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Abstract
Faults that develop in vehicle sensors have the potential to propagate unchecked throughout control systems if undetected. 
Automatic fault diagnosis and health monitoring algorithms will become necessary as automotive applications become more 
autonomous. The current fault diagnosis systems are not effective for complex systems such as autonomous cars where the 
case of simultaneous faults in different sensors is highly possible. Therefore, this paper proposes a novel fault detection, 
isolation and identification architecture for multi-fault in multi-sensor systems with an efficient computational burden for 
real-time implementation. Support Vector Machine techniques are used to detect and identify faults in sensors for autono-
mous vehicle control systems. In addition, to identify degrading performance in a sensor and predict the time at which a 
fault will occur, a novel predictive algorithm is proposed. The effectiveness and accuracy of the architecture in detecting and 
identifying multiple faults as well as the accuracy of the proposed predictive fault detection algorithm are verified through 
a MATLAB/IPG CarMaker co-simulation platform. The results present detection and identification accuracies of 94.94% 
and 97.01%, respectively, as well as a prediction accuracy of 75.35%.
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Abbreviations
ANN  Artificial neural network
CV  Cross-validation
FDII  Fault detection, isolation & identification
IVHM  Integrated vehicle health management
k-NN  k-nearest neighbours
SVM  Support Vector Machine

1 Introduction

With the advent of autonomous vehicles, the number of sen-
sors within cars has been significantly increased. As such 
applications become more reliant on a diverse set of sen-
sors to operate, the fault tolerance and health awareness of 
these systems become more important. Current vehicles on 
the road rely on periodic maintenance and repair regimes 
to keep the vehicle in a safe and reliable operating range. 

However, periodic maintenance and repair regimes are not 
ideal for autonomous vehicles as there is no mechanism to 
monitor the health of the various parts in-between service 
intervals. It is noted that an unpredicted fault in sensors can 
spread through each stage of autonomous driving functions, 
generating significant errors in the output of these functions 
(e.g. decision making, stability control systems, et cetera), 
which in turn reduce vehicle safety and may have severe 
consequences [1, 2].

The main approaches to developing fault tolerance can 
be grouped into hardware redundancy [3], model-based 
methods [4–13], and data-driven methods [14–26]. Hard-
ware redundancy has been the traditional approach that 
relies on comparing the outputs of two identical sensors. 
When they disagree by a certain margin, a fault is present. 
This evidently can be a costly approach, which is often not 
economical in mass-production automotive applications. 
Model-based methods however typically operate by calcu-
lating residuals between measured parameters and a model 
of the system [3], as opposed to a physical second sensor. 
Model-based fault detection has seen attention in the auto-
motive sector for systems such as navigation [4, 5], electri-
cal power systems [6–8] and yaw moment control [9–13], 
where safety considerations are particularly critical. As more 
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sensors and systems are used, however, more complex mod-
els must be developed and implemented, which is a major 
weakness of model-based methods. Typically, the model-
based techniques suffer from a lack of robustness against 
un-modelled dynamics, model uncertainties and sensor noise 
[9]. Additionally, existing techniques are limited to specific 
known faults for identification purposes [11], which for fault 
identification can be a weakness if not all fault types are 
known.

Data-driven methods instead use large amounts of data to 
model the vehicle and its fault conditions by creating mod-
els that capture the behaviour of complex systems which 
would be difficult to describe with a model-based method. 
The need for large amounts of data for data-driven methods 
is a fundamental concern. However, recent advancements 
in connected vehicles, distributed computing platforms and 
a possibility to store and analyse data arising from different 
sensors open up avenues for the development of intelligent 
fault detection, isolation and identification (FDII) systems 
for automotive applications using data-driven methods [2]. 
The effectiveness of data-driven learning techniques for fault 
detection and maintenance has already been demonstrated 
in the aircraft industry [27]. These previous bodies of work 
indicate that extending the fault detection and fault toler-
ance of autonomous vehicles to the realm of data-driven 
techniques can potentially provide great benefits in terms 
of vehicle safety.

The main approaches of data-driven methods for this 
purpose include Artificial Neural Networks (ANN) [14–16], 
k-Nearest Neighbours (k-NN) [17, 18] and Support Vector 
Machines (SVM) [15–26]. ANNs map input nodes to output 
nodes using hidden layers, with the mapping being used to 
determine whether new data are faulty, while k-NNs classify 
the data using the classification of k neighbours to deter-
mine whether new data are faulty or not [28]. Typically, 
both ANNs and k-NNs suffer from poor generalisation per-
formance [16, 18]. SVMs are a statistical learning method 
that can identify a separating hyperplane between faulty and 
normal data. Using this plane to determine whether new 
data are faulty or not, they can provide greater generalisation 
capability compared to ANNs and k-NNs.

Current data-driven FDII architectures can be catego-
rised as single fault detection for a single sensor [29], single 
fault detection of multi-sensor systems [30–32] and multi 
fault detection and identification of a single sensor [20–22]. 
Despite significant recent interest in data-driven approaches 
for fault detection and identification applications, there are 
still gaps remaining in the current research with regards to 
multi-fault identification, detection of faults in multi-sensor 
systems as well as condition-based predictive fault detec-
tion. As real systems comprise multiple sensors, the pos-
sibility of two or more sensors being in a fault condition is 
probable, so overcoming this gap is important. Similarly, 

the lack of condition-based predictive fault detection is an 
ongoing challenge as the automotive sector moves towards a 
condition-based maintenance philosophy. Data-driven meth-
ods have been applied previously to predict faults based on 
usage data such as running hours and lifetime [2, 33], but 
usage-based data usually require a correlation between usage 
and fault types, which is not strictly true for sensor faults. 
By using condition-based data to detect faults, all types of 
faults that manifest themselves in the measured signal can 
be identified.

Considering the gaps in multi-sensor, multi-fault detec-
tion and identification, and condition-based fault prediction, 
this paper proposes a novel multi-sensor, multi-fault resilient 
architecture to bridge the current research gaps. The sec-
ond contribution is the implementation of a novel predictive 
algorithm that provides an estimate of the time at which 
degrading performance of a sensor would be classed as a 
fault for the controller. The considerations made here for 
practical implementations would represent a step forward in 
addressing the current research gaps for bringing fault detec-
tion, identification and prediction into use in autonomous 
vehicle applications.

This paper is organised as follows. The system architec-
ture and algorithm are proposed in Sect. 2. Section 3 devel-
ops the SVM models to implement this architecture. The 
simulation results of these algorithms are then presented 
and discussed in Sect. 4. Finally, Sect. 5 concludes the work 
and proposes future work outside of the scope of this paper.

2  Proposed Architecture and Algorithms

The topic explored in this paper is broadly described as 
Integrated Vehicle Health Monitoring (IVHM). The ben-
efits of IVHM are improved vehicle safety, more accurate 
health awareness and reductions in through-life costs [34, 
35]. The proposed FDII system of this paper comprises both 
current vehicle state awareness (fault detection and identi-
fication) and prediction to determine future vehicle health. 
An adequate understanding of the vehicle’s current health 
state would allow for intelligent vehicles to reconfigure the 
available healthy systems to compensate for failures, or for 
maintenance to be directed quickly to the faulty components. 
Predictive fault detection allows for the condition of the 
vehicle systems to be predicted at a future point in time. The 
proposed predictive FDII system provides the opportunity 
for control systems to reconfigure themselves in advance of 
a sensor failure or fault.

The overall architecture of the proposed FDII system is 
shown in Fig. 1. It is comprised of Detection, Isolation, Iden-
tification and Prediction modules.

The first step, detection, takes a number of independent 
sensor signals, applies a signal feature extraction function 
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for each signal, and finally combines them into a single 
sample. These features are used in a single class SVM 
model to identify whether a fault is present in the sam-
ple. By combining the signals in a single SVM model, the 
online performance can be improved, as opposed to using 
a detection SVM model for each sensor in the system. If 
a fault is detected, the samples are processed further. If a 
fault is not detected by the detection module, the sample 
is passed to the prediction module to establish if the sen-
sor signal indicates degrading performance preceding a 
future fault.

In order to establish which of the sensors is faulty within 
a combined signal sample, the signal is split into segments 
pertaining to each sensor, which are then individually tested 
against its respective single-class SVM model. Each of the 
SVM models is trained on only the sensor it pertains to as 
each sensor has different characteristic features as previously 
discussed. This architecture is therefore resilient to multi-
sensor faults. If no fault is detected in any of the sensors, the 
detection is assumed to be a false positive. Another advan-
tage to this approach is the performance benefits to real-time 
operation. As these isolation SVM models only run when a 
fault is detected, the overall architecture can benefit from 
improved speed.

The SVM model is re-used in the prediction module to 
determine for non-faulty samples if the signal for that sen-
sor is degrading. Samples within the prediction module are 
tested against the SVM model and a health score computed. 

Statistical information of this health score is then used to 
make predictions as to when the sample may become faulty.

Finally, each sensor found to have a fault is then tested 
against a multi-class SVM model to identify which type of 
fault is occurring. No healthy data are passed to the identifi-
cation module which means that only a single identification 
model is needed.

The primary outputs of the system are the sensors that 
are faulty for that time-sample and the fault condition iden-
tified for each faulty sensor. The secondary output is (for 
those sensors not in fault condition but have degraded per-
formance) the time at which the fault is predicted to occur.

3  Development of Models

The architecture proposed has been developed further in 
order to identify the theoretical considerations of SVM tech-
niques, faults and fault prediction. The models and decisions 
made to implement the architecture above are explored here.

3.1  SVM Models

This paper primarily analyses SVM techniques, however 
another common data-driven method, ANNs, has been con-
sidered by other authors. SVM techniques have been chosen 
for this paper given the weaknesses found with ANNs in 
other work. Hybrid approaches were not chosen despite the 
improved performance offered, as the focus of this paper 
is on establishing a robust and repeatable FDII approach 
and architecture. By choosing a single base technique and 
using it throughout this paper, the proposed architecture can 
remain flexible to future developments, allowing the models 
to be augmented with more sophisticated methods later.

Artificial Neural Networks are an approach that map input 
source nodes through hidden layers of computation nodes 
to output nodes [36]. This method transforms input data 
between layers using an activation function. The training 
builds connections between nodes while minimising an error 
function comparing computed outputs to the actual outputs. 
Typically, this method suffers from poor generalisation per-
formance compared to SVMs due to the optimisation func-
tion used to train them [16]. As generalisation performance 
is desirable for the varied scenarios that automotive sensors 
are subjected to, SVMs are therefore preferable.

SVM models identify a set of support vectors within a 
dataset which define a separating hyperplane [36]. New data 
points are then classified based on which side of this hyper-
plane they lie. This method relies on statistical learning and 
can offer higher accuracies and generalisation capability due 
to the distinctive features that define the hyperplane [16].

For datasets that cannot be linearly separated by a 
hyperplane, a kernel function can be applied to transform 

Fig. 1  Proposed FDII system architecture
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the feature-space into higher dimensions that are linearly 
separable. There are several kernel functions [37] that have 
been used by other authors, the most common of which are 
Linear [38], Polynomial [22] and Radial-Basis Function 
[17, 20, 26]. Generally, Radial-Basis Function was found 
to give more satisfactory performance for the classifica-
tion of multiple sensor faults and as such has been used 
for this paper.

One of the most significant efforts involved with this 
method is identifying features of a sensor signal that are 
unique to a fault condition. Much work has been completed 
on different time-domain and frequency-domain features, 
illustrating the impact on classification accuracy that selec-
tion can have. It has been found that time-domain features 
are sufficiently detailed to give high classification accuracies 
for fault detection, and as such frequency-domain features 
are unnecessary [21, 22]. Using more features yields dimin-
ishing returns on classification accuracy, while increas-
ing the computational time for a model to be trained and 
tested. As such, a compromise needs to be reached between 
the required classification accuracy and the computational 
power available [21].

Recently, modifications to the traditional SVM method 
have been proposed [17, 20, 22] as well as hybrid data 
fusion methods [15, 25, 26] which can offer higher clas-
sification accuracies in certain cases. For this paper, k-fold 
cross-validation (CV) has been used with the SVM models 
to reduce the generalisation error [22], as overfitting is a 
concern with this method. The dataset is divided into k sets 
and the model is trained k times, each time leaving out one 
of the sets and testing with the set which is left out. Statisti-
cal features of this process are then used to calculate the 
generalisation error.

3.2  Faults

There are many different types of faults that can affect sen-
sors, and therefore not all types have been modelled exhaus-
tively for this paper. Five distinct definitions have been mod-
elled for this work which represents likely types of faults 
that can occur for the sensors in an automotive controller. 
Fault types can be intermittent, which are explored in this 
paper as it is expected to be a more difficult case to detect 
for SVM models.

These types of sensor faults are defined as: drift, hard-
over, erratic, spike and stuck faults, shown in Fig. 2. The 
following definitions are used for these faults [21]:

Drift faults The sensor value deviates linearly over time 
from the true value.

Hard-over faults The sensor value increases to the satura-
tion point for a short period of time.

Erratic faults The sensor value varies about the true 
value. The magnitude of this variance can increase over 
time.

Spike faults The sensor value is significantly above the 
true value for a single point. The density of spike faults 
within the signal can increase over time.

Stuck faults The sensor value remains at a fixed value for 
a short period of time.

3.3  Feature Selection and Extraction

Feature selection is important in order to capture sufficient 
defining features about a signal, specifically the character-
istics of a fault present in a signal sample. In this paper, 
this step is performed using a feature extraction algorithm 
applied to each signal sample. The features are then com-
bined in a single combined feature vector for use in the SVM 
models.

Figure 3 shows how the signals are combined in the fea-
ture extraction algorithm. No weighting or normalisation 
is performed at this stage to accommodate the differences 
in sensor signal characteristics. Instead, the SVM model 
standardises the combined feature vectors with respect to 

Fig. 2  Faults injected into normal signal samples of a steering wheel 
angle sensor
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both extracted feature and sensor. This ensures that the dif-
ferences in sensor signal characteristics do not impact the 
performance of the system.

As has been previously explored [21], increasing the num-
ber of time-domain features which describe the signal yields 
diminishing increases in classification accuracy. Therefore, a 
feature space utilising time-domain features is used to train and 
test the SVM algorithms, to give sufficient detection accuracy 
whilst simplifying the system. Frequency-domain features 
were not considered as the time-domain features are sufficient 
to differentiate between faulty and normal signals.

Table 1 shows the feature definitions used for the fault types 
as defined in Ref. [21]. These features are Root Mean Square 
(fRMS), Square Root of Amplitude (fSRA), Kurtosis Value (fKV), 
Skewness Value (fSV), Peak-to-Peak Value (fPPV), Crest Factor 
(fCF), Impulse Factor (fIF), Marginal Factor (fMF), Shape Factor 
(fSF) and Kurtosis Factor (fKF). 

Algorithm 1. Feature Extraction Pseudocode

function Feature Extraction(data)

Sampling Rate = N

for i = 1 : end(data)

Xi = data(i : I + N)

Feature 1 = f1(Xi)

…

Feature k = fk(Xi)

if Xi = faulty

Label = 1

Fault Type = 1,2…,N
else

Label = 0

Fault Type = 0

End
Output(Features, Label, Fault Type)

The pseudocode for this implementation is shown in Algo-
rithm 1. The output of this function is a matrix of features, 
where each row is a single k-datapoint sample, with each col-
umn being the value of the feature defined in Table 1.

3.4  Fault Detection

Fault detection is one of the primary objectives of this FDII 
system. As any number of sensors can be in a fault condition, 
the sensor signals are combined and an SVM model uses the 
features extracted from all sensor signals to determine if any 
of the sensors are in a fault condition. This is beneficial as it 
reduces the complexity of the architecture into a single SVM 
model for detection, rather than independent detection models 
for each sensor. As the number of sensors used increases, the 
benefits of this approach become more apparent.

The main objective of fault detection is to determine 
whether the overall functional system is faulty or safe to use. 
The criticality of the fault cannot be investigated at this step 
as the detection model can only report that there is a fault pre-
sent. In order to reconfigure the system or direct maintenance 
efforts, the signal is split into respective sensor signals. Each 
signal is then passed to the fault isolation module to determine 
which specific sensors are in a fault condition.

Sensor 1 …

Feature ExtractionFeature Extraction

Feature Combination

SVM Detection

Sensor 2

Feature Extraction

Sensor 2

Fig. 3  Combined feature vector creation

Table 1  Time-domain feature definitions used for N data points in a 
sample x [21]
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3.5  Fault Isolation

Fault isolation is necessary to identify which sensors are 
reporting faults. It is possible to perform independent fault 
detection on each sensor instead of fault detection on the 
entire combined signal feed, however the this adds computa-
tional load to the overall FDII system as explored in Sect. 1. 
Independent fault detection is also evidently less feasible 
when the number of sensors is increased. For this paper, the 
isolation module only tests the sensor if a fault is detected, 
which reduces computational load.

Each sensor type has an SVM model, as each sensor has 
different characteristic ‘normal’ signal types, even after 
standardisation. These models are tested against new sam-
ples which are determined by the detection model to be 
faulty. This approach allows for any number of sensors to 
be declared faulty for a particular sample, which ensures the 
architecture is multi-sensor, multi-fault tolerant. Any sensor-
specific samples which are determined to be faulty are then 
passed to the fault identification module to determine which 
type of fault is occurring for that particular sensor.

3.6  Fault Identification

Once a fault has been detected and isolated, it then needs to 
be identified as a particular fault type. This is important as 
different fault types have different impacts on vehicle recon-
figurability. For example, a drift fault may not be serious 
enough to cause a significant reduction in vehicle safety, 
whereas a hard-over fault would be.

To determine which type of fault is present, the signal 
for each sensor is used in a multi-class SVM model, with 
one class for each fault type. There is an additional implied 
class (normal data), though it is never trained or tested for. It 
is assumed that all data which reach the identification stage 
should be faulty data. This is opposed to other methods [21, 
22], which use the multiclass model to both detect and iden-
tify a fault in a single sensor. This is expected to give slightly 
higher identification accuracies as faulty data cannot be mis-
classified as normal data.

The benefit of performing fault identification on each of 
the three sensors rather than on the combined signal is that 
it reduces the number of classes needed to represent every 

possible combination of sensor faults. As multi-sensor fail-
ure tolerance is the aim of this paper, this approach is more 
appropriate.

As the normal signal is not tested for, only a single multi-
class identification model is trained with the data from all 
three sensors, and then each sensor is tested individually 
using the same model for each sensor.

3.7  Fault Prediction

One area of interest is the use of SVM models to predict 
faults. Within this paper, the methods of Ref. [17] have been 
modified and extended to provide a time position at which 
the fault is predicted to occur. This brings many benefits to 
automotive applications, especially in autonomous vehicles 
which lack a human driver who can actively detect faults in 
the vehicle systems. If degrading performance is detected 
and a fault predicted to occur before the end of a driving 
scenario, a higher-level vehicle control system could recon-
figure itself [3] or adjust its mission profile to continue meet-
ing its safety requirements.

Within the detection SVM model developed for this 
paper, the separating hyperplane or ‘decision-boundary’ can 
be tested with new samples to identify a fault that degrades 
sensor performance over time. The distance between this 
decision boundary and the new sample can be used to iden-
tify how ‘healthy’ and how ‘faulty’ the signal is. The smaller 
the value, the closer to the decision boundary the sample 
lies. Negative values represent members of the opposing 
class.

In the implementation of Ref. [17], the distance was nor-
malised using a logistic function in order to clip the sig-
nificant variations of healthy/faulty samples and to focus 
on the transition between the two. The values of the health 
score would therefore be bounded between 0 and 1, with the 
threshold of normality lying at 0.5. Although trend analysis 
was suggested to be possible in Ref. [17], for this paper 
it was not found to be sufficient to allow for predictions 
to be made. As such, a 5-point trailing moving average is 
also applied to smooth the transition and help consistent 
predictions be made. The pseudocode for this is shown in 
Algorithm 2.
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Algorithm 2. Health Score and Prediction Pseudocode

function Health Score(Detection SVM Model, Signal)

Features = Feature Extraction(Signal)

[Label, X] = Detection SVM Model(Features)

Health Score = 

Average Score = Moving Average(Health Score)

if Average Score(i) < Threshold

m = i
n = m + 2 

Trend = Linear Line(Average Score(m : n))

end

while (gradient(Trend) < Set Point && Trials < N)

N = N + 1

m = m + 1

n = m + 2

Trend = Linear Line(Average Score(m : n))

End

Output(Health Score, Trend)

For fault prediction, three types of faults are applicable: 
drift, erratic and spike. This paper develops this prediction 
method on erratic as it is thought to be the more serious and 
most difficult to detect given its highly variable nature.

4  Simulation Results and Discussion

In order to test the proposed architecture and algorithms, a 
proprietary controller for autonomous vehicles proposed in 
Refs. [39, 40] has been used. The controller consists of three 
input signals: driving torque, brake pressure and steering 
wheel angle. Two output signals have been considered to 
analyse the effect of faults on vehicle control performance: 
linear velocity (vx) and yaw moment (Mz). All simulations 
have been run using a co-simulation MATLAB/IPG Car-
Maker environment.

The dataset generated to train and test the proposed FDII 
system comprised of 3 million data points, with each point 
containing the signal amplitude for each sensor in a 10 ms 
interval. This represents 500 min of simulated data sampled 
at 100 Hz. The ratio between training and testing data has 
been set at 80% training to 20% testing. This has been set 
high deliberately to ensure a sufficient variety of training 
scenarios are captured. This will help reduce the generalisa-
tion error discussed in Sect. 3.1.

Testing began with a small trial dataset of 300,000 data 
points in order to tune and test without significant process-
ing time. The accuracies calculated are the number of cor-
rect classifications over the total number of classifications. 
The steps taken to simulate this architecture are detailed in 
Algorithm 3.

4.1  Data Collection

Three simulated driving scenarios are used to build each 
dataset using the IPG CarMaker software. One typical of 
urban driving, one of highway driving and one of parking. 
The driving scenarios have been duplicated, representing 
multiple runs of each scenario to fill the specified number 
of data points. All scenarios are then combined to fill the 
datasets. The selection of driving scenarios is intended to 
capture the variety of sensor outputs that may be seen in nor-
mal conditions, and to explore the effect these scenarios have 
on SVM accuracies. This is important in order to ensure the 
model does not predict normal driving data as faulty.

The trial dataset was generated by limiting the duration 
of the simulations such that the total amount of data was 
approximately 300,000 data points (50 min). The simulation 
dataset is generated with the same simulation setup, but with 
the duration limited such that the total amount of data was 
approximately 3,000,000 (500 min). Faults are artificially 
induced using MATLAB in both datasets with identical fault 
parameters.

The artificially generated faults were injected into the 
three sensor signals, namely driving torque, brake pressure, 

Algorithm 3. Methodology for Reproduction

1. Number and type of sensors and controller 

selected

2. SVM models produced for each module defined 

in the overall FDII Architecture

3. Initial trial dataset of 300,000 data points

simulated in IPG-CarMaker for tuning the SVM 

models

4. Faults injected into the trial dataset

5. SVM model trained using trial dataset with 10-

fold Cross-Validation

6. Simulation dataset of 3,000,000 data-points 

simulated

7. Faults injected into the simulation dataset

8. Optimal parameters selected for each model

based on earlier trials

9. SVM models trained on 80% of the simulation dataset

10. Architecture tested using the remaining 20% of 

simulation dataset
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and steering wheel angle. The injection of each fault incor-
porates pseudo-randomness to simulate the variability of 
each fault condition. Intermittency of fault conditions has 
been included for hard-over, erratic, spike and stuck to simu-
late real-world fault conditions. Half of the scenarios had a 
fault injected into them to provide sufficient training data.

For the driving scenarios which have had a fault injected, 
the fault is introduced after the 25th percentile of one or 
more of the three sensor signals. The type and location of 
fault are introduced using a uniform distribution to get an 
equal distribution of faults. Normal distributions have been 
used to simulate the amplitude of faults where applica-
ble. An error of 20% of Full-Scale Output (FSO) has been 
defined as faulty for the erratic and drift faults.

The fault parameters shown in Table 2 have been selected 
to give a suitable representation of real-world faults for the 
simulated data. Uniform distributions are used to incorporate 
randomness into drift fault gradient, hard-over fault length, 
erratic fault length and stuck fault length. The erratic fault 
amplitude uses a normal distribution with a standard devia-
tion of 0.2.

4.2  Detection Performance

For detection, a 30-feature single class SVM model has been 
trained, with 10 features extracted per sensor. As can be seen 
from Fig. 4, the prediction closely matches the actual faults 
that were injected into the simulated dataset, confirming the 
accuracy of the detection SVM model. The accuracies of 
the model for the detection of different injected faults are 
presented in Table 3. 

As the table shows, the model detects each fault with a 
minimum accuracy of 88.42% for drift faults and a maxi-
mum accuracy of 99.97% for hard-over faults. However, 
these accuracies are likely higher than would be observed 
using real sensor data as the data in the normal class does 
not contain any noise. The assumption made during this sim-
ulation is that data pre-treatment is sufficient to minimise the 
noise in the signals. Should noise be present or inadequately 
filtered out by signal pre-processing, it is expected that the 
performance of the detection module will degrade. The 

detection performance for each fault type would be driven 
mainly by the signal features and how close they are to the 
signal features of noisy data. For example, the signal features 
of erratic faults and noise are similar, so the performance for 
erratic detection is expected to be reduced.

The accuracy for the spike fault class was found to be 
higher than that reported elsewhere in Refs. [21, 22]. This 
has been investigated and the potential reason would be the 
smaller sample size of 10 data points compared to the other 
approaches using 1000 data points per sample. This means 
that the spike faults can represent a larger proportion of the 
sample for a given spike fault density, and therefore have 
more distinctive features. No discernible accuracy reduc-
tions are observed as a result of the smaller sample size in 
other fault classes.

Drift faults typically are harder to detect at their initiation, 
as they can be typical of normal sensor behaviour. This is 
shown here with drift faults being the hardest fault types to 
detect, however, the accuracy is still appreciably high.

Stuck faults show a lower accuracy as one characteristic 
feature of stuck faults is the absence of noise presented after 
fault initiation. Due to the lack of noise in the simulations, 
stuck faults are not as easily distinguished from normal data. 
This is a weakness of simulating sensor data. It does how-
ever highlight that for sensors that lack significant character-
istic noise, stuck faults may be difficult to detect.

Hard-over faults are noticeably easy to detect as they 
have significantly abnormal features. With a signal gradi-
ent approaching infinity, no normal driving scenario could 

Table 2  Fault parameters

Fault Amplitude Gradient Max length (data 
points)

Drift N/A ±
1

Scenario Length
N/A

Hard-over 1.1 × signal FSO N/A 0.5 × scenario length

Erratic ±0.2 × signal FSO N/A 0.4 × scenario length

Spike +0.5 × signal FSO N/A N/A
Stuck N/A N/A 100

Fig. 4  Detection classification results from 30-feature SVM model 
with a predicted faults and b actual faults
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produce this type of sensor output for the sensors used in 
this paper. This is useful as hard-over faults have a very high 
potential to reduce driving safety.

In addition to the three input sensors, two system outputs, 
linear velocity  (Vx) and yaw moment  (Mz), are considered to 
gauge whether it is more effective to detect faults using the 
system outputs rather than sensor inputs. From a qualitative 
investigation of the outputs, the features appear less promi-
nent in the system outputs due to the number of sensors 
used and the fixed parameters in the controller. As such, a 
reduction in accuracy was expected. The approach to detec-
tion was the same as with the input sensors, but with only 
20 features used (10 for each signal).

While not explicitly explored, it is understood that an 
approach focused on the controller outputs would suffer 
from variable correlation, where the isolation of a fault to a 
specific component becomes more difficult due to the effect 
a fault in a single component has over the controller. By 
using an architecture focused on the sensors themselves, the 
impact of this is minimised.

Figure  5 shows the performance of the model when 
trained and tested against the two outputs of the system. 
Although it represents the faults injected relatively ade-
quately, the overall accuracy is 79.33%, lower than previ-
ously with the input sensors. Most significantly, the hard-
over accuracy is found to be 75.92%, compared with 100% 
for the previous model. This illustrates how distinctive 
features of the faults become subtler and harder to recog-
nise with an SVM model after being propagated through a 
controller. This is an area where further work is needed to 
establish whether the losses in detection accuracies by using 
controller system outputs can be mitigated by feature selec-
tion, or whether this is a characteristic of performing fault 
detection on controller system outputs.

4.3  Isolation Performance

In the isolation module, the faults are detected for each sen-
sor independently in order to isolate where the fault is occur-
ring. Three 10-feature single class SVM models have been 
trained, one for each sensor type. An overall detection accu-
racy of 97.42% is observed, slightly higher than the overall 
accuracy of the 30-feature SVM model. The accuracies are 
presented in Table 4.

The most significant finding from this simulation is that 
each sensor has varying accuracies both overall and for each 
fault type. This appears to be mitigated by the inclusion of 

more data but remains an issue. This is mainly due to the 
fact that the normal data types for the sensors are unique to 
that type of sensor. For instance, the data for the steering 
wheel angle sensor typically exhibit lower gradients than 
that of the driving torque, even after normalisation in the 
SVM model. This explains the difficulty that the SVM model 
has in detecting a fault in the steering wheel angle sensor 
for drift faults, as a drift fault has very similar time-domain 
features to that of a normal signal for that particular sensor.

4.4  Identification Performance

For identification, the sensor which has been isolated in 
the previous step is tested to determine which type of fault 
is present. The dataset has been used to train a 10-feature, 
5-class SVM model, with each class representing one of the 
fault types previously modelled. As found with isolation, 
identification accuracy varies depending on which sensor 
is tested. This is shown from the results in Fig. 6, with an 
overall accuracy of 97.01% observed. The breakdown of 
accuracies is presented in Table 5. 

The identification accuracies vary between 99.10% and 
73.49%, with brake pressure having the highest accuracies. 
Driving torque is poorer with several of the lowest accura-
cies, especially for spike fault identification. Spike faults 

Table 3  Detection accuracies 
for the trial and full datasets (%)

Overall accuracy Drift Hard-over Erratic Spike Stuck

Trial 94.54 81.73 99.49 92.76 99.75 96.80
Simulation 94.94 88.42 99.97 89.66 99.96 96.54

Fig. 5  Detection classification results for 20-feature SVM model of 
outputs vx and Mz with a predicted faults and b actual faults
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are the hardest faults to identify for all sensors, often being 
misclassified as erratic faults and vice versa. Increasing the 
amount of training data improved the accuracy for these two 
fault classes. The reason can be that the spike and erratic 
faults modelled are too similar to be distinguished easily 
with the chosen feature set, and more data is needed to accu-
rately predict these two faults. Therefore, future work may 
be in identifying either a dataset or a feature set that provides 

a better compromise between the identification accuracy for 
all fault types.

Remark 1 The models for the detection, isolation and identi-
fication are tuned in order to reduce misclassification error. 
The two main parameters of the models which have been 
tuned are the box constraint and kernel scale parameters. 
Tuning is performed on a smaller trial dataset (300,000 data 
points) and then applied to the larger simulation dataset as 
the process is very time-consuming.

To minimise the CV loss of the model, Bayesian Optimi-
sation was performed with 30 function evaluations using the 
‘OptimizeHyperparameters’ function within MATLAB. The 
default tenfold was used with the CV method for tuning. The 
trial datasets were run using the default box constraint and 
kernel scale values to validate the improvement in CV loss.

Table 6 shows the results of the optimisation function for 
the 30-feature detection model. As can be seen, a reduction 
in the CV loss is observed. It is worth noting here that a 
compromise may be achieved between training time and CV-
loss, however, the models have been optimised for accuracy. 
To illustrate the impact of training time, for the trial data the 

Table 4  Isolation detection 
accuracies for each sensor type, 
Driving Torque (DT), Braking 
Pressure (BP), Steering Wheel 
Angle (SWA) (%)

Overall accuracy Drift Hard-over Erratic Spike Stuck

Trial
DT 97.80 93.18 99.49 96.46 99.75 98.99
BP 97.89 95.79 99.75 96.46 99.66 97.05
SWA 95.66 80.72 99.75 98.57 100.00 97.39
Simulation
DT 97.83 93.59 99.91 96.28 99.97 99.35
BP 97.80 96.98 99.98 98.26 98.57 95.20
SWA 96.62 86.25 100.00 97.41 99.98 99.33

Fig. 6  Identification results for all three sensors combined with a pre-
dicted fault type and b actual fault type

Table 5  Identification accuracy (%)

Overall accuracy DT BP SWA

Trial
Drift 93.82 81.58 96.10 95.59
Hard-over 85.47 91.77 100.00 77.73
Erratic 54.41 44.44 66.67 55.00
Spike 90.91 75.00 100.00 100.00
Stuck 93.82 81.58 96.10 95.59
Simulation
Drift 97.23 93.97 98.59 96.15
Hard-over 98.65 99.10 98.99 97.63
Erratic 82.17 75.65 89.61 82.84
Spike 79.09 73.49 81.01 84.48
Stuck 97.23 93.97 98.59 96.15
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training time increases by a factor of 10 for the indicated 
0.18% reduction in CV-loss.

Remark 2 The performance of the SVM models is found to 
be satisfactory during the testing component of the simula-
tions. As the simulations are able to run faster than the time 
period of the dataset tested, the architecture can be run in 
real-time. However, the training component involves large 
variability depending on the parameters set. Training times 
of up to 30 min are observed on this relatively small dataset. 
The workstation used for these simulations has a 3.7 GHz 
Hex-core CPU and 16 GB of Memory. Memory is not found 
to be a limiting factor, however, the training regularly uses 
100% of a single CPU core. Parallel processing may improve 
training time but is not explored in this paper.

4.5  Fault Prediction

To analyse the accuracy of prediction, the prediction algo-
rithm has been tested for 10,000 degrading erratic faults. 
Erratic faults were selected as they were perceived as the 
most difficult fault type to predict. The overall prediction 
accuracy is found to be 75.35%. The prediction accuracy 
here is expressed as the difference between the predicted 
fault time and the actual fault time for a 20% error, expressed 
as a percentage of the time in which the fault initiates and 
degrades to an actual fault.

For this paper, a maximum of 100 predictions are 
attempted to ensure that the fault is always predicted even if 
it is not accurately predicted in the first trials. Multiply the 
attempted amount if the gradient of prediction is found to be 
too shallow for a prediction to be made. This has been done 
to only detect faults that are predicted to be degrading fast 
enough to be of interest.

Table 7 shows an extract of the testing data for an erratic 
data sample. As can be seen, the distance between the 
new sample and the hyperplane reduces as the fault error 
increases, however not linearly. An average normalised score 
of 0.7 and above was found to exclusively represent healthy 
samples, therefore this was set as the threshold below which 
a degrading fault is predicted to be occurring.

Improvements of accuracy can be gained by using a larger 
number of health scores to predict, however, this reduces 
the time between the prediction being made and the fault 
occurring. The parameter choices made for this paper give a 
good compromise between how close the prediction is to the 

actual fault time, retaining as much time before the predic-
tion occurs as possible.

Figure 7 shows an example of a fault prediction. While 
this example shows excellent prediction accuracy, the vari-
ance was found to be an issue as shown in Fig. 8. Although 
24.63% of predictions have accuracies over 90% and give 
a close approximation to the fault initiation time, 57.44% 
of predictions had accuracies between 60% and 90%. This 
is found to be due to a combination of factors, the most 
significant being the inaccuracies in the detection model for 
degrading faults. This causes the gradient of the degradation 
to be too variable to accurately predict. While training the 
models using degrading faults is explored, it is found that 
the initiation of degrading faults was classified as normal 
data and therefore caused the same variable gradient. Addi-
tionally, the variability of the erratic fault was a significant 
problem to try and accommodate, as the signal would often 
appear to recover as can be seen in Fig. 7. This causes the 
linear detection to be insufficient to capture the full behav-
iour of the degradation, demonstrating the challenges that 
real sensor faults pose to fault prediction. 

There were a small number of predictions that failed even 
after 100 trials, which were included as having 0% accu-
racy. This is likely unavoidable, although could be improved 
by tuning the trailing moving-average used. Centre-point 
moving-averages were considered for this paper and show 
a small improvement in accuracy; however this reduced the 
time between the prediction being made and the fault initi-
ating, reducing the value of the fault prediction in the first 
place. Trailing moving-averages are therefore thought to be a 
more appropriate method of smoothing the health scores for 
prediction. As can be seen from Fig. 8, only 0.73% of predic-
tions completely failed, and 67.68% of predictions showed 
accuracies in the 70–100% range.

There is also a possibility for refining a prediction over 
a longer time period, which was not explored in this paper. 
Moreover, it is thought that while the time-period for pre-
diction used in this approach is short, the same approach 
can apply to fault types that degrade over much longer 
time-periods.

Table 6  Tuning parameters-trial detection SVM

CV loss/% C σ Training time/s

Trial 5.01 1 1 8.8
4.83 171.39 2.0301 76.1

Table 7  Sample of hyperplane distances of an erratic sample for 
approximate error values

Approx. ( ~) sample 
error/%

Distance to hyperplane Normalised 
health score

0 0.99 0.71
 ~ 5 0.97 0.71
 ~ 10 0.87 0.70
 ~ 15 0.64 0.65
 ~ 20 − 0.43 0.39



312 L. Biddle, S. Fallah 

1 3

The predictive algorithm was also validated against the 
two other applicable fault types for degrading faults: drift 
and spike faults. For spike faults, the definition in Sect. 3.2 
is used, where the density of the spike faults increases over 
time. The parameters tuned with erratic faults were re-used 
to identify how general this algorithm is. For drift faults, the 
accuracy is reduced to 56.97%. For spike faults, the algo-
rithm failed to make a prediction for 74.77% of faults, with 
an overall accuracy of 14.86%.

For comparison, other more established methods of pre-
diction can achieve higher accuracies such as 97.1% for a 
method using ANN models [41]. It is worth noting however 
that the reduction in accuracy in the method used in this 
paper can be balanced against the relative benefits. Fault 

prediction using this algorithm does not rely on more symp-
tomatic fault prediction such as vibration analysis or physi-
cal parameter observations, and so can be more appropriate 
for sensor and control applications.

Further work for this approach would mainly involve 
identifying coefficients to the logistic function to improve 
the normalisation, or the exploration of different normal-
isation functions, allowing for a more linear trend in the 
health scores. Different approaches to the prediction algo-
rithm should also be explored which would allow for a more 
generalised algorithm that can predict multiple fault types. 
The relatively simple trailing moving average could also be 
replaced with a more sophisticated method, as well as non-
linear predictions.

5  Discussion and Future Work

Key observations have been made on the application of SVM 
models in multi-sensor control systems, most notably show-
ing that different sensors have different detection and iden-
tification accuracies when exposed to particular fault types 
such as drift faults. This observation will be a major con-
sideration for SVM models applied to different multi-sen-
sor control systems subject to a wide variety of faults. This 
paper does not consider the full subset of; faults however, 
such future work could be extended to include a broader 
definition of faults based on a wider survey of likely sensor 
system faults. One key weakness identified is that simulation 
of data without consideration of noise can affect the validity 
of the accuracies obtained. Notably, erratic faults may be 
much harder to detect for a signal should noise be present. 
On the other hand, stuck faults should see an improvement in 
accuracy should noise be considered. Overall, the accuracies 

Fig. 7  Linear fault prediction 
with 98.46% accuracy

Fig. 8  Histogram showing frequency distribution of prediction accu-
racies
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achieved by the FDII system proposed here show high accu-
racies of 94.94%, 97.42%, 97.01% for detection, isolation 
and identification, respectively. Other authors have found 
similar overall classification accuracies (88.13%) with the 
same fault set tested here, with similar methods [21].

For this paper, only a single data-driven method approach 
was used. As observed in the literature, generally hybrid 
approaches can offer significant improvements in detection 
and identification accuracy given the relative benefits of each 
method. For this approach, it is most likely that future work 
in replacing the detection and isolation component with an 
ANN model will provide significant improvements in accu-
racy, as the lowest accuracies observed are for the detection 
module. The isolation module can also be greatly simpli-
fied by the ability of the ANN to isolate faults to particular 
sensors.

For detection and isolation, the selection of parameters 
to improve generalisation performance allows new types 
of faults to be distinguished from healthy signal samples. 
However, it is worth noting that for identification, the 
multi-class SVM model used is not resilient to new fault 
types as the model has a single class for each fault type and 
will mis-identify new types. Other approaches in future 
work should be explored to improve this weakness.

Training of the SVM models is completed offline with 
no consideration given to updating this over time. Online 
adaptive training can provide improved classification accu-
racy, especially where parameters are subject to drift over 
time due to changing conditions. Vehicles operate in an 
inherently unpredictable environment, so the ability to 
adapt to changes in the environment would be a signifi-
cantly beneficial focus for future work.

This paper also proposes a novel algorithm for fault pre-
diction in sensing systems of autonomous vehicles. The 
predictive algorithm uses condition-based data to give the 
best possible estimate of the time at which a degrading fault 
will emerge in a sensor. As opposed to time or usage-based 
approaches used by other authors, this approach is applicable 
to all types of fault regardless of their relationship with time 
or usage-based data. The prediction algorithm shows great 
promise, with a relatively simple implementation resulting 
in a prediction accuracy of 75.35%. However, unsatisfac-
tory performance is observed when the algorithm developed 
for erratic faults is applied to drift and spike faults. This 
highlights an area for improvement where future work can 
improve this prediction accuracy by using more sophisti-
cated trend analysis and data analytics. Developing a more 
generalised prediction scheme that can be applied to several 
different fault types is a key goal of future work. In addition, 
it is noted that the simple trend analysis results in lower 
performance compared to other methods [41].

Finally, while not considered in detail here, as IVHM 
systems typically allow for reconfiguration, the outputs from 

the FDII system could be used to inform a higher-level vehi-
cle control system that can reconfigure the available healthy 
components to continue the current vehicle mission. Ana-
lytical redundancy for this purpose has already been exam-
ined in model-based methods. While the models may not be 
sufficient to detect faults, they could be used to recover some 
level of vehicle functionality using available healthy sensors. 
Future work on comprehensive IVHM systems that meet 
more levels of autonomy will evidently need to examine a 
wider variety of systems and provide more valuable outputs 
such as this to the overall vehicle systems, in order for com-
mercial applications to be successful.
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