
ing Simulink, Dymola, and the Unity game engine using the 
OpenMETA tool suite which provides horizontal integration 
between design tools [22]. As a tool suite, OpenMETA is not 
designed as a standard prescribing the way interoperability 
is achieved. In order to interface with a tool, an interpreter 
must be created that is specific for each tool. Luttkus et al. 
[23] highlight the need for a unified interface to integrate 
different virtual test vehicles in a co-simulation to reduce the 
model integration efforts for multi ego simulations.

The presented research shows the high integration efforts 
for setting up prototypes for tool coupling solutions, and 
some papers also highlight the limited flexibility of propri-
etary interfaces. Especially Yamaura et al. [21] derived the 
requirement of a unified approach for coupling interfaces. 
Similar challenges have also been identified in the area of 
HIL testing, when it comes to integrating real-time systems 
such as testbeds with simulation models. This was one of the 
motivations for the development of the DCP standard which 
is currently the only standard covering the communication 
layer that is mandatory for tools and platforms to interoper-
ate [16]. Establishing DCP support in a tool or platform is 
meant to guarantee the non-functional interoperability with 
other tools supporting the standard. As such, the standard 
is also promising for ADS co-simulations considering the 
large tool landscape.

DCP has been successfully implemented by Baumann 
et al. [16] and Krammer et al. [24] with the focus on proving 
the concept of DCP itself for the integration of real-time sys-
tems into simulations. The work aims at proving individual 
aspects of DCP, e.g., the reduction of configuration efforts. 
This paper focuses on evaluating the suitability of DCP to 
ease tool integration efforts for co-simulations in the ADS 
domain. Therefore, this new DCP implementation targets the 
prominent use case of integrating 3D simulators. It will also 
be investigated to what extent components of a DCP imple-
mentation can potentially be reused for future tool couplings 
in case DCP support is not already established.

3 � Interoperability Concept

In Section 1, some benefits of DCP usage for simulation-
based ADS testing have been highlighted. In this section 
the requirements leading to the applicability of the standard 
in this field are elaborated, leading to a concept for a new 
DCP implementation. Additionally, a representative and 
frequently occurring use case and a toolchain are selected, 
which reflect these requirements.
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3.1 � Requirements Definition

The following requirements have been raised for tool cou-
pling interfaces and the involved tools in the field of ADS 
co-simulation based on the presented high-level goals and 
characteristics of ADS co-simulation. The requirements are 
written to take into account both the established approaches 
as well as the lack of more unified interfaces between ADS 
simulators identified in the analysis of relevant research.

(1)	 RQ1 (master–slave scheme)
	   The first requirement is that the co-simulation shall 

use a master–slave synchronization scheme incorpo-
rating one simulation master and multiple simulation 
slaves in order to synchronize multiple heterogeneous 
models. The simulated time is synchronized by the 
master across all simulation slaves. Thus, the following 
requirements apply to the master, the slave, or the inter-
operability interface to be implemented that connects 
both of them. This synchronization scheme is the most 
widespread one in the ADS and automotive domain 
including commercial simulators, standards, and state-
of-the-art research.

(2)	 RQ2 (support for software and model formats)
	   A co-simulation master is required that supports 

the integration and performant execution of multiple 
models on its platform with native support for software 
and model formats widespread in the ADS domain. 
At least the master shall support the integration of 
C/C +  + code, MATLAB/Simulink models, and func-
tional mock-up units (FMUs).

(3)	 RQ3 (standardized communication layer for tool cou-
pling)

	   In order to support the incorporation of models, 
software, or hardware that are incompatible with the 
co-simulation master tool or platform and therefore 
cannot be integrated using established methods, a 
standardized, non-functional interoperability interface 
shall be implemented that allows for the integration 
of autonomous tools and platforms as co-simulation 
slaves. In case an external tool or platform is required 
for simulating a slave model, a direct execution within 
the master is not possible as it requires the execution 
within a single multithreaded process [9]. Standardi-
zation of the communication shall enable the master 
to delegate any standard-compliant tool on which the 
particular model is executed no matter if it is running 
on the same or a stand-alone hardware platform.

(4)	 RQ4 (tool coupling pre-conditions)
	   In order to establish this standardized interface, both 

the master as well as potential slaves must enable inter-
action with external platforms, e.g., via an API. This 
includes reading and writing model variables as well as 

monitoring or controlling different states of the simula-
tion.

(5)	 RQ5 (functional independence of interface)
	   The selected interface standard shall be non-func-

tional and applicable independent of the model func-
tionality inside the slave. The implementation inside 
the master shall be independent of the specific co-simu-
lation slave to be integrated with respect to the tool and 
the functionality. The interface for different slaves shall 
use a unified structure to ease the configuration of the 
master and to enable the reuse of implemented compo-
nents for interfacing new slaves. This satisfies the need 
for high flexibility of multi-platform co-simulation for 
ADS testing.

(6)	 RQ6 (execution modes)
	   Also, the co-simulation master and interface must 

support faster-than-real-time or non-real-time (NRT), 
soft real-time (SRT), and hard real-time (HRT) simu-
lation to ensure maximum flexibility with respect to 
potential test environments and software or hardware 
under test.

(7)	 RQ7 (enabling time synchronization)
	   The master as well as the application and presenta-

tion layer protocol of the interface, which provides the 
cooperation pattern for the communication partners and 
data syntax, must enable the time synchronization of 
both platforms for NRT, SRT, and HRT use cases [25].

(8)	 RQ8 (data exchange and parametrization)
	   Moreover, the interface has to enable the exchange 

of data during runtime and provide an option for the 
master to initialize, parametrize and terminate the 
externally running slave model.

(9)	 RQ9 (transport layer protocols for tool coupling)
	   The interoperability interface shall support multiple 

applicable transport layer protocols, but at least the 
two IP network standards Transmission Control Pro-
tocol (TCP) and user datagram protocol (UDP). TCP 
can be used to natively ensure data integrity featuring 
sequence numbers, an acknowledgment system, and 
checksums while UDP can be effectively used if data 
transfer speed is prioritized over integrity.

3.2 � Technical Concept

This work focuses on the added value of a standardized com-
munication layer between co-simulation tools as it is only 
provided by the DCP standard for ADS testing use cases 
[13]. Based on the presented requirements, the DCP standard 
has been analyzed with respect to its applicability. To inves-
tigate the potential added value it is also exemplary to be 
compared with the FMI standard. A use case and a feasible 
toolchain have been identified to serve as the baseline for the 
implementation of the standardized tool coupling interface.
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3.2.1 � Applicability of the DCP Standard

As a companion standard, DCP is designed to be compatible 
with the commonly used FMI standard in the way that FMUs 
can be integrated within DCP slaves [15]. Table 1 shows a 
comparison of the two standards with respect to the applica-
ble raised requirements. While FMI does allow for tool cou-
pling by embedding a bridge to external software or hard-
ware inside an FMU, in contrast to DCP, it does not define 
any constraints for the communication between the master 
and slave tools or platforms. As a result, while the model 
interface is standardized with FMI, the tool or platform cou-
pling is proprietary and invisible to the master. DCP covers 
this aspect and standardizes the integration of real-time and 
non-real-time systems into simulation environments and 
is using a master–slave interoperability scheme [17]. Sys-
tems can represent either complete hardware platforms or 
simulation tools running on a single platform which can be 
executed in NRT, SRT, or HRT mode. In contrast to FMI, 
the supported execution modes for DCP slaves are shared 
with the master. As such, the DCP standard satisfies RQ1, 
RQ3, and RQ6. DCP utilizes messaging as an integration 
mechanism by exchanging packages of data called protocol 
data units (PDU). It provides an unambiguous structure for 
the slave and incorporates the slave model functionality into 
the system simulation. Therefore a state machine is stand-
ardized which has to be implemented to control the slave’s 
internal behavior and to set up the master–slave coordination 
and data exchange [15]. State changes are either actively 
called by the master or handled internally by the slave. In 
any case, after each state change, the master needs to be noti-
fied about the new status. States are provided inter alia for 
the parametrization of the slave and handling of runtime syn-
chronization and data exchange, which meets RQ7 and RQ8. 
Interoperability is achieved without the standardization of 
any functionality realized by the slave. Instead, functional 

aspects such as the inputs, outputs, and parameters are docu-
mented in the DCP slave description file which provides all 
static configuration data of the slave to the master [16]. Only 
the schema of such a DCP slave description file is explicitly 
defined as part of the DCP standard while it has to be filled 
by the implementer of the slave. As a result, DCP supports 
the exchange of master or slave in line with RQ5. It does also 
guarantee the support of various transport layer protocols 
covering TCP and UDP (RQ9).

3.2.2 � Use Case Definition

The theoretical analysis of the DCP standard suggests that it 
is a good candidate to achieve standardized and flexible tool 
coupling solutions for ADS co-simulations. To investigate 
this in practice, a use case is designed incorporating a DCP 
compliant interface between a co-simulation master and an 
external co-simulation slave from the ADS domain. Fig. 1 
shows an overview of the realized use case including the 
features of DCP and the selected tools linked to the raised 
requirements. A 3D vehicle and environment simulator with 
runtime rendering is chosen to be integrated as a DCP slave 
for this work as it represents one of the most prominent cases 
of tool- or platform-bound models required in ADS simula-
tion, and there is a large diversity in available simulators.

Based on RQ1, RQ2, RQ4, RQ6, and RQ7 the tool xMOD 
by FEV Software and Testing Solutions GmbH was selected 
as a co-simulation master. The tool is specifically built for 
this role and designed to support a wide range of different 
model integration use cases in the automotive domain [9], 
[27], [28]. DCP is unspecific in the implementation of the 
master. This freedom on the master’s side allows for the 
parallel usage of DCP and other model integration meth-
ods, e.g., model exchange according to the FMI standard, 
in a single co-simulation. In spite of not providing specific 
implementation rules for the master, DCP provides certain 

Table 1   Comparison of FMI and DCP standard with respect to raised requirements for tool coupling in the field of ADS simulation

RQs FMI DCP

RQ1 (master–slave scheme) Yes Yes
RQ3 (standardized communication layer for 

tool coupling)
Tool coupling option via interface FMU, but no 

standardized master–slave communication
Yes

RQ5 (functional independence of interface) Yes Yes
RQ6 (execution modes) Supported modes are undefined and not in the 

standard scope
Communication layer supports NRT, SRT and 

HRT, supported modes are defined for each 
slave

RQ7 (enabling time synchronization) Definition of fixed communication points of a 
tool coupling FMU, master is responsible for 
synchronization mechanism

Synchronization states for slaves are defined, 
synchronization mechanism is not defined, 
master is responsible for synchronization

RQ8 (data exchange and parametrization) Yes Yes
RQ9 (transport layer protocols) Not addressed by FMI Native support of TCP, UDP, Bluetooth, USB 

and CAN
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tasks for the master that has to be realized to turn the co-
simulation master into a DCP master. One task is analyzing 
the DCP slave description file. Other tasks for the master 
contain to establish a connection to the slave, to provide it 
with configuration data, to trigger certain state changes, and 
to handle time synchronization depending on the execution 
mode which can be NRT, SRT, or HRT [17].

For the role of the vehicle and environment simulation 
as well as 3D rendering software that is going to be trans-
formed into a DCP slave, the open-source tool CARLA 
[29] is chosen. CARLA is tailored to the evaluation of 
automated driving functions. It simulates the road, infra-
structure as well as vehicles and their motion which can 
be controlled manually by a SUT or by traffic behavior 
models. The scenery and traffic scenario are also rendered 
based on Unreal Engine [30]. The virtual environment and 
objects can be captured by several simulated sensors [9]. 
Bound to the Unreal Engine, CARLA’s simulation models 
are incompatible with standardized model export and rely 
on tool or platform coupling solutions to be integrated 
with other models or software, which makes it a good fit 
for tool coupling solutions (RQ1). The simulation runs on 
a local server and can be manipulated before and during 
runtime by a client via APIs which allows for the DCP 
slave implementation as the client that can be partly reused 
and serve as a baseline for future implementations. It is 
mainly designed for SRT execution with real-time visuali-
zation, but as the simulated time can be controlled from 

the outside, NRT execution is also supported. As such, the 
simulator also fulfills RQ4 and RQ7. With the presented 
feature set and as one of the most widely used simulators 
in ADS development (see Refs. [9], [31], [20]), CARLA 
qualifies for the DCP slave role.

4 � Software Implementation

The software implementation of the tool coupling consists 
of two main components, a communication interface in 
xMOD functioning as a DCP master and a client to con-
trol CARLA’s simulation server and transform it into a 
DCP slave (see Fig. 2). DCP compliance of the client has 
been achieved by creating a reusable DCP wrapper as 
described in Sect. 4.1. Subsequently, the original client 
which controls the server of the simulator is embedded 
into this wrapper. The communication interface that ena-
bles the master to act as a DCP master has been embedded 
into the structure of a proprietary C-code template for 
co-simulation slaves in xMOD. The main functionalities 
of the DCP master are analyzing an XML file to gather 
all necessary information on the DCP slave and provid-
ing communication with the DCP slave, as described in 
Sect. 3.2. In the last step, the DCP slave and master are 
coupled to achieve time synchronization and communica-
tion during runtime.

Fig. 1   Technical concept of co-simulation interface (modified based on Ref. [26])
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4.1 � DCP Wrapper

The server of the vehicle and environment simulator 
CARLA can be controlled by a client via an API (see Fig. 2). 
This client is realized as a DCP slave. To make the solution 
tool independent, a DCP wrapper is implemented. The DCP 
wrapper provides the state chart structure of the slave and 
the communication in the form of protocol data units (PDU) 
as defined in the DCP standard. Each state is implemented 
as a class in Python. A super-state is realized via inheritance 
of functions and parameters. Each class in the DCP wrapper 
has the same main structure. It consists of three main func-
tions. The first function, “init”, is called after entering a state 
and sends a notification PDU to communicate the success-
ful entering of the new state. Afterward the main function, 
“run”, defines the state-dependent behavior. This includes 
waiting for signals from the master, calculating outputs, or 
enabling communication via additional ports. The last main 
function, “state_change”, triggers state changes.

In DCP, two kinds of state change triggers exist, inter-
nal and external. External state changes are triggered by a 

state change PDU sent by the master. Internal state changes 
are triggered by the slave fulfilling specific tasks of a state. 
Thus the slave either checks constantly in the main function 
“run” for a PDU from the master, as shown in Fig. 3, or 
processes all internal calculations to fulfill the tasks defined 
in the “run” function. The received PDUs are checked by 
If-queries, according to the protocol. In any case, the slave 
informs the master about state changes.

Additionally, all sent messages by the slave also have to 
be packed into PDUs according to the protocol. The PDUs 
are created in PDU-type-specific functions inside the wrap-
per by packing the data into bytes following the protocol’s 
rules. The DCP specific rules include the exact order and 
size of the data for each type of PDU that has to be sent in 
one packet. For output and input PDUs which contain the 
functional variables exchanges between the master and the 
slave, only the header is predefined by the protocol. The 
packaging of the data itself is determined by the master and 
communicated to the wrapper via a configuration PDU. The 
wrapper also receives the number of sockets and their set-
tings which are used to transfer outputs and inputs from the 

Fig. 2   Overview of tool cou-
pling implementation

Fig. 3   Continuously executed 
If-queries in function “run” for 
externally triggered state change
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master via configuration PDUs. The master reads supported 
transport protocols from the XML slave description. In gen-
eral, DCP allows UDP, TCP, Bluetooth, USB, and CAN for 
communication [15]. The implemented wrapper is prepared 
for TCP and UDP communication.

The general state chart defined in the DCP standard con-
sists of 19 states, 15 of which are integrated into the devel-
oped Python wrapper according to the described method. 
The creation of the superstate “NonRealTime” and its three 
sub-states which can only be used in DCP’s NRT mode for 
sample-based synchronization of master and slave is cur-
rently omitted. The reason for that is the implementation 
of a sample-based synchronization mechanism not only for 
NRT but also for SRT and HRT execution. It guarantees the 
synchronization of the simulated time in the DCP slave with 
the co-simulation master’s simulated time while the master 
controls whether the simulated time progresses as fast as 
possible (NRT) or is synchronized to absolute time (SRT, 
HRT) outside of the DCP coupling. Although the devel-
oped mechanism theoretically is compatible with the NRT 
superstate (see Section 4.4), an integrated solution could 
not have been applied for DCP’s SRT and HRT mode due 
to the missing states. Due to the use case focusing on SRT 
operation with real-time visualization in CARLA, a sepa-
rate version including the “NonRealTime” superstate is not 
implemented.

Another DCP state that is not considered is “ERROR-
RESOLVED”. This state shall enable a reset of the DCP 
slave and can be internally entered if an error occurred but 
is healed. This mechanism can prevent the termination of 
the slave. As the implemented DCP slave does not feature 
such self-healing functionalities, this state is not relevant.

4.2 � Client Integration into DCP Wrapper

To use the environment simulation, a client has to be imple-
mented and connected to the simulator’s server. The server 
runs the simulation itself and does all necessary calcula-
tions. The client controls the server and its settings. Also, it 
provides an interface to provide data for the calculations and 
receive data from the server.

In order to read and set values in the simulation, a Python 
API is provided by the tool vendor to connect to the server 
during runtime. To simulate the vehicle, environment, and 
SUT, the client has to set up the simulation via the Python 
API accordingly to the use case. To follow the DCP stand-
ard, the client is embedded into the DCP wrapper. Thus, the 
phases of the simulator (Initialization, Running, Stopping) 
are mapped to specific DCP states.

These implemented connections of the DCP states and 
the communication between client and server are shown in 
Fig. 4. During the initialization phase of CARLA general 
parameters, such as sample time and operation mode as 

well as scenario-specific parameters, such as the number 
of vehicles, weather, and map, must be set. These settings 
have to be known to the clients that communicate them to 
the server. Thus, the first step of the initialization phase is to 
connect the server and client of the vehicle and environment 
simulation. In that DCP defines that the output variables are 
sent to the master in state “SENDING_I” for the first time, 
the initialization must be completed at last when this state is 
entered. Additionally, exiting the state “CONFIGURING” is 
only possible if a predefined start condition is met. This start 
condition depends on the parameters received by the master 
in the state “CONFIGURATION”. The configuration param-
eters can be divided into two groups. The first group consists 
of DCP specific parameters such as resolution or sample 
time, which is defined as the fixed time step length used 
for the iterative calculation inside the DCP slave, transport 
protocol parameters and communication type. The second 
group is used to parametrize the DCP slave’s functionality 
from the master and e.g. includes the sample time, number 
of ego vehicles, traffic participants, and map choice in the 
CARLA simulator.

The execution time of the vehicle and environment 
simulation is controlled by the client via the Python API 
by triggering each calculation sample individually during 
runtime (CARLA synchronous mode). According to DCP, 
the execution time is only allowed to proceed during the 
superstate “Run”. During runtime the slave exchanges inputs 
and outputs for the simulated scenario with the master. For 
the vehicle and environment simulation in CARLA, these 
include motion data such as the position, orientation, veloc-
ity, and acceleration of vehicles provided to the master and 
vehicle control data such as acceleration, brake, and steering 
received from the master. The DCP compliant client continu-
ously forwards new input variables to the simulation server 
and reads the recent output variables from it. Static data as 
the position of infrastructure is provided only once during 
the state “SENDING_I”.

During CARLA’s stopping phase, the scenario which was 
built during the initialization phase has to be dismantled 
for the server to be closed safely. Thus, this phase is han-
dled during the DCP state “STOPPING”. The dismantling 
includes the deletion of vehicles and traffic participants as 
well as changing back the operation mode to unsynchronized 
mode.

4.3 � Preparation of DCP Master

The co-simulation master software xMOD is adapted to 
function as a DCP Master. To achieve the functionalities of 
a DCP Master, which are listed in Section 3.2, the option of 
the software to include C-code into the co-simulation as a 
slave is used. As DCP does not provide a specific structure 
for the master, the C-code structure provided by xMOD is 
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Fig. 4   Implemented DCP slave functionality mapped to co-simulation master functions (realized DCP states as defined in Ref. [15])
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used. The resulting architecture of the master interface is a 
series of states called in a specific sequence shown on the 
left-hand side of Fig. 4.

During the “MdlInit” function all available data of the 
slave is stored in objects. This is done by an implementa-
tion of a new class that has objects and parameters for all 
possible data types of a DCP slave. This concept provides 
the master with the data at any time after the initial analy-
sis of the DCP slave description file. The master reads the 
XML file and extracts the information, where protocols and 
operating modes are supported by the slave and what kind 
of parameters, inputs, and outputs are available. This data is 
used to create sockets for communication with the slave. The 
master dynamically adapts to the number and type of inputs 
and outputs specified in the file and accordingly passes the 
data to other tools in the simulation platform.

The messages sent to and received from the slave have 
to be in PDU format. To transform the data into PDUs and 
to extract it from PDUs, a function for each kind of PDU is 
implemented that writes the data into a buffer in accordance 
with DCP and returns a pointer to the message. Thus, the 
master can access these functions at any time during the 
simulation to send any kind of PDU to the slave.

The master uses a fixed-step time discretization. The 
function “rt_OneStep” is called for each time step once the 
initialization phase is finished and the simulation is running. 
For the DCP implementation, it is divided into two parts 
because the parameters that have to be communicated to the 
slave in order to finish the configuration phase of DCP and 
switch from the state “CONFIGURED” to the superstate 
“Run” are only available from the first call of “rt_OneStep” 
in the master. However, the parameters only have to be 
transmitted once before the simulation starts. Therefore, the 
parameters are transmitted in the sub-function “first_step” 
which is called only once while the sub-function “runtime_
step” handles repetitive tasks because it is called each time 
step. To define which sub-function is called an if-query is 
used.

4.4 � Master–Slave Interaction

To achieve proper interoperability the states of the prepared 
DCP master and the vehicle and environment simulator pre-
pared as a DCP slave must be mapped to each other. Addi-
tionally, a DCP compliant time synchronization mechanism 
has to be set up. Based on the DCP data model, the master 
is informed at any time about the current state of the slave. 
Also, the master has to trigger state changes regularly and 
exchange PDUs which do not trigger state changes but are 
used to exchange simulation model data (see Fig. 4).

While the master executes the function “first_step”, the 
slave runs through all states until the superstate “Run” is 
entered. During simulation runtime, the master is in the 

function “runtime_step” and the slave is in super state “Run-
ning”. In these states, the simulated time synchronization of 
the co-simulation master and the environment simulator is 
handled. This means that the slave’s calculation steps that 
represent a fixed simulated time interval are aligned with 
the calculated simulated time inside the master. The simu-
lated time is generally independent of absolute time. For 
NRT operation, the simulated time is normally accelerated 
as much as possible on the respective platform. For real-
time simulation, a synchronization must be performed to 
achieve that one unit of elapsed simulated time corresponds 
to the same unit of absolute time [17]. To operate properly, 
DCP requires time synchronization in its superstate “Run”, 
but according to the specification it explicitly excludes 
mechanisms to achieve synchronization [15]. However, as 
explained in Section 4.1, the additional super state “Non-
RealTime” defines a time-step-based computation of results 
by the slave for DCP’s NRT execution mode. As triggering 
the execution of calculation steps by the master impacts the 
progression of simulated time in the slave, the states inside 
this super state are inseparable from a solution for synchro-
nization. Due to the high relevance of SRT simulation for 
the use case, a synchronization mechanism was implemented 
instead, which is based on the exchange of data PDUs in the 
state “Running” and is applicable for NRT, SRT, and HRT 
operation, while xMOD as a master supports the control-
ling of the relation between simulated and absolute time. 
Formal support of the “NonRealTime” superstate requires 
a new implementation variant where data PDUs used for 
synchronization must be partly converted into control PDUs 
for state changes, and time step operations must be wrapped 
in additional states.

To realize synchronization of simulated times for fixed 
step time discretization, xMOD determines an execution 
order for all slaves based on their sample times and signal 
dependency. A slave must provide the possibility to trig-
ger a calculation step and must provide the information that 
a calculation step has been conducted to enable xMOD to 
arrange the parallel and serial execution of models and keep 
the simulated time of each slave synchronized to its own 
simulated time which can optionally be synchronized with 
absolute time. The eventual wait times between time steps 
for each tool are not known before runtime, because the cal-
culation speeds vary and the execution order is unknown to 
the slaves.

Slave and master need to interchange data to calculate the 
next simulation step. As shown in Fig. 5, the slave listens for 
inputs from the master, sent as PDUs. Afterward, the DCP 
communication interface in the master transitions into an idle 
state until it receives further notifications from the DCP slave. 
During this waiting period, xMOD performs other tasks such as 
executing other models included in the co-simulation. The slave 
sends the received data to the environment simulation server, 



383Simulator Coupled with Distributed Co‑Simulation Protocol for Automated Driving Tests﻿	

1 3

triggers the next time step, and then waits until the server fin-
ished processing the data and calculating the time step. Sub-
sequently, the server provides the data to the DCP compliant 
client which sends a signal to the master to notify it that the 
output data is available. The master communication interface 
leaves its idle state and starts listening again on the specific 
ports where it receives the PDUs the slave is sending. By apply-
ing this method, the master is not loaded by constantly listening 
on all ports. Once all output data has been received the master’s 
communication interface is ready for the next “runtime_step” 
which is triggered by xMOD when the DCP slave shall perform 
the next calculation step. The DCP slave client automatically 
starts listening for new inputs from the master again. As such, 
the process is repeated each time step.

By utilizing data exchanged as PDUs in the explained 
manner, time synchronization is achieved. This architecture is 
applicable for HRT, SRT, and NRT execution. For real-time 
operation, additional pre-conditions must be guaranteed. The 
co-simulation master has to be capable of synchronizing the 
global simulated time to real-time, and all slaves including 
the DCP slave have to finish a calculation step and provide 
the output data to the master in a shorter time frame than the 
chosen step size for the specific slave model.

5 � Validation

For the validation of the implementation, two main steps 
were processed. First, the wrapper was tested on DCP 
compliance. Second, the interoperability interface between 
the co-simulation master (DCP Master) and the 3D vehi-
cle and environment simulator (DCP Slave) was tested in 
a MIL simulation for the evaluation of the collaborative 
cruise control (CACC) function.

5.1 � Verification of Standard Compliance of DCP 
Slave Wrapper

The DCP wrapper was tested during an interoperability 
verification event at the Jubilee Symposium in Lund/
Sweden in 2019 of the Modelica Association responsi-
ble for the DCP standard. The goal of the event was to 
cross-test different DCP slave or master implementations 
and to perform a protocol-based verification of these as 
described by Krammer et al. [32] in a joint operation to 
ensure their correctness and also the applicability of the 
standard specification. Multiple scenarios for testing the 

Fig. 5   DCP compliant mechanism for synchronization of simulated times for xMOD (DCP Master) and CARLA (DCP Slave)
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participants’ solutions were decided on, two of which are 
shown in Fig. 6.

In the first test scenario, the output of one DCP slave 
is fed back to the input of the same slave while this slave 
is controlled by a DCP master. The expected functional-
ity during runtime was transforming a single input variable 
to a single output variable with a trigonometric function 
including various parameters. In the second test scenario, 
a DCP slave with this functionality had to be executed in 
series in a closed-loop with another DCP slave applying 
an offset to the input signal. The functionality inside the 
implemented DCP wrapper had to be changed to fit into the 
scenarios. Instead of operating as the CARLA client, the 
provided trigonometric function is calculated. The number 
of outputs and inputs had to be reduced to one, respectively, 
and the number of parameters to three to cover amplitude, 
offset and phase. Accordingly, the main function of the states 
“CONFIGURATION”, “CONFIGURING”, “INITIALIZ-
ING”, “SENDING_I”, and “RUNNING” was adjusted. The 
UDP transport protocol was used in all test scenarios for the 
exchange of input and output data. The transport protocol 
utilized by the implemented wrapper is selected by adjusting 
one parameter that can be set by the master when creating 
the communication sockets.

The communication protocol, the state machine with its 
transitions, and the configuration of the implemented slave 
were successively tested using two masters to stimulate it 
by sending PDUs. The set-up during the plugfest included 
one local network which connected different PCs running 
DCP masters and slaves via a network switch. During the 
test run the state transitions as well as the requested and 
responded PDUs including the inputs and outputs were 
monitored manually. By now, protocol-based DCP verifica-
tions can alternatively be carried out automatically using the 
DCP Tester [32].

During the DCP plugfest it was possible to verify the 
creation of communication sockets, correct sending and 

receiving of PDUs, and the correct series of state changes. 
Therefore, the listed functionality was cross-checked and the 
intended functionality was shown. These test results confirm 
that the DCP slave is able to handle the executed sequences 
of sent and received PDUs. However, it does not guarantee 
that it is fault-free and will never violate the standard speci-
fication [32].

5.2 � Validation Through a Demonstrator

In order to validate the coupled implementations including 
both the DCP master in xMOD and the DCP slave client 
controlling CARLA, a demonstrator was set up.

5.2.1 � Demonstrator Scenario

The co-simulation master and slave were executed on two 
different workstations to benefit from the performance 
increase with distributed platform support of DCP. The 
co-simulation master xMOD was executed on a worksta-
tion running Windows 10 as an operating system. The 
other workstation ran the DCP wrapper with the embedded 
CARLA client and the 3D vehicle and environment simula-
tion on the CARLA server on a Linux operating system. 
These two workstations were connected via a local area 
network (LAN) to enable communication via TCP sockets.

The SUT for the demonstrator was a cooperative adaptive 
cruise control (CACC) function. CACC regulates the veloc-
ity of a vehicle to keep the safety distance to the preceding 
vehicle based on sensor and vehicle-to-vehicle communica-
tion data. The safety distance is defined as the time interval 
needed to close the gap to the preceding vehicle at the cur-
rent velocity considering the reaction time [3].

This model was programmed in MATLAB/Simulink, 
and multiple instances were imported into the co-simula-
tion set-up as FMUs. The CACC models are used to control 
vehicles in the scenario simulation in CARLA. The output 

Fig. 6   Two exemplary test scenarios defined for DCP interoperability verification [33]
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variables from the vehicle and environment simulation pro-
cessed by the DCP slave client are object-based, thus the 
world coordinates of each object are provided. The CACC 
model needs relative values such as a sensor would provide. 
Therefore an object-based sensor model is integrated into the 
co-simulation between the DCP communication interface 
and the CACC model in xMOD which results in the final 
model configuration (see Fig. 7). The sensor model converts 
absolute positions into the distance and relative speed with 
respect to the target as they would be provided by real sen-
sors. The vehicle-to-vehicle communication is simulated in 

a simplified way by providing both CACC models with the 
actual acceleration of the platoon leader from CARLA that 
would be provided via an ad-hoc network in reality. The 
throttle and brake of the following vehicles are calculated 
by the two corresponding CACC models and provided as 
input to the DCP communication interface which forwards 
the information to CARLA.

A platooning scenario on a highway was chosen as a typi-
cal use case of CACC. The platoon consists of three vehicles 
that are initialized at a distance of 300 m from a roadblock 
as shown in Fig. 8 (left). The vehicle models are provided 

Fig. 7   Co-simulation model setup for testing DCP implementation
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by CARLA as well as the map and layout of the highway. 
The platoon leader is controlled by CARLA and configured 
to approach the roadblock starting at a constant speed before 
decelerating and coming to a still stand before the roadblock. 
The two following vehicles are controlled by the CACC 
models. The integrated CACC prototype FMU has been 
developed and tested in the CrESt research project and was 
previously described and analyzed in depth [3], [34]. Thus, 
this evaluation focuses on the established DCP tool coupling 
solution between xMOD and CARLA and its applicability 
for tool integration in ADS co-simulations, while simula-
tion results are not analyzed for functional correctness. In 
particular, the DCP implementation is also analyzed with 
respect to execution modes, data exchange, and synchroni-
zation of simulated time. The presented solution has also 
been integrated into a tool platform for co-simulation-based 
analysis of collaborative embedded systems [9].

5.2.2 � Demonstrator Results

The execution of a demonstrator scenario running the DCP 
slave with other, non-DCP slave models was successful (cv. 
Fig. 8 (right)). The demonstrator verifies multiple require-
ments of the implemented interoperability interface. Via the 
standardized DCP interface, the functionality of a vehicle 
and environment simulator including rendering was inte-
grated into the co-simulation for CACC testing without the 
need for proprietary solutions for synchronization or data 
exchange. The distribution of the models on different hard-
ware platforms such as PCs, enabled by DCP, is demon-
strated. Distributing the models is an advantage in terms of 
calculation speed due to the extra performance an additional 

system provides. Also, the tools do not all need to be compli-
ant with the same operating system.

The demonstrator was run in NRT as well as SRT mode 
successfully. The implemented data exchange and synchro-
nization mechanisms for simulated times were investigated. 
It was found that the received and sent data between the 
DCP master and slave at the beginning and at the end of 
each time step, as described in Sect. 4.4, match and always 
correspond to the correct simulated times. This proves that 
the simulated times in xMOD and CARLA are synchronous, 
and data exchange is reliable. The TCP transport protocol 
was used for this analysis to exclude information loss on the 
physical layer of communication.

The execution of the simulation revealed that the simu-
lated time could not be synchronized to absolute time as the 
absolute time to carry out a step occasionally exceeds the 
sample time. This means the simulation cannot be run in 
SRT or faster-than-real-time mode on the current platform. 
A detailed analysis to what extent the calculation speed is 
related to the interoperability interface has not yet been con-
ducted as the speed is not only impacted by the interface, but 
also by the computation power of the machines, the com-
plexity of the models, and the efficiency of the simulators. 
However, it was found that Python as a programming lan-
guage used for the DCP slave and CARLA API slows down 
the overall simulation. This was proven by implementing an 
alternative client in C++ using CARLA’s newer C++ API 
that showed a significant acceleration of the simulated time. 
The C++ implementation was not fully DCP compliant, but 
it provided proprietary communication for the presented test 
scenario using the same sample time and data exchanged at 
simulation runtime. In this specific scenario, the average 
absolute time to calculate a simulation step was reduced by 

Fig. 8   Defined (left) and simulated (right) scenario for testing xMOD – CARLA DCP implementation
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approximately 30%, enabling faster-than-real-time simula-
tion. Additionally, it was found that it is possible to acceler-
ate the simulation by increasing the number of PDUs sent 
via a single socket and by reducing the number of sockets as 
this saves resources spent for listening on ports and estab-
lishing connections. If the number of sockets is reduced too 
much, the likelihood of packet collisions increases. Thus, 
by reducing the number of sockets, not all sent packets will 
be received correctly. For TCP connections, this leads to 
the retransmission of PDUs, which costs performance and 
counteracts the positive effect.

6 � Critical Reflection

This paper focuses on the application of the DCP standard 
in the development of automated driving functions with the 
example of a CACC controller. To prove the usability of the 
standard in this domain, a DCP interoperability interface 
was implemented and demonstrated in the use case of the 
CACC development. The scope is limited to the non-func-
tional coupling of software tools for the realization of the 
use case. In particular, the DCP standard was implemented 
for the coupling of the co-simulation platform xMOD as a 
master with a 3D vehicle and environment simulation in 
CARLA as a slave. The non-functional compatibility and 
successful realization of a distributed co-simulation on two 
platforms were successfully demonstrated with the imple-
mented toolchain. This illustrates how standardized, non-
functional tool or platform coupling via DCP can be used 
effectively in co-simulation for virtual testing of ADS. The 
spreading of DCP implementations in this field eases the set-
up of co-simulations, especially considering the large tool 
landscape, as non-functional interoperability of DCP com-
patible simulators is guaranteed. Functional compatibility 
of the two simulation components is not focused or ensured 
by the described concept as it is not standardized by DCP 
and must therefore be ensured manually for specific applica-
tions. Opaque data types, which are relevant in specific SIL 
use cases for inter- or intra-communication of virtualized 
ECUs, are currently not considered by the DCP standard. 
Thus DCP is not applicable for co-simulation interfaces 
between these SIL components. To cover such use cases 
opaque data types could be considered in future revisions 
of DCP, e.g., by using dynamic length byte arrays in the 
PDU-oriented data model. Alternatively, a data exchange 
mechanism relying on a serialization library could be inves-
tigated. This would increase the flexibility to exchange more 
complex data structures between co-simulation partners and 
could reduce the DCP implementation effort, but would 
also potentially negatively impact the performance depend-
ing on the chosen library. The highlighted standardization 
gaps such as functional standardization for ADS simulation 

components as well as non-functional extensions could be 
filled by following the idea of layered standards introduced 
by FMI. Extensions of a standard’s, e.g., DCP’s base defi-
nitions could be defined and, in case of achieving a high 
degree of adoption and importance, could be integrated as 
optional or mandatory in future revisions.

The implemented toolchain uses the commercial tool 
xMOD as a co-simulation master. This tool has been 
extended by the functionality of the DCP capability. The use 
of other co-simulation platforms as masters is not considered 
in this publication. Even if other platforms exist and are 
basically suitable, adaptations for DCP compatibility must 
be implemented to enable suitability.

For the DCP slave realization, the client of the tool 
CARLA was combined with a universal DCP wrapper. The 
validity and reuse potential of the wrapper concept could be 
proven within the plugfest and by the examined use case. 
Nevertheless, further validation with other tools is useful to 
show the general validity. This is especially true since the 
plugfest uses firmly simplified and functionally primitive 
models and the focus was on the examination of formal com-
patibility. The investigation of functionally complex models 
of other tools should therefore be additionally validated in 
further steps. The implemented wrapper and synchronization 
mechanism do not support the superstate “NonRealTime” 
for DCP’s NRT execution mode in their current state, which 
should be adjusted in a future revision. It was found that 
DCP’s NRT mode is currently not compatible with a uni-
versal, step-based synchronization mechanism based on data 
PDUs that satisfies DCP’s SRT and HRT modes, although it 
is also applicable for NRT simulations. In the light of ongo-
ing investigation on the topic of synchronization with DCP 
(see [35]) and aiming for a unified solution, an issue was 
raised in the DCP standardization group.

Furthermore, the studies were limited to co-simulation 
incorporating software models as test objects. A coupling 
with real hardware components such as sensors was not part 
of the consideration and the theoretical benefits provided by 
a DCP compliant tool coupling for such use cases should be 
investigated in more detail in the future.

Especially the use of hardware components requires the 
HRT capability of the co-simulation. It should be further 
evaluated to what extent the discovered simulation speed 
behavior is related to the DCP implementation. Further 
investigations are necessary to investigate HRT which is not 
supported by CARLA in addition to SRT and NRT. Espe-
cially the use of the UDP instead of TCP to potentially speed 
up the simulation should be additionally investigated in this 
context. When using UDP, the previously explained possi-
ble packet collisions in case of high socket loads should be 
considered as these can lead to PDUs being lost. Therefore, 
the communication and thus the calculations will become 
less reliable which must be investigated for the specific 
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application with respect to countermeasures and acceptable 
drop rates.

7 � Conclusions

The main goal of this work is to develop a DCP implemen-
tation to achieve a standardized integration of autonomous 
simulation tools into a co-simulation. The realization of a 
DCP master functionality inside the co-simulation master 
xMOD and transformation of the CARLA simulator into a 
DCP slave demonstrate the applicability of DCP for ADS 
use cases successfully. It is shown that different simula-
tors can be coupled effectively for co-simulation using this 
approach. Widespread industrialization of the DCP technol-
ogy in ADS simulation tools could potentially drastically 
minimize the efforts for creating tool coupling interfaces 
by ensuring interoperability on the communication layer. 
As a next step, a detailed study of the saved efforts, and 
also advantages and disadvantages in general when using 
DCP or alternative coupling standards instead of proprietary 
simulator couplings should be conducted. K. Albers et al. 
presented the first analysis of this in Ref. [9] and found a 
higher implementation effort for implementing standard-
ized simulator couplings and effort savings when reusing it. 
Under this assumption, the overall efficiency is increased in 
the long term which is an argument for using standardized 
solutions such as DCP in new simulation domains as long 
as the technical boundaries of a standard do not contradict 
the requirements of the use case.

It is demonstrated that DCP fulfills all major requirements 
of interfaces between ADS simulation tools and can be used 
by co-simulation masters alongside other co-simulation and 
model exchange methods. The chosen approach for the DCP 
slave using a functionally independent wrapper shows how 
components of a DCP implementation can be reused for 
future realizations.

Finally, some technical aspects have been identified 
that are worth investigating further such as the carry-over 
of the implementation to other tools and platforms or time 
synchronization mechanisms with DCP. Specifically, the 
applicability of DCP in cloud environments, e.g., to cou-
ple virtual machines, should be investigated as there is a 
need in ADS development to provide highly time-efficient 
software-in-the-loop frameworks. Regarding the impact of 
DCP compliance on the overall calculation speed, an in-
depth analysis should be performed. This includes tracking 
of absolute times for the individual operations within one 
time step such as communication delays, processing times, 
and calculations performed by the simulators. Furthermore, 
the options for HRT simulations in the field of ADS can be 
explored including the evaluation of UDP and other trans-
port layer protocols.
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