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Abstract
Driving space for autonomous vehicles (AVs) is a simplified representation of real driving environments that helps facili-
tate driving decision processes. Existing literatures present numerous methods for constructing driving spaces, which is a 
fundamental step in AV development. This study reviews the existing researches to gain a more systematic understanding of 
driving space and focuses on two questions: how to reconstruct the driving environment, and how to make driving decisions 
within the constructed driving space. Furthermore, the advantages and disadvantages of different types of driving space are 
analyzed. The study provides further understanding of the relationship between perception and decision-making and gives 
insight into direction of future research on driving space of AVs.

Keywords  Autonomous vehicle · Driving space · Drivable area · Environment perception · Autonomous vehicle decision

1  Introduction

Autonomous vehicles (AVs) are expected to improve driving 
safety compared with vehicles driven by humans. The driv-
ing space for an AV is the reconstruction of a surrounding 
real driving environment, including the free drivable area, 
obstacles, and other relevant driving elements, and it con-
sists of all the static and dynamic traffic elements in the 
surrounding space and thus is a wider concept than drivable 
area or drivable space that indicates free space. In this paper, 
only the local space serving for local driving decision (rather 
than large-scale or road-level space) is discussed. Generat-
ing driving space is the process of environment modeling 
with sensor information and other driving constraints, such 
as traffic rules. As it is generated from perception and is the 
basis of decision-making, the driving space acts as a bridge 
(or interface) between the two, which are two key research 
areas in autonomous driving. The driving space is mainly 
dedicated to intelligent vehicles of level 3 or higher on the 
SAE scale [1], at which the vehicles must be able to monitor 
the environment and drive autonomously.

In modeling the real driving environment, it is unrealis-
tic to describe all details due to the heavy calculation bur-
den. Therefore, it is necessary to make simplification and 
abstraction to efficiently understand the surrounding space. 
In existing research, the world can be modeled with three 
approaches that define the simplified driving space [2]. 
The first is the grid space built by discrete sampling of the 
entire driving space. The second is the feature space built 
by continuous and sparse descriptions of the environment. 
The third is the topological space, a more abstract form with 
nodes and links that concentrate on key points or landmarks. 
In the grid space, the space is segmented into grids, and each 
cell (i.e., grid) is associated with occupancy probability. The 
feature space only describes key elements (e.g., obstacles, 
traffic lanes) by their features within the continuous driving 
space instead of describing the whole space. The topological 
space is defined by nodes and links, focusing on the con-
nections and relationships between key points in the fea-
ture space. In addition, construction methods and decision 
methods (i.e., behavior planning, path planning, and control 
signal generation) for the three types of defined space are 
different correspondingly.

A systematic summary of the different types of driving 
space has previously been investigated from the perspec-
tive of path planning in other reviews [3, 4]. In contrast, 
this study aims to analyze the fundamental properties of 
different forms of driving space and systematically com-
pares them from the perspective of construction methods 
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and application in decision-making, which could help 
understand the relationship between the perception and 
decision-making.

The remainder of this article is structured as follows. The 
second section introduces the construction methods of dif-
ferent kinds of driving space and comparatively analyzes 
their advantages and disadvantages. In the third section, 
the application of the driving space is reviewed from the 
perspective of AV driving decisions, including rule-based 
and learning-based methods. For rule-based decisions, 
the discussion of application is based on different kinds of 
space, and for learning-based methods, end-to-end learning 
and reinforcement learning (RL) are considered separately. 
Finally, a brief conclusion and future research direction are 
given in the last section. The flowchart of the study is shown 
in Fig. 1.

2 � Construction of the Driving Space

The driving space integrates the roles of perceiving the driv-
ing environment and providing the basis for decision-mak-
ing. To obtain a complete understanding of the environment, 
the reconstructed driving space should contain the space 
boundary (usually the road boundary) and driving-relevant 
elements, such as traffic lanes and obstacles. The approaches 
for constructing the driving space fall into three categories: 
(1) the grid space, which is a discrete description covering 
the entire surrounding space; (2) the feature space, which is 
described in continuous coordinates and focuses on the posi-
tion and shape of the space boundary and obstacles; and (3) 
the topological space, which is composed of nodes and links 
as an abstract representation of features. It should be noticed 
that topological space is widely used in robotic research 
while rarely used in research on autonomous vehicles.

2.1 � Construction of the Grid Space

The concept of the grid space was first proposed through 
robotic research by Elfes in 1987 [5]. The space is first 
segmented into small grids, and then the probability of 
occupation is calculated for each cell. The detection task 
is performed by calculating the probability of occupation 
according to sensor information.

In the 1980s, most robotic driving space detections were 
realized by sonar sensors [5–7]. The location of obstacles 
and walls were found using sonar reflection. Moravec [8] 
went further and combined sonar sensors and stereo cam-
eras to achieve grid space construction. Based on this idea, 
Marchese considered moving object by introducing time 
axis, constructing several grid spaces in future time series 
by prediction according to the speed of moving objects [9]. 
These early researches laid foundation of grid space. The 

basic ideas of space segmentation and occupation probabil-
ity were widely applied in the following research.

The grid space is also widely used in research on AVs. 
LiDARs have replaced sonar sensors as distance sensors 
owing to their improved accuracy. The occupation probabil-
ity is calculated using properties of the LiDAR point cloud 
in each grid, such as height and density. LiDAR detection of 
the grid space is divided into two categories: (1) 2D detec-
tion, usually performed by a LiDAR with 4 or fewer chan-
nels, and (2) 3D detection, usually performed by a LiDAR 
with 16 or more channels. In 2D detection, the LiDAR is 
installed in front of the vehicle, and the point cloud is closely 
spaced in vertical distance. The occupancy grids are then 
acquired by projecting the whole point cloud to the ground 
[10–12], as shown in Fig. 2a [9]. In 3D detection, the LiDAR 
is installed on the top of the vehicle; thus, the point cloud 
can directly reach the ground, as shown in Fig. 2b [13]. 
Bohren et al. [13] segmented the flat ground from the whole 
point cloud by plane extraction. Na et al. [14] considered 
the continuity of the ground to achieve detection on both 
even and uneven topographies. The points higher than the 
ground were marked as the space boundary. Moras et al. 
[11] went further and combined LiDAR detection with a 
high precision map, optimizing the detection results by lane 
and road boundary on the map. The fundamental idea of 
LiDAR-based AV driving space construction followed the 
pioneering robotic research.

Cameras have also been applied in the driving space 
construction for AVs. With the development of machine 
vision technology, it is now possible to segment the driv-
able area out of an image [15–18]. Some research only 
focused on the pixel plane, while others transformed the 
image to a grid map on the ground. Others have gone further 
and fit the boundary into the feature space. Yao et al. [15] 
achieved drivable area detection on the image with support 
vector machine (SVM). Hsu et al. [16] first segmented the 
drivable area on the image, and then transformed it to the 
ground plane using vanishing point detection and inverse 
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perspective transform, and finally obtained a grid map of 
the drivable area. Camera-based approach focuses on free 
drivable area and operates in the image plane; however, the 
basic idea of grid space construction remains the same.

Sensor fusion in the grid space is achieved by the fusion 
of occupation probability, as shown by the example in Fig. 3. 
Each sensor calculates the probability independently, and 
then the probabilities are fused using the Bayes method [8, 
19], Dempster–Shafer method [11, 20, 21], or other fusion 
methods [22–24]. The open framework of occupation prob-
ability makes grid space highly adaptive to sensor layout 
and fusion algorithm, which is an advantage of grid driving 
space.

The size and distribution of grids are two important fac-
tors in the grid space definition. In the existing research 
using regular grids [20, 25, 26], the size of the grid is 
approximately 20 cm, which is smaller than the size of the 
vehicles and pedestrians on road and thus is suitable for 
structural road application. Regarding grid distribution, the 
2D grid space is more commonly used due to its simplicity, 
whereas the 3D grid space is rarely used due to its complex-
ity. Plazaleiva et al. [27] used 3D LiDAR to perform space 
construction in a voxel grid, but the 3D grid map was then 
transformed into 2D for further application. In the applica-
tion of 2D grid space, uniform distribution is commonly 
used because it is simpler to realize sensor fusion on grid 
cells of equal size. However, large amount of computation 
and storage resources are required in uniform grid space 
detection. Therefore, it is not economically feasible to calcu-
late on each grid in a large open area. Considering this, some 
researchers have used non-uniform grids. The commonly 
used non-uniform grid layout is quadratic trees [3, 28, 29]. In 
this layout, the grids are dense where there is an obstacle and 
sparse in the free space; thus, a perception focus is formed, 
as shown in Fig. 4. The number of grids can be reduced 
compared to uniform distribution. Thus, computation cost 
and storage resource consumption can be reduced. However, 
there are still some drawbacks of non-uniform grids. The 
path planned in non-uniform grids is less smooth than in 

uniform grids [3], and it is also difficult to unify the results 
of different sensors in multi-sensor fusion, since the focus 
of each sensor might be different.

2.2 � Construction of the Feature Space

In the construction of the driving space, obstacles are repre-
sented by the position coordinate values and their geometric 
shapes while the space boundary is fit into an analytic for-
mula. The whole space is described continuously and geo-
metrically as compared with the discrete description of the 
grid space.

In robotic research, the feature space is described by geo-
metric figures composed of angles, edges, and curves, and 
some researchers also consider the speed of the obstacles 
(see Fig. 5). This is suitable for an indoor environment for a 
robot where obstacles and boundaries are in various unpre-
dictable shapes. Correspondingly, these geometric elements 
are the targets of detection, which is typically performed by 
sonars or camera sensors. Ip et al. [30] detected geomet-
ric features in the space by clustering sensor information to 
find a collision-free path. Hardy et al. [31] used polygons to 
describe obstacles to construct a geometric feature space. In 
simultaneous localization and mapping (SLAM), a map is 
built in real time and enables the robot to locate itself within 
an unknown environment, which is a hotspot in robotic 
research. The feature map is widely used in SLAM [32–34] 
and consists of points, edges, corners, etc. SLAM is also 
applied in AVs as an auxiliary means for positioning, espe-
cially when GNSS (global navigation satellite system) does 
not work [35, 36]. For indoor robot applications, the feature 
space provides a different idea compared with the grid space. 

Fig. 2   LiDAR detection of the grid space [10, 13] Fig. 3   Sensor fusion in the grid space
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By modeling the space with sparse geometric features, it is 
more computationally economic and more intuitive.

On structural roads, space boundaries and on-road obsta-
cles have certain patterns. Therefore, the feature space for 
AVs is constructed by traffic elements such as the road 
boundary, lanes, vehicles, and pedestrians, as shown in 
Fig. 6. Traffic lights, traffic signs, and crossings are also 
important elements in the feature space. The detection tasks 
can be divided into several small tasks: road boundary 
detection, lane detection, object detection, etc. These are all 
important research topics for environment perception.

Feature space construction is composed of several sub-
tasks. Road boundary detection is typically based on LiDAR 
and camera similar to grid space construction. Here in the 
feature space, an analytic curve takes the place of the grid. 
For example, Loose et al. [37] used a Bézier curve to fit 
the road boundary. Lane detection is also important in the 
feature space, and numerous studies have been conducted 
on rule-based lane detection [38–40]. In recent years, some 
researchers used deep learning in lane detection [41, 42]. 
With the development of sensor technologies and machine 
vision, object detection and tracking have developed quickly 
in recent years. Vehicle and pedestrian detections are usually 
carried out on images by machine learning [43–47]. Some 
researchers have realized multiple object tracking (MOT) 
by the fusion of radar, LiDAR, and cameras [48, 49]; other 
researchers have achieved traffic sign detection [50, 51] and 
traffic light detection [52, 53]. By combining these elements, 
a complete feature driving space can be constructed. How-
ever, since each part of detection tasks is completed indepen-
dently, further researches should be carried out to get a more 
systematic and integrated feature driving space.

2.3 � Construction of the Topological Space

The topological space is another way to describe the envi-
ronment besides the grid and feature space [2]. The topologi-
cal space shows the landmarks and their connection relation-
ship. Distinct landmarks in the space, usually vertexes of 
polygon obstacles, corners, and doors, are set as nodes in the 
topological space. The links show the connection between 

the nodes. The nodes in the topological space are depicted 
geometrically in the feature space; however, the topologi-
cal space focuses on their connection rather than the actual 
distance and position in the world coordinate, such as the 
visibility graph [54] and Voronoi diagram [55]. Omar et al. 
[3] gave an example (see Fig. 7) where the vertexes are con-
nected by straight links.

It is easy to find the shortest path in the visibility graph. 
Ryu et al. [2] pointed out that the topological space is more 
suitable than the grid and feature space for robot applica-
tions owing to sensing error endurance. There are two main 
advantages of topological space in robotic research. First, 
its perception system only needs to find key points in the 
space rather than accurate geometric boundaries or occupa-
tion possibility; thus, it has great advantage when the sensors 
are not accurate enough. Second, robots can steer quickly 
and follow sectional straight line as the shortest path, and 
therefore the topological space is more suitable in looking 
for shortest path on the landmark network.

However, considering the structural road and vehicle 
dynamics, the topological space is not that suitable in AV 
research. Firstly, the shortest path as sectional straight lines 
cannot be executed by a vehicle due to vehicle dynamic 
restriction. To obtain a drivable path, more accurate space 
boundary and geometry information should be provided 
other than landmarks. Secondly, on structural roads, path 
planning is no longer restricted to looking for non-collision 

Fig. 4   Non-uniform grids

Fig. 5   Feature driving space for a robot

Fig. 6   Feature driving space construction for AVs
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path, but needs to consider traffic rules and behaviors of 
other traffic participants (e.g., vehicles and pedestrians). The 
detailed information is difficult to be described by existing 
topology-based space models. In addition, more accurate 
sensors on AVs make it possible to receive more detailed 
information; thus, error endurance as an advantage of topo-
logical space is not that important to AVs. Due to these facts, 
topological space is seldom applied in local driving space 
construction for AVs. However, some ideas of the topologi-
cal space are embodied in grid-based path planning.

It should be noticed that topology is applied more in 
other aspects of autonomous driving than in driving space 
construction. For example, topology is used in SLAM, an 
important technology in autonomous driving. SLAM can 
improve location accuracy and is also applied in construct-
ing high precision maps. GraphSLAM is a kind of SLAM 
that applies topology, with nodes representing the pose or 
the feature in the map, and links representing a motion event 
between two poses or a measurement of the map features. 
However, the poses are expressed in a topological graph 
when positioning and mapping are considered separately, 
though the map it builds is still a grid map or feature map 
[56, 57]. In other words, the topological graph is only an 
intermediate result showing the relationship between the 
poses and the map features; however, the output space 
expression is still grid based or feature based. Also, topo-
logical graph is widely applied in macroscopic road-level or 
lane-level navigation maps [58, 59], showing the connectiv-
ity between roads, lanes, and intersections. However, the 
topological space is seldom used in local dynamic driving 
space for local decision-making.

2.4 � Comparative Analysis

Table 1 lists the characteristics of different types of space 
for comparison. The following comparison results can be 
concluded.

(1)	 There are fundamental differences among the three 
types of driving space.

(2)	 The three space types have different mathematic char-
acteristics. The grid space is discrete and emphasizes 
completeness, whereas the feature and topological 
space are continuous and sparse. Therefore, construct-
ing grid space require many computational and storage 
resources. In contrast, the feature and topological space 
are sparse and intuitive and thus are more computation-
ally economic but less detailed than grid space.

(3)	 Regarding detection targets, the grid space describes 
the space itself. Therefore, it does not focus on seman-
tic information. The feature space focuses on the geo-
metric features of the boundary and obstacles rather 
than the open space. The topological space focuses 
more on the link between key points in the feature 
space versus position and distance, which works well 
for indoor robots but is not suitable to apply in AVs.

(4)	 In robotic research, the grid space needs calculations 
on occupancy probability on grids; sensor fusion is 
then achieved by probability fusion. The feature space 
and topological space need the detection of geometric 
features, such as points, corners, edges, etc. The differ-
ence between the feature space and topological space 
lies in the representation methods. Topological space 
has advantages in looking for shortest path and error 
endurance.

(5)	 For AV applications, the grid and feature space are 
commonly used (versus the topological space). The 
grid space construction method is the same as that of 
robot applications, while the sensor layout is typically 
different. There is usually no semantic information in 
the grid space. The feature space contains different 
traffic elements, such as roads, vehicles, and pedestri-
ans. Therefore, it has semantic information and ben-
efits from object detection and tracking technologies. 
However, the detection methods of different elements 
in the feature space are researched separately; the con-
struction of feature driving space for AVs still needs 
systematic integration.

Considering the observations above, some research-
ers have combined grid and feature representation for AV 
application. To take advantage of the grid representation of 
open space, the boundary can be fit into a continuous for-
mula based on the grid space [60–62]. The position, shape, 
and speed of vehicles and pedestrians are acquired by object 
detection. Then, the above elements are integrated in the 
feature space, as in the theses of Zhang [63] and Liu [64]. 
However, each part of the detection task is completed inde-
pendently; therefore, this solution still lacks completeness.

In all, the existing methods can achieve driving space 
detection using sensor information and then reconstruct the Fig. 7   Visibility graph (a topological map) [3]
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driving space by expressing it with grids, features, or topol-
ogy. It can be found from the previous analysis that the three 
categories of space definitions and detections all have their 
advantages and disadvantages.

3 � Application of the Driving Space 
in Autonomous Driving Decisions

The driving space provides the constraints for behavior plan-
ning, path planning, and control signal generation in the 
decision layer. Existing AV decision methods can be divided 
into two categories: rule-based and learning-based methods.

3.1 � Rule‑Based Decision Methods

A rule-based AV decision can be realized in the grid or fea-
ture space. In the decision layer, behavior decision and path 
planning are achieved using the driving space constraints. 
Although the topological space is seldom used in driving 
space construction in autonomous driving, its concept is 
applied in the grid space decision.

3.1.1 � Rule‑Based Decision Methods in the Grid Space

The rule-based decision methods in the grid driving space 
can be divided into two categories: those that directly plan 
a path in the grid space, and those that plan a path using 
discrete lattices sampled from the driving space.

Direct decisions on the grid space use the occupancy 
probability [65, 66]. Hundelshausen et al. [65] chose a tra-
jectory from a group of arcs by setting the occupation prob-
ability of passing grids as cost, as shown in Fig. 8. Simi-
larly, Mouhagir et al. [20] chose a clothoid curve and further 
applied the Markov decision to realize lane changing. These 
methods made good use of the probability information on 
the grid map. However, they were less intuitive and simple 
compared with decision methods in the feature space. More-
over, a single obstacle was represented as several independ-
ent grids (not a whole), causing unnecessary calculations.

Decision-making using state lattices is another 
grid-based decision method. Discrete state lattices are 

generated by sampling within the driving space. The lat-
tices are usually relatively large in size to reduce compu-
tation cost. In the decision method with state lattices, the 
goal is to find the collision-free drivable path in a free 
area; thus, the graph search or sample-based planning on 
the nodes is able to complete the task without the step 
of behavioral planning (e.g., go straight, turn left, etc.). 
Figure 9 shows an example of the planned path, in which 
nodes are connected with a sectional-continuous curve to 
the destination.

The nodes and links of state lattices are similar to those 
in the topological space. However, the nodes in state lat-
tices are not geometrically distinct points but sampled dis-
crete grids set in advance; thus, it should still be regarded 
as grid space. This similarity shows the decisions on state 
lattices are made by searching a path on the graph, which 
is similar to the decisions in the topological space. There 
are many specific path planning methods on the state lat-
tice [67–73]. There has been much research on this type 
of decision process and thus is considered to be reliable. 
However, sampling in space causes accuracy reduction 
and information loss in the constructed driving space. 
Moreover, the generated sectional-continuous path is not 
as smooth as a single curve; therefore, the driving experi-
ence is not as comfortable as the path of a human driver.

3.1.2 � Rule‑Based Decision Method in the Feature Space

In the feature space, the space boundary formula, position, 
shape, and speed of obstacles are the decision inputs.

Rule-based behavior planning is usually based on the 
feature space. Behavior planning finds the best behavior 
among a finite number of possible behaviors [74–77], such 
as vehicle following, lane changing, merging, turning, etc. 
In existing behavior planning research, the road boundary 
and lanes are the essential inputs; for objects, usually only 
vehicles are considered. However, in environment percep-
tion research, there are typically many types of objects 
in the feature space; for example, there are eight types of 
objects in the research of Prabhakar et al. [78]. Objects 
such as traffic signs and traffic lights, as well as specific 

Table 1   Comparison of different types of space

Characteristics Grid space Feature space Topological space

Representation Grids Geometric features nodes and links
Mathematic characteristic Complete and discrete Sparse and continuous Sparse and continuous
Detection target Free space Boundary and obstacles Distinct places and their relationship
Construction method for robots Calculate occupancy probability Detect geometric features Detect geometric features
Construction method for AVs Calculate occupancy probability Road boundary detection; lane 

detection; object detection
–
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vehicle classifications (trucks, buses, etc.), are not well 
considered in the current behavior planning researches.

There is also much research on path planning in the 
feature space. Ziegler et al. [79] represented obstacles 
with polygons and then predicted their moving paths X(t) 
and finally achieved path planning Xpred, j(t), as shown in 
Fig. 10. Brechtel et al. [80] searched among many continu-
ous trajectories in the feature space, which is also a typical 
method for trajectory planning. In feature space, the space 
boundary and obstacle information are the constraints for 
the optimization problem of path planning. There are many 
models of path planning in feature space, such as clothoid 
[81, 82], Bézier line [83, 84], spline [85, 86], etc. These 
methods focus on searching for a smooth, collision-free 
path. However, the semantic information provided by fea-
ture space is usually not fully considered.

3.2 � Learning‑Based Decision Methods

Machine learning is widely used in the decision layer of 
AVs. Some researchers have used supervised learning to 
realize end-to-end driving, which is usually based on deep 
learning on images or LiDAR clouds. Other researchers 
have used reinforcement learning to make driving deci-
sions. In addition, combining learning-based and rule-
based methods is also an important research area.

3.2.1 � The Driving Space in the End‑to‑End Driving Decision

In 1989, Pomerleau [87] used a simple neural network 
with one hidden layer to realize the end-to-end prediction 
of steering angle. This was considered to be pioneering in 
end-to-end autonomous driving.

With the development of deep learning, a convolutional 
neural network (CNN) was applied in end-to-end driving. 
CNN has better performance in feature extraction than sim-
ple networks and is therefore better for end-to-end driving. 
Bojarski et al. [88] realized end-to-end control from image 
input to steering angle control, which made end-to-end driv-
ing another new research hotspot [89, 90]. In end-to-end 
driving, control signals are directly predicted from sensor 
input, while environment perception and space description 
are implemented in the neural network. Bojarski et al. [88] 
visualized the CNN weights, as shown in Fig. 11. It can be 
seen that CNN extracted the driving space (road boundary 
in this example); however, the driving space is not explicit 
and difficult to appropriately optimize.

End-to-end driving has attracted researchers thanks to its 
novelty and simplicity. There is no need to remodel the envi-
ronment and set complex control rules in this framework. 
However, problems arise with this simplicity. The system 
is highly integrated. The driving space is not an intermedi-
ate result of environment perception in the rule-based deci-
sion and is therefore difficult to be appropriately optimized. 
Moreover, since the neural network output is uncertain, there 
is no guarantee that the end-to-end output is reliable and 
safe in any conditions, especially in unfamiliar scenarios 
outside the training set. These problems may be solved with 
large-scale dataset and deeper neural networks. Future devel-
opment of computational ability will support this method 
better. However, with current computational ability and data-
sets, the combination of end-to-end driving and rule-based 
methods is more reliable.

3.2.2 � The Driving Space in the Reinforcement Learning 
Decision

The basic idea of reinforcement learning is to generate a 
control policy by adjusting actions according to environ-
ment–reward feedback. This framework is used in AV 

Fig. 8   Path planning in the grid space [65]

Fig. 9   Rule-based path planning on state lattices Fig. 10   Rule-based decision in the feature space [79]
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research and many other research areas. Markov decision 
is the basis of reinforcement learning and actions optimized 
by environment input. Therefore, it caters to the percep-
tion–decision framework of AV technologies.

In AV applications, reinforcement learning is similar to 
a human driver’s decision method. Firstly, the driving space 
is modeled with the road boundary, traffic lanes, position, 
speed, and acceleration of other vehicles in the feature space. 
Secondly, actions are defined as discrete behavior decisions 
[91, 92] (lane changing, going straight, turning, etc.) or con-
tinuous control signal outputs [93, 94] (steering angle and 
acceleration). Meanwhile, a reward is set according to the 
driving task, e.g., passing efficiency, collision, etc. Finally, 
the training process of trial and correction is carried out to 
optimize the driving policy. It is not suitable to apply grid 
space in reinforcement learning without combination with 
deep learning. As typical Markov decision process needs 
to describe the environment with a finite set of states and 
calculate the probability of transition between the states, it 
is difficult to apply grid space with large amount of data. As 
shown in Fig. 12 [91], this research is based on simulated 
feature space with the road boundary and vehicles as input, 
and behavior decisions as actions. Reinforcement learning 
relies on simulation since it needs to find the best driving 
policy by trial and error; therefore, it needs some adaption 
on real-road tests.

Deep reinforcement learning combines the perception 
ability of deep learning with the decision ability of reinforce-
ment learning. Therefore, deep reinforcement learning can 
adequately process higher dimensional or larger amount of 
data, e.g., the grid space or raw sensor information. Kashi-
kara [95] used the grid space as CNN input to realize deep 
reinforcement learning. However, the applied grid space had 
low resolution with only one car occupying one grid. This is 
different from the high-resolution perception result, but the 
idea of using grid space is still important. Some researchers 
have used raw sensor input and deep reinforcement learning 

[96, 97] with images or point clouds as input [97]. Liu et al. 
[98] further combined deep reinforcement learning with 
supervised deep learning to make driving decisions. Deep 
reinforcement learning provides more options than tradi-
tional reinforcement learning and thus has greater potential 
in AV applications.

3.2.3 � Combining Learning‑Based and Rule‑Based Decision 
Methods

Learning-based decision methods can avoid the complexity 
of setting rules for various scenarios; however, the trained 
network is a black box, which makes the output uncertain 
and uncontrollable, especially in unfamiliar scenarios. To 
improve safety, some researchers have combined learning-
based and rule-based methods to make decisions. Corre-
spondingly, the application of the driving space is also in 
combination form.

Xiong et al. [99] combined reinforcement learning, lane 
keeping, and collision avoidance by weighting their steering 
and acceleration control signal outputs, as shown in Fig. 13. 
The reinforcement learning directly used the sensor input; 
the other two tasks were carried out in the feature space, 
calculating control signals according to bias to lane center 
and positions of other vehicles. Hubschneider et al. [100] 
revised the trajectory of end-to-end learning with rule-based 
methods according to obstacle positions in the feature space. 
It can be found that the driving space is considered indepen-
dently in both learning-based and rule-based components of 
the combined decision.

3.3 � Summary of Driving Space Application in the AV 
Decision Layer

In summary, there are various forms of driving space appli-
cations in AV decisions. Table 2 presents the relationship 
between decision-making categories and driving space 
categories.

Fig. 11   Implicit driving space in end-to-end driving [88] Fig. 12   Reinforcement learning in the feature space [91]
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Except for end-to-end and some deep reinforcement 
learning decisions, most decision methods are based on the 
driving space reconstructed by the perception layer. Both 
the grid and feature space are applied in rule-based and 
learning-based decision methods.

Regarding rule-based decision methods, in the grid space, 
path planning is based on occupancy probability on grid map 
or by searching for a path in the sampled lattices. In the fea-
ture space, the road boundary and object information are the 
decision constraints for behavior planning or path planning. 
However, perception research and decision research are still 
not well integrated. For the grid space, research on percep-
tion focuses on improving accuracy through sensor fusion. 
However, the decision layer faces some problems rarely 
considered in perception research on grid space. Firstly, an 
obstacle is not described as a whole, and the computational 
cost is high. Secondly, for path planning on the sampled lat-
tices, the paths are only sectionally continuous and thus are 
not as accurate as one single curve. For the feature space, 
the decision layer is better suited to the perception results 
and is more similar to human decision-making; however, 
the semantic information is still not thoroughly considered. 
For both grid space and feature space, the decision layer 
is still not able to make proper requests to the perception 
layer regarding accuracy and safety, nor can it determine 
what it needs to detect or how it needs to express, and thus 
cannot guide the perception layer to meet the demand of 
decision-making.

Regarding learning-based decision methods, end-to-end 
driving decisions directly use raw sensor input, and there-
fore driving space is not constructed explicitly. However, 
this causes difficulty in appropriate optimization and the 
problem of uncertainty. Therefore, combining it with rule-
based methods in the explicit driving space is more reliable 
at this stage. In reinforcement learning, the feature space is 
better suited for application due to its simple description of 
the space; however, the existing research rely on simplified 
simulation without making full use of the constructed feature 
space. The grid space is applied in some conceptual deep 
reinforcement learning studies, but it still needs further study 

to cater to the constructed grid space by perception research. 
In learning-based methods, some research do not apply the 
explicit driving space, and some still depend on simplified 
simulations, and thus there is a gap between decision module 
and perception module. Learning-based decision methods 
need further development for the real applications; however, 
with the development of deep learning and computational 
ability, learning–based methods are promising. Future stud-
ies should follow the development of learning-based meth-
ods and focus on the application of driving space.

For the decision process combining rule-based methods 
and learning-based methods, each part applies to the driving 
space independently.

In summary, both rule-based and learning-based deci-
sions are not sufficiently consistent when using driving space 
construction results in the perception layer. In addition, the 
wealth of information provided by driving space construc-
tion is not fully utilized by the decision-making process. 
This situation is exacerbated by the lack of demand for driv-
ing space construction from the decision layer. In addition, 
the existing decision-making methods in local driving space 
focus on local driving decision yet lack integration with the 
global driving task and map information.

4 � Conclusions and Future Direction

Existing research on driving spaces form a complete 
forward path, from its construction to its applications in 
decision-making. Based on different types of space defi-
nitions, driving space construction technology has been 
improved with new sensor technology and sensor fusion 
algorithm; the decision technology uses the constructed 
driving space as its driving environment input. However, 
this chain still lacks integrity; the perception layer aims 
to increase accuracy, while research on decision focus on 
designing new decision policy but consider less on the 
characteristics of perception results. Therefore, the driv-
ing space construction results cannot support the decision-
making process solidly. In rule-based decision methods, 
those based on the grid space experience unnecessary and 
repeated calculations. The methods that rely on the feature 
space cannot take full advantage of the wealth of informa-
tion in the constructed driving space, especially semantic 
information. Learning-based methods are still in the stage 
of conceptual research; some of them do not need the driv-
ing space construction, and others use a simplified driv-
ing space in simulations. This results in a gap of driving 
space construction technologies between simulation and 
real world.

In future research, it will be important to combine the 
perception layer and decision layer more systematically 
based on a deeper understanding of the driving space. 

Sensor input

Lanes Self position Other 
vehicles

Reinforcement 
learning

Lane 
keeping

Collision 
avoiding

Steering and 
acceleration control

Fig. 13   Example of the combination of learning-based and rule-based 
decisions
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Based on analyzing the decision demand on accuracy and 
safety, it is important to determine what the driving space 
should contain and how to define and construct a driving 
space, so as to reduce the existing gap between percep-
tion and decision. This is of great significance for future 
research on the driving space.
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