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Abstract
Battery packs are applied in various areas (e.g., electric vehicles, energy storage, space, mining, etc.), which requires the 
state of health (SOH) to be accurately estimated. Inconsistency, also known as cell variation, is considered a significant 
evaluation index that greatly affects the degradation of battery pack. This paper proposes a novel joint inconsistency and 
SOH estimation method under cycling, which fills the gap of joint estimation based on the fast-charging process for electric 
vehicles. First, fifteen features are extracted from current change points during the partial charging process. Then, a joint 
estimation system is designed, where fusion weights are obtained by the analytic hierarchy process and multi-scale sample 
entropy to evaluate inconsistency. A wrapper is used to select the optimal feature subset, and Gaussian process regression is 
implemented to estimate the SOH. Finally, the estimation performance is assessed by the test data. The results show that the 
inconsistency evaluation can reflect the aging conditions, and the inconsistency does affect the aging process. The wrapper 
selection method improves the accuracy of SOH estimation by about 75.8% compared to the traditional filter method when 
only 10% of data is used for model training. The maximum absolute error and root mean square error are 2.58% and 0.93%, 
respectively.
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Abbreviations
AHP  Analytic hierarchy process
ECM  Equivalent circuit model
EIS  Electrochemical impedance spectrum
EVs/PHEVs  Electric/plug-in electric vehicles
GPR  Gaussian process regression
HI  Health indicator
MAE  Maximum absolute error
MSE  Multi-scale Sample entropy

RMS  Root mean square
SampEn  Sample entropy
SOC  State of charge
SOH  State of health

1 Introduction

Battery packs are widely used in many important areas, 
such as electric vehicles (EVs), plug-in electric vehicles 
(PHEVs), smart grids, and aerospace [1]. A battery pack 
consists of hundreds of battery cells connected in series 
and parallel, which makes it difficult to manage [2]. Due to 
inconsistencies (variation of the cells) in production, pack-
aging, and usage, the state of health (SOH) of a battery pack 
deteriorates faster than a single-battery cell, making it hard 
to estimate [3]. Therefore, the inconsistency evaluation and 
SOH estimation of battery packs are drawing increasing 
attention.

The inconsistencies of battery packs mainly include 
internal and external parameter inconsistencies [4]. Internal 
parameters such as capacity, resistance, open-circuit voltage 
(OCV), and state of charge (SOC) may have inconsistencies 
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due to the complexity of the manufacturing and packaging 
process [5, 6]. During operation, other external param-
eters including current and temperature would cause fur-
ther inconsistencies [7, 8]. The methods for inconsistency 
evaluation can be divided into three categories: signal pro-
cessing methods, model-based methods, and feature fusion-
based methods [4]. The signal-processing methods evaluate 
inconsistency through direct detection of parameters such 
as time-domain voltage [9] and frequency domain electro-
chemical impedance spectrum (EIS) [10]. Since the measur-
able parameters are limited and EIS measurement needs to 
be done offline, researchers proposed to use models to detect 
the parameter inconsistency. Chen et al. [11] detected the 
internal resistance inconsistency through parameter identifi-
cation of the equivalent circuit models (ECMs). Zheng et al. 
[12] and Hu et al. [13] established the mean-plus-difference 
model for the series battery pack and adopted an extended 
Kalman filter to detect SOC differences among battery 
cells. In recent years, the feature fusion-based methods have 
drawn increasing attention. Duan et al. [14] used information 
entropy to analyze the inconsistency of a battery pack with 
twelve cells connected in series. The capacity, internal resist-
ance, and coulomb efficiency were selected as features. Tian 
et al. [15] extracted OCV, ohm resistance, and polarization 
resistance as features; entropy weights were distributed to 
assess the inconsistency. However, most of the above fea-
tures require parameter identification or large amount of test 
data, which increases the computational cost and storage 
cost. In addition, some features are extracted from the pro-
cessed curves, which could possibly lose accuracy. Thus, it 
is more efficient to use the features extracted directly from 
onboard measurements to evaluate the inconsistency. What’s 
more, the inconsistency hasn’t been used in the SOH estima-
tion, although it is an important affecting factor.

The SOH is a significant index evaluating the lifespan 
of batteries. Many studies have reported various methods 
to estimate battery SOH. The existing estimation methods 
can be divided into two categories: model-based methods 
and data-driven methods [16, 17]. Battery models, includ-
ing ECMs [18, 19] and electrochemical models [20], can 
be used to estimate the characteristic parameters that are 
highly related to SOH. Kim et al. [21] established an ECM 
and used a dual extended Kalman filter to jointly estimate 
SOC and SOH. Bi et al. [22] simplified the ECM for bat-
tery packs, then the internal resistance was identified to 
estimate the SOH, and the genetic resampling particle filter 
was used to solve the non-gaussian problem. ECM is sim-
ple in structure and has a low computational cost, although 
its accuracy is low due to the approximation. Hence, the 
electrochemical models such as the single-particle model 
(SPM) and pseudo-two-dimensional (P2D) model were 

used for SOH estimation [23]. Prasad et al. [24] developed 
and simplified a SPM based on two aging parameters, then 
used the least square and recursive parameter estimators for 
SOH estimation. Hu et al. [25] established a reduced SPM 
and created a multiscale moving horizon estimation scheme 
to fulfill SOH monitoring through estimating the battery 
capacity and resistance. Though electrochemical models 
have good accuracy, they need a large amount of calculation 
time. Therefore, data-driven methods have been developed 
to solve this problem [26]. Yang et al. [27] extracted health 
indicators (HIs) from the charging curve, used gray rela-
tional analysis to evaluate the relational degree, and applied 
Gaussian progress regression (GPR) to estimate the SOH. 
Through incremental capacity (IC) and differential voltage 
(DV) analysis, more aging features could be extracted [28, 
29]. Weng et al. [30] tracked the peak values of the IC curve 
by support vector regression and estimated the battery pack 
SOH. Berecibar et al. [31] estimated the SOH by tracking 
the location change of valley values in the DV curve. In 
addition, researchers also extracted HIs from the frequency 
domain [32], such as sample entropy [33] and mechanical 
parameters [34] to estimate SOH. The above methods mainly 
focus on the SOH estimation of battery cells, and HIs are 
mostly not simply extracted. However, the SOH of battery 
packs is seldom studied, especially considering the incon-
sistency. In the existing studies, only the correlation analysis 
is used for feature selection. However, some important HIs 
are removed, while other redundant HIs are retained, which 
will reduce the estimation accuracy and reliability [35].

This paper proposes a joint estimation method of incon-
sistency and SOH for series-connected battery packs. The 
main contributions are summarized as follows. First, the 
inconsistency features are extracted from current change 
points in the charging process, thereby reducing the com-
putational cost, which supports both inconsistency evalu-
ation and SOH estimation. Second, the hierarchy weights 
and multi-scale entropy weights are fused to allocate fusion 
weights to each feature for the inconsistency evaluation, and 
the results reflect the aging status of the battery packs. An 
inconsistency reference table is proposed based on the cor-
relation between inconsistency and SOH. Third, the wrapper 
method is used for feature selection to remove the redundant 
features. More accurate and reliable SOH estimation results 
are obtained. The estimation remains accurate even only 
10% of the data is used for model training. Fourth, a joint 
estimation system of inconsistency and SOH is designed 
with the potentials of onboard application.

This paper is structured as below. In Sect. 2, the test and 
data acquisition are introduced, and then the feature extrac-
tion method is described. Next, in Section 3, the joint esti-
mation system of inconsistency and SOH is designed. After 
that, the estimation results are given in Sect. 4. Finally, the 
main conclusions are given in Sect. 5.
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2  Data Acquisition and Feature Extraction

Tests are carried out to collect the test data of aging battery 
packs. The test platform is shown in Fig. 1a, which includes 
a digatron battery tester, a data logger, a thermal chamber, a 
computer, and a series-connected battery pack. The ‘Diga-
tron’ battery tester is used to charge and discharge the bat-
tery pack. The data logger is used to gather the cell voltage 
and temperature; the thermal chamber is used to keep the 
temperature constant; the computer is used to control the 
test process and store the test data. The sample period and 
chamber temperature are set to 1 min and 25 °C, respec-
tively. The series-connected battery pack consists of four 
squared battery cells, and the nominal capacity is 177 A·h. 
The cathode and anode are Li(Ni0.8Co0.1Mn0.1)O2 and 
graphite, respectively, and the upper and lower cutoff voltage 
of battery cells is 4.2 V and 2.8 V, respectively. A five-stage 
constant current charging and constant current discharge 
strategies are used for the aging cycles according to the real 
conditions in EVs, which is shown in Fig. 1b.

Feature extraction is the foundation and preprocess for 
the inconsistency and SOH estimation. One simple but use-
ful feature could make the estimation more accurate and 
reliable with a low computational cost. In EVs/PHEVs, it 
is rare to deplete the battery pack completely. Therefore, 
the initial charge points are not constant. The first three cur-
rent change points during the charging process are selected 

for feature extraction. The SOC of this segment is about 
40%–80%, which coincides with the range of most onboard 
charge processes [36]. The features are extracted from the 
current change points, with no model needed and a simple 
calculation process. Moreover, it is not necessary to confirm 
the initial charging point. The voltage inconsistency will 
cause the battery pack voltage at the current switch points 
to decrease during the aging process. In the test strategy, 
there is a current switch at the change point, which causes 
a voltage drop correspondingly, through which the internal 
resistance could be obtained. Thus, these natural and simple 
features are extracted as follows:

• F11–F31: Battery cells peak voltage range at the first three 
current change points;

• F12–F32: Battery cells voltage drop range at the first three 
current change points;

• F13–F33: Battery cells peak voltage standard deviation at 
the first three current change points;

• F14–F34: Battery cell voltages drop standard deviation at 
the first three current change points,

• F15–F35: Battery pack peak voltages at the first three cur-
rent change points;

where the first subscript denotes the current change point, 
and the second subscript denotes the feature number. There 
are fifteen features extracted from the voltage curve, which 
represent the voltage and internal resistance inconsistency 
in the battery pack. And, just the voltage data at the current 
change points are used for feature extraction, which makes 
the extraction method very simple and easy to be applied in 
the battery management system (BMS).

3  Methodology

The extracted features which reflect the inconsistency of 
the battery pack are described in the above section. After 
the features are extracted from the partial charging process, 
they are then used for the estimation of inconsistency and 
SOH. In this section, the algorithms for joint inconsistency 
and SOH estimation are introduced. Firstly, in Sect. 3.1 the 
battery pack inconsistency evaluation method is introduced. 
Then, the methodology for SOH estimation is proposed in 
Sect. 3.2. At last, the proposed joint estimation system is 
designed in Sect. 3.3.

3.1  Method for Inconsistency Evaluation

Different features have different contributions to the incon-
sistency, so a fusion weight distribution method is proposed. 
The hierarchical weight and multi-scale entropy weight are 
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Fig. 1  Aging test design for the battery pack
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introduced in Sects. 3.1.1 and 3.1.2, respectively. Then, a 
fusion weight method is proposed in Sect. 3.1.3.

3.1.1  Analytic Hierarchy Process

The analytic hierarchy process (AHP) is one of the most 
widely used multiple criteria decision-making tools. The 
decision goal is divided into many indexes, according to 
which the weights are allocated. A detailed description of 
AHP can be found in Ref. [37]. The inconsistency evaluation 
is a multiple index decision-making process. Therefore, the 
AHP is used to allocate subjective weights.

The hierarchy for the inconsistency evaluation is shown 
in Fig. 2.

First, the inconsistency is caused by the three series of indi-
cators, which represent the features extracted from the first 
three current change points. At each current change point, 
there are three indicators, including range, standard deviation, 
and sum, to characterize the inconsistency. Then, at the bottom 
of the hierarchy structure, the range and standard deviation are 
represented by the statistic of the battery cell voltages and volt-
age drops, which denote the voltage inconsistency and internal 
resistance inconsistency, respectively. The sum value is calcu-
lated by the battery pack voltage. The weights from the second 
level to the bottom are allocated. First, due to the long charge 
time of large currents, and great current drops of the first two 
constant current charge period and the SOC at the first and 
second current change point is about 40% and 70%, respec-
tively, which are the middle range. While the third charge 
period is in the high SOC range, and the charge time is short. 
Therefore, the weights of these three points are set to 0.4, 0.4, 
and 0.2. At the third level, three indicators are included, the 
range and standard deviation are calculated by the parameters 
of the battery cells, which directly reflect the voltage and inter-
nal resistance inconsistencies among battery cells. And, the 
standard deviation involves each battery property, while the 

range reflects the difference between the maximum and the 
minimum values. The battery pack voltage is measured by the 
pack terminal voltage, which is affected by the contact resist-
ance, and only one indicator belongs to this category. Thus, 
the weights of the range, standard deviation, and sum are set 
to 0.4, 0.5, and 0.1, respectively. Finally, because the voltage 
inconsistency is reflected by cell voltages, and the internal 
resistance inconsistency is represented by cell voltage drops, 
the weights of voltage and voltage drop are set to 0.5 and 0.5, 
respectively. The total weights are listed in Table 1.

3.1.2  Multi‑Scale Entropy Weight

The AHP is based on subjective experience, which lacks the 
objective information of the features. On the contrary, sam-
ple entropy (SampEn) is an objective method to describe the 
characteristics of information distribution and discrete charac-
teristics quantitatively and is widely used in a comprehensive 
evaluation of randomness and chaos [14]. The SampEn is the 
exact value of the negative average natural logarithm of the 
conditional probability and has good consistency [33]. Given 
a time series of length N, 

{
xi ∶ 1 < i < N

}
 , the calculation is 

denoted as follows [33, 38].
Preset the embedded dimension m, reconstruct the N-m+1 

vectors.

The distance between two such vectors is defined as the 
maximum absolute difference.

Given the similar tolerance r, calculate the dis-
t a n c e  d

[
Xm(i), Xm(j)

]
 b e t w e e n  Xm(i)  a n d 

Xm(j)(j = 1, 2...,N − m, j ≠ i) . Define

where the Cm
i
(r) is the number of vectors Xm(j) that 

d[Xm(i),Xm(j)] < r  ,  fo r  1 ≤ j ≤ N − m, j ≠ i  .  S imi -
larly, the Cm+1

i
(r) is the number of vectors Xm+1(j) that 

d[Xm+1(i),Xm+1(j)] < r , for 1 ≤ j ≤ N − m, j ≠ i.
Define the mean of N-m, Bm

i
(r) and Bm+1

i
(r) as:

(1)
Xm(i) = {x(i + l) ∶ 0 ≤ l ≤ m − 1}, i = 1, ...,N − m + 1

(2)
d[xm(i), xm(j)] = max{|x(i + l) − x(i + l)| ∶ 0 ≤ l ≤ m − 1}

(3)Bm
i
(r) =

Cm
i
(r)

N − m − 1
, 1 ≤ i ≤ N − m, i ≠ j

(4)Bm+1
i

(r) =
Cm+1
i

(r)

N − m − 1
, 1 ≤ i ≤ N − m, i ≠ j

(5)Bm(r) =
1

N − m

N−m∑
i=1

Bm
i
(r)
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Fig. 2  The hierarchy indicators for inconsistency evaluation
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Finally, the SampEn is defined as:

According to Eq. (7), the SampEn could restrain the noise 
whose amplitude is smaller than r. And, when a large dis-
turbance appears, it would be removed by threshold detec-
tion. The SampEn describes the complexity of the original 
sequence from a single scale. When the complexity is high, 
the SampEn is large, which stands true otherwise. However, 
for many sequences, it would lose much important informa-
tion if only a single scale is adopted. Therefore, to describe 
the complexity more accurately, Costa et al. [39] proposed 
multi-scale SampEn (MSE). First, coarse-grained segmenta-
tion of the original sequence forms the coarse-grained vector 
y�
k
:

where � = 1, 2..., n is the scale factor, N is a positive integer. 
Then, calculate the SampEn of each coarse-grained vector. 
The MSE of x can be represented as the SampEn of y�

k
:

where r = 0.2Std (Std is the standard deviation of the origi-
nal vector x); m = 2; τ = 5.

(6)Bm+1(r) =
1

N − m

N−m∑
i=1

Bm+1
i

(r)

(7)SampEn(m, r,N) = −ln

[
Bm+1(r)

Bm(r)

]

(8)y�
k
=

1

�

k�∑
i=(k−1)�+1

xi, 1 ≤ k ≤
N

�

(9)MSE(x, t,m, r) = SampEn(y�
k
,m, r)

For the weight allocation of the inconsistency features, 
the MSE could be normalized as:

where w2ij denotes the MSE weight of the jth feature at the 
ith sample point.

3.1.3  Fusion Weight Assignment

The hierarchy weight and MSE weight represent the sub-
jective and objective weight allocation, respectively. The 
weights of evaluation indexes determined by the MSE are 
entirely based on the relationship of data. But sometimes, 
the objective weights are different from reality. However, 
the weights determined by AHP are obtained from experts’ 
experience. But, it usually ignores the data information. So, 
a more reasonable way to measure weight value should be 
by AHP (subjective weights) and the MSE method (objec-
tive weights) together [40]. This paper gives fused weights 
of each feature in order to consider both methods, achieving 
a more comprehensive inconsistency evaluation.

Specifically, the features extracted from the partial charg-
ing process are used to form a 15-dimensional initial data 
matrix.

where u is the feature value and i denotes the ith sample 
point. Then, they should be normalized. However, in order 

(10)w2ij =
1 −MSEij∑n

j=1

�
1 −MSEij

�

(11)Ui =
[
ui1 ui2 ... ui15

]

Table 1  Hierarchy weights of 
the features (w1).

The CV, CVD, and PV denote the battery cell voltage, battery cell voltage drop, and battery pack voltage, 
respectively. SL, TL, and BL represent the second level, third level, and bottom level, respectively. FS, SS, 
and TS denote the first series, second series, and third series, respectively. W is the weight.

SL W TL W BL W Feature Total weight

FS 0.4 Range 0.4 CV 0.5 F11 0.08
CVD 0.5 F12 0.08

Standard deviation 0.5 CV 0.5 F13 0.1
CVD 0.5 F14 0.1

Sum 0.1 PV 1 F15 0.04
SS 0.4 Range 0.4 CV 0.5 F21 0.08

CVD 0.5 F22 0.08
Standard deviation 0.5 CV 0.5 F23 0.1

CVD 0.5 F24 0.1
Sum 0.1 PV 1 F25 0.04

TS 0.2 Range 0.4 CV 0.5 F31 0.04
CVD 0.5 F32 0.04

Standard deviation 0.5 CV 0.5 F33 0.05
CVD 0.5 F34 0.05

Sum 0.1 PV 1 F35 0.02
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to support onboard utilization, the maximum and the mini-
mum values of each feature during the aging process are 
unpredictable. Therefore, the normalization processes for 
the range, and the standard deviation is set as xij = uij

/
u1j , 

and the sum is normalized as xij = u1j
/
uij . The normalized 

features form the input matrix.

Next, assign the hierarchy weight w1 according to 
Table 1, and allocate the MSE weight w2 referring to Eqs 
(1–10). After that, the fused weight is obtained by the 
weighted sum.

where the � is the fusion weight of the hierarchy weight 
and (1 − �) denotes the fusion weight of MSE weight. The 
MSE weight reflects more objective information, while the 
hierarchy weight considers the importance of each feature. 
So, � is set to 0.4 . Finally, the inconsistency evaluation index 
� of the battery pack is denoted by

And, the inconsistency is described as the ratio of the 
current index value to the initial value:

The complete process of inconsistency evaluation based 
on fusion weights is listed in Table 2.

(12)Xi =
[
xi1 xi2 ... xi15

]

(13)wij = �w1ij + (1 − �)w2ij

(14)�i =

n∑
j=1

wijxij

(15)Incon(i) =
�i

�0

3.2  Method for SOH Estimation

Data-driven SOH estimation is advantageous as it is model-
free, accurate, and robust. The GPR is applied for battery 
pack SOH estimation. In this section, the wrapper feature 
selection method is introduced and the GPR algorithm 
designed.

3.2.1  Feature Selection

Feature selection is a significant preprocess before machine 
learning to remove the unimportant and redundant features, 
which helps reduce the computational cost and get more 
accurate and reliable results. In the existing papers for bat-
tery SOH estimation, only correlation analysis is used to 
filter the features that has low correlation coefficients with 
battery capacity. However, some vital features may be 
removed and some redundant features left [35]. Therefore, 
in this paper, the wrapper method is adopted to select the 
extracted features.

The wrapper uses learning algorithms to evaluate the pre-
diction quality of the selected feature subset. Typically, a 
search process is predefined in the space of possible feature 
subsets, generating various feature subsets to be evaluated 
[35]. The general process is select a subset, evaluate the sub-
set according to the prediction performance, select another 
new subset, and continue to evaluate until the expected qual-
ity is reached. The search methods can be divided into three 
categories: complete search, sequence search, and random 
search [41]. The sequence search has high efficiency and can 
be divided into three categories: sequence forward search 
(SFS), sequence backward search (SBS), and two-way 
search (TWS) [42]. The SFS methods start with a feature and 

Table 2  The process of battery 
pack inconsistency evaluation

The subscript j denotes the jth feature; t, m, and r are the preset parameters of MSE.

Step description Calculation

For the ith sample point:
Step 1: Use features extracted from the partial charging process to 

form the initial feature set.
Ui = [ui1 ui2 ... ui15]

Step 2: Normalize the feature set. xij = uij
/
u1j or xij = u1j

/
uij,

Xi =
[
xi1 xi2 ... xi15

]
Step 3: Allocate the hierarchy weight. Refer to Table 1: w1
Step 4: Calculate the MSE of each feature. MSE(x, t,m, r) = SampEn(y�

k
,m, r)

SampEn(m, r,N) = −ln
[
Bm+1(r)

Bm(r)

]

Step 5: Allocate MSE weight. w2ij =
1−MSEij

n∑
j=1

(1−MSEij)

Step 6: Calculate the fused weight. wij = �w1ij + (1 − �)w2ij

Step 7: Calculate the fusion inconsistency index.
�i =

n∑
j=1

wijxij

Step 8: Evaluate the battery pack inconsistency. Incon(i) =
�i

�0
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then evaluates the results with each additional feature until 
the results begin to deteriorate. The SBS contains all the 
features, reducing one feature per iteration until the results 
reach a preset threshold, and the search is stopped. The TWS 
methods combine the SFS and SBS until the preset thresh-
old is reached. In this paper, the SBS is used for the subset 
searching.

The SBS searching process for SOH features is shown in 
Fig. 3. Firstly, the extracted features and the evaluated incon-
sistency are used to form a 16-dimensional initial input set 
(including the inconsistency estimation result) and evaluate 
the initial feature set by the root mean square (RMS) error 
(obtained by the trained model of the training data). Then, 
get into the first cycle, remove one feature, and evaluate the 
subset by training the regression model and calculating the 
RMS error. Next, find the minimum RMS error of this cycle. 
After that, continue the next search process if the subset is 
better than the former one. Otherwise, stop the cycle and 
determine the final subset. Finally, the selected subset is 
used for SOH estimation model training and testing. The 
feature evaluation method uses the same algorithm as the 
SOH regression model training, which is denoted in the fol-
lowing subsection.

3.2.2  GPR Algorithm

The GPR-based regression model has many advantages, 
such as good flexibility and probabilistic prediction. It is 
therefore used here to estimate the battery pack SOH. The 
detailed description of GPR could refer to Ref. [43, 44].

Generally, the noise is assumed to be additive, independ-
ent, and Gaussian; therefore the relationship between input 
feature x and estimation y is given as follows:

(16)y = f (x) + �, � ∼ N(0, �2
n
)

where � is the white noise with a variance of �2
n
 . f (x) is 

a latent function, which has a probability distribution as 
follows:

where m(x) is the mean function, and k(x, x�) is the covari-
ance function.

Generally, the mean function is set to zero. The squared 
exponential covariance function is usually used as the kernel 
function. The function is expressed as follows:

where the covariance �2
f
 represents the output amplitude of 

the diagonal matrix, l is the characteristic length scale. Thus, 
the prior distribution of the observations of Eq (17) can be 
expressed as

where y is the observation series [y1, y2 ... yn] , In is an 
n-dimensional unit matrix. There are three hyper-parameters 
� =

[
�f , �n, l

]
 in the covariance matrix which can be opti-

mized by maximizing the log-likelihood function expressed 
by

The conjugate gradient method is widely used for find-
ing the parametric optimal solution. The idea is to find the 
maximum value of the objective function by obtaining the 
derivative of the log-likelihood function [27].

The joint prior distribution of the observations y along 
with the estimated value y∗ at a test point x∗ is expressed by
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Then the estimation task can be carried out by the poste-
rior distribution derived as

where the estimated mean value y∗ and the estimated 
covariance value cov(y∗) are expressed as follows:

The estimation value and the uncertainty are represented 
by the mean y∗ and covariance cov(y∗) , respectively.

3.3  Joint Estimation Design

The joint estimation system of inconsistency and SOH for 
battery packs is designed as shown in Fig. 4. Specifically, 
first in the data processing process, the data collection mod-
ule collects the test data from the charging process, and the 
feature extraction module extracts the features from current 
change points. Then, the extracted features are input both 
for the inconsistency evaluation and feature selection. In the 
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battery pack inconsistency evaluation process, the weights 
are allocated by AHP and MSE, respectively, and then the 
fusion weights are obtained by fusing these two weights. 
Next, the weights of all the features are combined with the 
battery cell inconsistency features to evaluate the battery 
pack inconsistency. The estimated value is used to evaluate 
the inconsistency condition and input as health indicators to 
the feature selection process. Then, the wrapper is used to 
select the optimal feature subset for model training. In the 
battery pack SOH estimation process, the hyper-parameters 
are optimized, and the regression model is trained by GPR. 
When the model is completely trained, the SOH can be 
estimated using the extracted features from the later cycles. 
Finally, an error evaluation module is used to assess the esti-
mation performance. In this paper, four indicators including 
95% confidence interval, relative error, maximum absolute 
error (MAE), and RMS error are used to assess the accuracy 
and reliability of the SOH estimation results. The 95% con-
fidence interval and RMS error are calculated by Eqs (28) 
and (29), respectively.

where 95%CI is the confidence interval; ŷ and 𝜎2(ŷ) are the 
predicted value and variance, respectively; N is the size of 
the testing set; yi is the standard value. Then, in the follow-
ing section, the joint estimation results will be demonstrated 
and assessed in detail.

4  Results and Discussions

In this section, the joint estimation results of battery pack 
inconsistency and SOH are given and evaluated. First, 
the inconsistency estimation results are demonstrated in 
Sect. 4.1, and SOH results are shown in Sect. 4.2. Then, a 
discussion part is followed in Sect. 4.3.

4.1  Inconsistency Evaluation Results

The battery pack inconsistency evaluation results based 
on fusion weights allocation are shown in Fig. 5. The ini-
tial battery pack inconsistency is set as 1. In Fig. 5a, the 
fusion weights-based battery pack inconsistency evalua-
tion results are compared with the AHP-based and MSE-
based evaluation results. It shows that inconsistency evalu-
ations do not have obvious differences in the early stages of 
aging cycles, which indicates that all three methods could 
be applied for inconsistency evaluation during this period. 
However, with aging cycles increasing, the results of the 

(28)95%CI = ŷ ± 1.96 𝜎2(ŷ)

(29)RMSE =

√
1

N

∑N

i=1

(
ŷi − yi

)2
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Hyper-parameters 
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Fig. 4  Battery pack joint inconsistency and SOH estimation system
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AHP-based method and MSE-based method differ gradu-
ally. For instance, the time when the evaluation results of 
the AHP-based method exceeded 5 are 24 cycles earlier than 
that of the MSE-based method, which is about 3.5% of the 
total cycles. In this period, the fusion-based methods could 
give more comprehensive results based on these two meth-
ods which reflect both the subjective and objective evalua-
tion of inconsistencies. Moreover, the fusion-based method 
shows smoother evaluation results. Figure  5b gives the 
fusion-based inconsistency evaluation results and the stand-
ard battery pack SOH varying with aging cycles. It shows 
that the inconsistency has an overall upward trend, while 
the SOH presents an overall downward trend. What’s more, 
both the inconsistency and the SOH show a trend of slow 
change in the early period and accelerated change in the later 
period. The Pearson correlation coefficient between the esti-
mated inconsistency and the standard SOH is 98.29%. This 
suggests that the fusion-based battery pack inconsistency 
estimation method accurately tracks the aging conditions. 
Figure 5c shows the inconsistency value and SOH at some 
specific points in order to assess the effect of inconsistency 

on the aging process for battery packs. The estimated incon-
sistency enlarged from 1 to 1.41 during the first 100 cycles 
but it just increased by 0.35 from 100 to 300 cycles. Regard-
ing the variation of SOH, it reduced from 100% to 96.54% 
during the first 100 cycles, while it just decreased by 1.69% 
from 100 to 300 cycles. The results show that inconsistency 
variation has an obvious impact on the aging process. And 
during later aging cycles, the inconsistency increment accel-
erated and the SOH decrement accelerated correspondingly. 
During the final 90 cycles, the inconsistency enlarged from 
4.07 to 6.41, and the SOH rapidly reduced from 85.49% to 
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Fig. 5  Battery pack inconsistency evaluation: a inconsistency estimation based on the AHP, MSE and fusion based method; b curves of the esti-
mated inconsistency and standard SOH varies with cycles; c the estimated inconsistency and standard SOH at different cycle numbers

Table 3  Degree of battery pack inconsistency

Inconsistency degree Evaluated value Approximate 
SOH interval

Slight inconsistency 1.0–1.7 100%–95%
Moderate inconsistency 1.7–2.7 95%–90%
Heavy inconsistency 2.7–4.0 90%–85%
Severe inconsistency > 4.0 80%–85%
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80.91%. This indicates that the accelerated enlargement of 
inconsistency seriously affects the health of battery packs. 
According to the inconsistency and the SOH, an optimal 
inconsistency degree grading is given in Table 3. In this 
rank method, the four stages range from 80% to 100% with 
5% SOH intervals. Therefore, the inconsistency evaluation 
degree could also be used to represent the health status of the 
battery pack. The above results show that the inconsistency 
estimation method proposed in this paper, which extracts 
features from the current change points and allocate fusion 
weights based on AHP and MSE, could effectively evaluate 
the battery pack inconsistency during the entire aging cycles. 
Due to the simpleness of this feature extraction method, the 
computation cost of each inconsistency evaluation is just 

0.14 s (calculated on MATLAB 2018b). Therefore, this 
method shows good potential for onboard utilization.

4.2  SOH Estimation Results

In this subsection, the SOH estimation results based on 
wrapper feature selection and GPR prediction are evaluated. 
The data from early cycles are used for model training, and 
the remaining data are used for validation. In Fig. 6, the bat-
tery pack SOH estimation results are presented, where 50% 
of the test data is used for model training, and the rest is used 
for estimation. Figure 6a–c represent the results estimated 
by the initial feature set, the feature set selected by the filter 
method, and the feature set selected by the wrapper method, 
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Fig. 6  Battery pack SOH estimation and relative errors based on a initial features; b features selected by filter; c features selected by wrapper-
based method; d feature set selected by wrapper (without evaluated values of inconsistency)
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respectively. The filter method removes the features whose 
Pearson correlation coefficient with SOH is lower than 0.9. 
The initial feature set contains 16 features, the filtered fea-
ture set includes 11 features, and the feature set selected 
by the wrapper also involves 11 features. The features of 
each subset are listed in Table 4. It shows that although filter 
and wrapper sets both have 11 features, the specific features 
are quite different. The confidence intervals have no signifi-
cant difference and all are narrow, which indicates the GPR 
models are all well trained for estimation, and the results 
are reliable. But, there are some notable comparisons in the 
relative error curves. The ranges of the axes of the three 
error curves are set consistently. It is obvious that the error 
range that is estimated by the feature set where the wrap-
per is used for feature selection, is narrower than the other 
two, which means the estimation results are more reliable. 
The estimation results in Fig. 6a and b get far away from 
the standard SOH near the end of life, while the results on 
Fig. 6c which is estimated by the joint estimation method, 

get closer to the standard value. This is important for the 
health management of battery packs, which could pre-
cisely report the health condition and guide the retirement. 
The MAE and RMS errors are listed in Table 5. It shows 
that these two errors obtained by the proposed method are 
smaller than those obtained by other methods, only 1.54 % 
for MAE and 0.70% for RMS error. The calculation time for 
each estimation cycle is 0.15 s. This proves that this method 
could realize the accurate battery pack SOH estimation in 
EVs/PHEVs. The estimation results obtained by the feature 
set without the evaluated inconsistency are evaluated. The 
results are shown in Fig. 6d, the MAE and RMS error of all 
the methods is listed in Table 5. The confidence interval and 
relative error in Fig. 6d are both larger than that in Fig. 6c 
obviously, the MAE and RMS error also get larger. This 
also proves that the comprehensively evaluated inconsist-
ency degree is a credible HI for SOH estimation.

To further evaluate the estimation performance and the 
robustness of generalization ability, the training set with 
different sizes are studied. The results are demonstrated in 
Fig. 7. Figure7a and b show the estimation results and rela-
tive errors obtained in three feature subsets, where 70% data 
and 10% data are used for model training, respectively. It 
shows in Fig. 7a that when more data are used for more 
training, the results are more accurate for all the three meth-
ods. However, the results estimated by the initial feature 
set and filter selected feature set deviate gradually from the 
standard SOH with increasing cycles. Nevertheless, this can 
be avoided when the feature set is selected by the wrapper 
method, and the estimation is closer to the standard value. 
The accuracy increment of the filter-based method is lower 
than that of the other two, which indicates some impor-
tant features with a low correlation coefficient have been 
removed. The MAE and RMS error of the proposed joint 
estimation method is only 0.72% and 0.25%, respectively. 
Then, 10% of data are used for model training to see the esti-
mation performance with a little amount of data, the results 
are shown in Fig. 7b. It shows obvious differences, where the 
first two methods give weak estimations, while the proposed 
method could still track the standard SOH with satisfactory 
accuracy. The MAE and RMS errors of the first two methods 
are close to 10% and 4%, while that of the proposed method 

Table 4  Features in the selected by different methods

F6 is the evaluated inconsistency, √ represents the feature is involved.

Feature Initial set Filter selected Wrapper 
selected

F11 √ √
F21 √ √ √
F31 √ √
F12 √
F22 √ √ √
F32 √ √
F13 √ √
F23 √ √ √
F33 √ √ √
F14 √ √
F24 √ √ √
F34 √ √
F15 √ √ √
F25 √ √ √
F35 √
F6 √ √ √

Table 5  Battery pack SOH 
Estimation MAE (%) and RMS 
error (%)

FS denotes the feature set, I, F, and W represent the initial set, filter selected set, and wrapper selected set, 
respectively.

FS 10% data for training 50% data for training 70% data for training 50% data for train-
ing (without  F6)

MAE RMS MAE RMS MAE RMS MAE RMS

I 8.28 3.17 2.52 1.11 1.64 0.43 3.61 1.35
F 9.76 3.84 1.81 1.09 1.80 0.80 5.26 2.10
W 2.58 0.93 1.54 0.70 0.72 0.25 2.26 1.09
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is still 2.58% and 0.93%. The confidence interval covers the 
standard SOH during the entire aging process, which sig-
nifies the estimations are reliable. The results suggest that 
when little data are used for training, the proposed method 
could remain accurate and reliable.

4.3  Discussion

The battery pack inconsistency and SOH estimations are 
obtained and evaluated. The joint method is first designed, 

achieving satisfactory results. In this subsection, we have 
a short discussion on the proposed method and its esti-
mation performance. It shows that the proposed inconsist-
ency evaluation method can reflect the aging conditions of 
battery and that the inconsistency is an important factor 
affecting the aging rate. Here, the inconsistency feature of 
battery cells can also detect which cell shows the great-
est inconsistency and therefore can provide a reference 
for which cell needs to be replaced. Moreover, the fea-
tures are extracted from the current change points in the 
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Fig. 7  Battery pack SOH estimation and error results with a 70% b 10% data for model training using different feature
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charging process, and the SOC range is about 40%-80% 
that coincides with the range of every charging process. 
This enables the evaluation during each charging process, 
eliminating complicated calculations, and ignoring the start 
point. The inconsistency is graded according to its relation-
ship with SOH and thus could also be used to estimate the 
health states. As for the battery pack SOH estimation, the 
evaluated inconsistency is input together with the extracted 
features. The wrapper can help select the optimal feature 
subset that guarantees the accuracy and reliability of the 
estimation performance. The results show that even only 
10% of data is used for model training, MAE and RMS 
errors only are 2.58% and 0.93%, respectively. And, the 
wrapper selection method has great potential to improve 
the accuracy of SOH estimation by about 75.8% compared 
to the traditional filter method. The computational cost is 
also small with the joint estimation system only taking 
about 0.29 s for one cycle.

5  Conclusions

Battery pack inconsistency and state of health are two 
key characteristics that need to be accurately estimated in 
the battery management system. A novel joint estimation 
method of these two states is designed. With its ease of fea-
ture extraction, this method has the potential for onboard 
usages. From the inconsistency evaluations, it is verified 
the fusion weights-based inconsistency estimation method 
is advisable and the results prove that the battery packag-
ing process is strongly related to the inconsistency. As for 
the SOH estimation, the wrapper feature selection method 
is verified to be able to improve both the accuracy and 
reliability of the estimation. Based on the proposed novel 
method, even only a small amount of data is used for train-
ing, satisfying results could still be obtained and give more 
accurate estimations near the end of life, which is signifi-
cant for health management and reutilization. The com-
putational cost of the joint estimation system is low, thus 
suitable for onboard utilizations. The satisfactory joint esti-
mation results imply an interesting and promising research 
direction. This demonstrates potentials in applications by 
detecting a few partial charging profiles. However, there 
are still some limitations: the battery pack only consists 
of four cells, and the features may not suit other charging 
policies. In future work, this method will be applied to EV 
battery packs.
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