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Abstract
Lithium-ion (Li-ion) cells degrade after repeated cycling and the cell capacity fades while its resistance increases. Degra-
dation of Li-ion cells is caused by a variety of physical and chemical mechanisms and it is strongly influenced by factors 
including the electrode materials used, the working conditions and the battery temperature. At present, charging voltage 
curve analysis methods are widely used in studies of battery characteristics and the constant current charging voltage 
curves can be used to analyze battery aging mechanisms and estimate a battery’s state of health (SOH) via methods such as 
incremental capacity (IC) analysis. In this paper, a method to fit and analyze the charging voltage curve based on a neural 
network is proposed and is compared to the existing point counting method and the polynomial curve fitting method. The 
neuron parameters of the trained neural network model are used to analyze the battery capacity relative to the phase change 
reactions that occur inside the batteries. This method is suitable for different types of batteries and could be used in battery 
management systems for online battery modeling, analysis and diagnosis.
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1  Introduction

The energy crisis and environmental concerns have led to 
significant developments in electric vehicle technology and 
energy storage stations over the last few decades [1]. The Li-
ion battery is one of the most critical components for energy 
storage because of its high energy and power density, long 
lifetime, and lack of a memory effect [2, 3]. However, Li-ion 
cells degrade after repeated cycling [4]. The cell capacity 
fades and its resistance increases as a result, and this cell 
degradation affects the cell’s energy storage ability and its 
output power capability. To improve the performance and 
reliability of the battery system, it is necessary to develop an 
appropriate battery management system (BMS). The BMS 
is required to estimate the battery state [5] and the battery’s 
state of health (SOH) in particular [6].

Online SOH monitoring methods have been studied using 
a variety of tools and algorithms, and the related works have 
been reviewed in Refs. [7, 8]. These online SOH estimation 
methods can generally be summarized as the open-loop, the 
online observer, and the closed-loop estimation method. The 
open-loop estimation method is usually based on a battery 
aging model such as the Arrhenius aging model. The empiri-
cal model can be used to estimate battery SOH evolution 
based on the battery’s working conditions, including the 
operating temperature, the charge/discharge rates, and the 
cutoff voltage [9–11]. The online observer method focuses 
on performance changes caused by aging and then estimates 
the battery’s SOH using state observers such as a Kalman 
filter [12], a particle filter [13], or a neural network [14]. The 
closed-loop estimation method considers both the open-loop 
and the observer-based estimation results, making the results 
more stable [15, 16].

To build a battery aging model and estimate the SOH 
precisely, the battery aging mechanism must be studied in 
depth [17]. Repeated cycling of Li-ion batteries reduces 
the battery capacity via a number of aging mechanisms. 
These aging mechanisms may be related to the cathode 
and anode materials, the electrolyte, the cell separator, 
the operating conditions, and the working environment. 
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The capacity fade rate may vary greatly under different 
aging mechanisms. For improved SOH estimation, diag-
nostics and battery health management, the battery capac-
ity retention should be estimated and the battery aging 
mechanism, which influences the battery capacity, should 
be analyzed in the BMS [18, 19]. Generally, battery aging 
can be caused by loss of lithium inventory (LLI) and active 
material (LAM), and incremental changes in resistance 
[19, 20]. Based on the aging mechanism analysis results, 
the battery SOH could be analyzed more effectively and 
the BMS could then optimize the battery charging and 
discharging conditions to extend battery life [21–23].

Common battery aging mechanism measurement methods 
such as X-ray diffraction (XRD) and scanning electron micros-
copy (SEM) cannot be used in real BMSs in EVs because these 
methods involve the destruction of the batteries [24]. The aging 
mechanism can be reflected by the voltage characteristics of a 
battery in its open-circuit  [17], charging [20], and discharg-
ing process [25]. These methods offer the potential to perform 
online battery diagnosis in the BMS [16]. In a real EV, the Li-
ion batteries are usually charged via a constant current charging 
method through an onboard charger. Therefore, the change in 
the charging voltage curve after aging can be used to analyze 
the aging mechanism either inside the batteries without destruc-
tion of those batteries. There are already some appropriate 
voltage characteristic fitting and analysis methods, including 
methods based on polynomial functions [26], sigmoid function 
fitting [27], or fittings of other complex functions [28]. While 
voltage curve fitting is important, the results also indicate that 
analysis of the aging mechanism is very important and it has 
not been introduced in the previous studies.

Usually, the charging voltage curve can be analyzed using 
methods including IC analysis and differential voltage (DV) 
analysis. More information can be detected from the result-
ing IC and/or DV curves than from the charge curves alone 
[29, 30]. Methods involving IC curves have been introduced 
and validated by Dubarry [19, 31], Weng [32], and Safari 
[33], among others. Methods involving DV curves were 
introduced by Bloom [34, 35], Honkura [36], and Dahn 
[37]. However, the IC and DV curves can be used to find 
the internal changes and the degradation mechanism of Li-
ion batteries during operation. IC curve analysis methods 
mainly focus on changes in the peaks and the valleys in the 
IC curve. However, to calculate both the IC curve and DV 
curve, voltage differentiation is needed, but it is usually dif-
ficult to obtain smooth and acceptable results.

Development of a reliable charging voltage curve 
analysis method for SOH monitoring of Li-ion batteries 
is focused to solve the above-mentioned problems. The 
contributions made in this paper are as follows:

(1)	 A novel method based on a neural network is developed 
to model the battery voltage characteristics.

(2)	 An IC curve calculation method is proposed based on 
the proposed neural network model, and the results 
show improved performance when compared with the 
traditional voltage differentiation method.

(3)	 Physical meanings related to the node parameters of the 
neural network are presented. Based on this theory, the 
aging mechanism and SOH of the battery are analyzed 
quantitatively.

When compared with the existing methods, the pro-
posed method can be applied to fit the voltage character-
istics with high stability. Changes in the voltage curve can 
be analyzed quantitatively to determine the aging mecha-
nism and thus estimate the battery’s SOH. The proposed 
method is suitable for different battery types and can be 
used in the BMS for online battery modeling, analysis, 
and diagnostics.

It should be noted that this paper does not focus on the 
battery aging mechanism or the battery capacity loss char-
acteristics versus the number of cycles. There are many 
factors and mechanisms that cause battery aging; this 
study primarily used the charging voltage curves during 
cell aging to investigate the aging mechanism via charging 
voltage curve analysis.

In Sect. 2, the experimental analysis of a commercial 
Li-ion cell is briefly introduced. In Sect. 3, the charging 
voltage curve and the IC curve of this cell are analyzed 
using the point counting method, the polynomial curve 
fitting method, and the proposed method based on the 
neural network model. The neural network takes the bat-
tery voltage as the input variable and the battery capac-
ity as the output variable, and the neural network model 
is then trained based on the charging voltage curve. The 
fitting results, i.e., the parameters for each node in the 
trained neural network model, are then analyzed, and 
the IC curves can be calculated from the neural network 
model. A comparison, an analysis, and a discussion of the 
above methods are then presented in Sect. 4. Based on 
the neural network and the IC curve, the voltage plateaus 
related to the internal phase transformation reactions can 
be analyzed qualitatively using the node parameters. Then, 
based on the changes in the node parameters, the aging 
mechanism can be analyzed. Finally, the results from the 
proposed method are compared with the results from the 
traditional charging voltage curve analysis methods. Sec-
tion 5 presents the conclusions drawn from the work.

2 � Battery Experiment

Commercial prismatic Li-ion cells were tested in this work. 
The cathode active material in these cells was LiFePO4 
(LFP), and the anode active material was graphite. The 
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nominal cell capacity according to the manufacturer is 6.5 
A∙h. This capacity value is used as the reference capacity 
to calculate the current rates (C-rates).

During the aging tests, the Li-ion cell was charged at 
1 C and discharged at 2 C at a temperature of 50 °C. The 
cell charge cutoff voltage was 3.65 V, and the discharge 
cutoff voltage was 2.00 V. After every 90 cycles, a battery 
standard capacity test was conducted at room temperature 
(25 °C). The cell was fully charged by constant current 
charging of 1/2 C to the charge cutoff voltage followed 
by constant voltage charging until the charge current 
decreased to 1/20 C; then, the battery was fully discharged 
by constant current discharging at 1 C to the discharge 
cutoff voltage. The battery test procedure is illustrated in 
Fig. 1.

All charging and discharging tests were conducted using 
an eight-channel, UBT 100-020-8-type battery test bench 
(Digatron), which has a current range of − 100 to 100 A and 

a voltage range of 0–20 V. The voltage measurement accu-
racy is 1 mV. The battery test equipment is shown in Fig. 2.

3 � Results and Charging Voltage Curve 
Analysis

After 540 cycles, the battery capacity faded to approxi-
mately 90% of its initial capacity. The 1/2 C constant cur-
rent charging voltage curves obtained from the standard 
capacity tests after various numbers of cycles are shown 
in Fig. 3. During the constant current charging process, the 
cell voltage increased monotonically. The figure shows that 
there are three main voltage plateaus in the charging volt-
age curves. These voltage plateaus are mainly considered 
to be related to the phase transformation reactions of the 
Li-ion cell. The figure also clearly shows that the charging 
voltage curve changes significantly as the battery capacity 
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fades. This change mainly occurs at the end of the constant 
current charging process, i.e., in the high state-of-charge 
(SOC) region, where the 3.40 V plateau gradually vanishes. 
In a real EV, the Li-ion batteries are usually charged with 
a constant current charging method through a controllable 
charger, but are discharged using a dynamic discharging 
current based on the driving cycle and the driver’s driving 
habits. The charging voltage curve could therefore possibly 
be obtained by the BMS and would be a better choice for use 
in analysis of the aging mechanism. In the next part of this 
paper, the 1/2C charging voltage curve is used to perform 
the analysis and modeling.

The IC curves (dQ/dV) can be derived from the battery 
charging voltage curves. After differentiating, the voltage 
plateaus in the charging voltage curve can be transformed 
into clearly identifiable peaks in the IC curves. Therefore, 
the aging mechanism analysis based on the IC curves is sim-
pler and more sensitive than that derived from the original 
voltage curves. The calculation of the IC curves is difficult 
and requires further discussion.

3.1 � Incremental Capacity Analysis Based 
on the Point Counting Method

Numerical derivation of the charging voltage curve to obtain 
the IC curve is the most intuitive method for this analysis. To 
reduce the number of calculations and smoothen the results, 
a method based on the probability density function (PDF) 
was introduced in our previous work [38]. The PDF method 
needs to use the complete charging voltage curve to calcu-
late the IC curve, and it can only be used to calculate the IC 
curve after the charging process is finished. For the online 
calculations to be performed in the BMS, an equivalent point 
counting method is used to calculate the IC curve here.

For the LFP cell under test in this work, the terminal volt-
age increases from approximately 2.80 V (depending on 
the depth of discharge) to 3.65 V during the constant cur-
rent charging process. This voltage range can be divided into 

several voltage intervals. During the charging process, the bat-
tery voltage can be measured and the number of voltage points 
within each interval can be counted. In general, in a real EV, 
the constant current charging is adopted, while the voltage 
sampling frequency for the BMS is constant, usually approxi-
mately 1 Hz [5, 39]. The charged battery capacity is propor-
tional to the number of sampling points during the charging 
process. This means that when the voltage increases at a 
higher rate, fewer points are present within the corresponding 
voltage interval, but when the voltage increases at a lower rate 
(i.e., when a voltage plateau occurs), more points are present 
within the corresponding voltage interval. Therefore, the IC 
curve (the dQ/dV–V curve) can be calculated using Eq. (1):

where n is the number of voltage points counted in the corre-
sponding voltage interval, I is the constant charging current, 
f is the sampling frequency, ΔV is the width of each voltage 
interval, V is the voltage and Q is the capacity. The choice 
of ΔV influences the calculated results for the IC curve. The 
point counting method can calculate the IC curve during the 
charging process using a simple calculation process, and this 
method could be easily implemented in a real BMS. The IC 
curves for a fresh cell calculated using the point counting 
method for different ΔV values are shown in Fig. 4.

The figure shows that for a small value of ΔV (e.g., 
1 mV), the IC curve varies significantly. The IC curve in 
this case can barely be used to analyze the aging mecha-
nism because of the obvious noise in the results. In contrast, 
with a large value of ΔV (e.g., 10 mV), the IC curve is too 
smooth. In this case, the IC peak at the voltage of 3.40 V 
almost vanishes, so this IC curve cannot be used to analyze 
the aging mechanism either. Therefore, a ΔV value of 5 mV 
is selected in the following part of this paper.

Additionally, there are three obvious peaks in the IC curves 
shown in Fig. 4 that correspond to the three voltage plateaus 
in the charging voltage curves. According to the electrochemi-
cal mechanism of LFP batteries, as a result of the insertion 
and extraction of the lithium ions, the cathode material gradu-
ally transforms from LiFePO4 into FePO4 or vice versa [40]. 
The cathode primarily goes through this FePO4–LiFePO4 
phase transformation reaction during the battery charging 
and discharging processes. This cathode phase transforma-
tion reaction can be marked as II [31]. At the anode, with the 
insertion and extraction of the lithium ions, the anode material 
gradually transforms from C into LiC6 or vice versa. There 
are three obvious voltage plateaus, each represents a phase 
transformation process of the graphite anode, and the three 
corresponding phase transformation processes are denoted by 
①, ②, and ⑤ [41]. Therefore, the three IC peaks, i.e., the three 
obvious voltage plateaus on the charging voltage curve for the 
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entire cell, represent the three-phase transformation processes 
of the graphite anode and the single-phase transformation pro-
cess of the cathode. The three IC peaks can be labeled ①*II, 
②*II, and ⑤*II, as shown in Figs. 3 and 4.

It can easily be found that the area under each peak 
in the IC curve represents the capacity involved in the 
related reaction. The changes in the IC peaks represent the 
changes in the capacity related to the corresponding phase 
transformation reactions. The battery aging mechanism 
can thus be identified by analyzing the changes in each 
peak that appears with increasing cycle numbers.

3.2 � Incremental Capacity Analysis Based 
on the Polynomial Curve Fitting Method

The point counting method is basically a numerical method 
that is used to obtain the IC curve. Because of the inevitable 

voltage measurement errors and noise, the IC curve results 
are usually very noisy when calculated directly with the 
point counting method. The choice of ΔV could therefore 
actually be considered to be a curve smoothing process. This 
smoothing process, however, may cause information loss. 
To solve these problems, some researchers have proposed 
methods based on curve fitting, such as the polynomial curve 
fitting method [42].

Figures 3 and 4 show that for the cell under test in this 
work, the cell voltage plateaus are mainly located between 
3.20 and 3.45 V. Therefore, the charging voltage curve 
within this voltage interval is used to perform the polyno-
mial curve fitting process. The fitting function is shown in 
Eq. (2):

where n is the polynomial order number. The independent 
variable in this case is the capacity Q, and the dependent 
variable is the voltage V.

Then, based on the fitting results, the IC curve can be 
derived using Eq. (3):

The polynomial order n affects the IC curve results. If the 
polynomial order is low, the battery voltage curve cannot 
be described accurately, which causes huge errors in the IC 
curve; however, if the polynomial order is high, it may bring 
overfitting problems that cause unreasonable fluctuations in 
the IC curve. Therefore, a 16th order polynomial is selected 
in this paper.

A comparison of the experimental results and the fitting 
results for the fresh cell is shown in Fig. 5a, and the calcu-
lated IC curve is shown in Fig. 5b. The IC curve result is 
much smoother than the IC curve that was derived using 
the point counting method shown in Fig. 4. However, the 
calculations required for the polynomial curve fitting method 
are complex. In addition, the fitting results do not corre-
spond directly to the related electrochemical mechanism as 
the capacities related to the IC peaks could not be obtained 
easily.

3.3 � Charging Voltage Curve Analysis Based 
on Neural Networks

In general, IC analysis involves identifying the voltage 
plateaus (i.e., the phase transformation reactions) of the 
charging voltage curve and finding the capacities related 
to these voltage plateaus (i.e., the capacities related to the 
corresponding phase transformation reactions). Therefore, 
when the curve fitting method is adopted, an appropriate 
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model that can express the voltage plateaus and the related 
capacities must be selected. In this section, a specific neural 
network model will be used to fit the battery charging volt-
age curves.

The neural network is widely used as a machine learn-
ing method because it is easy to be realized and simulated 
nonlinearly, and these networks have been used previously 
in battery management applications [14, 43, 44], particularly 
for estimation of battery issues involving aging. For exam-
ple, a neural network method could be used to estimate the 
battery’s SOH [45, 46], to estimate the battery’s SOC during 
the degradation process [47] and to predict the remaining 
useful life of the battery [48].

Usually, the neural network is regarded as a “black box” 
model, which means that its internal parameters and processes 
are considered to be meaningless and to have little physical 

significance. The neural network is trained using large amounts 
of input and output data so that it is able to approximate vari-
ous linear and nonlinear functions and fit the data precisely. 
The neural network parameters were not analyzed in the pre-
vious studies noted above. In this paper, the node parameters 
of the trained neural network model can reflect the capacity 
involved at each of the voltage plateaus directly.

As shown in Fig. 6a, a neural network usually contains at 
least three layers, comprising an input layer, a hidden layer, 
and an output layer. The hidden layer is usually formed using 
several nodes or, theoretically speaking, neurons. As shown 
in Fig. 6a, a single input, single output, and single hidden 
layer neural network model is proposed that takes the volt-
age as its input and the capacity as its output. This model is 
quite different from common models such as the polynomial 
model introduced in Sect. 3.2, which usually consider the 
battery capacity as the input and the voltage as the output.

A “neuron” in the hidden layer is a computational node 
that takes the input V and a “+ 1” intercept term and outputs 
hw,b as per Eq. (4):

where w and b are the node parameters that must be fitted, 
and the function f is called the activation function. In this 
paper, the activation function is chosen to be the commonly 
used sigmoid function given by Eq. (5):

The derivative of the sigmoid function then follows Eq. (6):

The shape of the sigmoid function is shown in Fig. 6b, and 
the derivative of the sigmoid function is shown in Fig. 6c. The 
figures show that the sigmoid function presents a voltage pla-
teau when its input is the voltage and its output is the capacity, 
i.e., Q = f(V). The output (capacity) increases from 0 to 1 as the 
voltage increases. Additionally, the derivative of the sigmoid 
function shows a peak that corresponds to the voltage plateau. 
The area under this peak is 1.

The output layer would then be set to be the weighted sum 
of the results from the neurons:

where w(1)

i
 represents the weight from the input layer to the 

ith neuron, and w(2)

i
 represents the weight from the ith neuron 

to the output layer.
The charging voltage curve can then be fitted based on 

the neural network model described using Eqs. (4)–(7). 
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Here, voltage V is selected as the input, capacity Q as the 
output, and five nodes in the hidden layer in the neural net-
work model. A larger number of nodes in the hidden layer 
may improve the model’s accuracy but would significantly 
complicate the calculations, while fewer nodes would 
affect the fitting result error. The fitting results for a fresh 
cell are compared with the corresponding experimental 
results in Fig. 7a, and the same comparison of results for 
an aged cell is shown in Fig. 7b.

Because this model takes the voltage as its input and the 
capacity as its output, Fig. 7a, b is plotted with the volt-
age as the x-axis and the capacity as the y-axis. It should 
be noted that the experimental data shown in Fig. 7a and 
those shown in Fig. 5a are the same data, and only the 
x-axis and the y-axis have been interchanged. It can also 
be seen that the charging voltage curves were well fitted 
because of the excellent generalization ability of the neural 
network.

Based on the fitting results, the IC curve (dQ/dV–V 
curve) could easily be calculated using Eq. (8). The IC 
curve can be considered to be the sum of dQ/dV for each 
node from the neural network model:

The derived IC curve for the fresh cell is shown in 
Fig. 7c, and the corresponding curve for the aged cell is 
shown in Fig. 7d. The calculated IC curves are smooth, 
and the complete IC curve can be separated directly into 
several dQ/dV curves based on the parameters for each 
node. Every node shown reflects a voltage plateau and 
the capacity related to this voltage plateau. Therefore, the 
capacity related to each voltage plateau can be derived 
quantitatively to enable aging mechanism identification.

(8)dQ
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dh
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4 � Discussion of the Neural Network Method

4.1 � Comparison of IC Curves Derived by Different 
Methods

The IC curves for a fresh cell that were derived using the 
different methods are compared in Fig. 8. In general, the IC 
curves calculated using the three methods described above 
show similar shapes. The three IC peaks can be found clearly 
in all the results above. The IC curve derived using the point 
counting method appears coarse. In addition, it is calculated 
directly from the experimental data, so this curve could be 
regarded as a reference IC result. The IC curve derived via 
the polynomial curve fitting method appears smoother, 
though there are some unreasonable fluctuations that may 
be caused by overfitting. The IC curve that was derived using 
the neural network method proposed in this paper appears 
to more closely approximate the IC curve derived using the 
point counting method, and the results are smoother and do 
not show the overfitting problem.

4.2 � Battery Aging Mechanism

The IC curves calculated using different methods for cells 
after varying numbers of cycles are shown in Fig. 9. The 
results show that the IC curves derived by different methods 
show the same tendency for change. For the cell under test 
in this paper, all the peaks in the IC curve move slightly to 
the right, which means the internal cell resistance does not 
increase significantly with increasing numbers of cycles. 
Additionally, the heights of all the peaks decrease, which 
means that there is LAM inside the cell, which mainly com-
prises loss of the anode material. The results also show that 
the peak ①*II decreases more significantly than the other 
peaks, which means that LLI is occurring inside the LFP 
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cell, and this may be the main aging mechanism. Results in 
the literature [31, 33, 49] also led to the same conclusion 
about the aging mechanism of commercial LFP cells based 
on aging experiment results, indicating that LLI is the main 
mechanism behind the fade in the LFP cell capacity and that 
the LAM of the anode may also affect the capacity.

4.3 � Quantitative Analysis of Charging Voltage 
Curve

The IC analysis usually involves calculating the IC curves 
and comparing the location and height of each peak qualita-
tively. When derived using the numerical derivation method 
or the polynomial curve fitting method, the heights of the 
IC peaks can be used to analyze the battery aging quantita-
tively, but the heights of the peaks have little physical mean-
ing. The capacities related to the peaks that represent the 
Li-ions involved in the corresponding phase transformation 

reactions have clearer physical meanings and can thus be 
used to analyze the battery aging condition quantitatively.

As shown in Fig. 7c, d, when calculated based on the 
neural network model, the peaks of the IC curves can be 
separated into the sums of the dQ/dV curves for each node, 
as shown in Eq. (8). Then, based on the parameters for each 
node, the capacity related to each voltage plateau can be 
analyzed quantitatively.

Generally, the dQ/dV curve for a typical node in the neu-
ral network model presents symmetrical peaks, as shown in 
Fig. 6c and by Eq. (8). The shape of each peak is affected by 
w
(1)

1
 , while the location of each peak is calculated using the 

corresponding voltage plateau E0, which can be calculated 
using Eq. (9):

(9)E0,i = −
bi

w
(1)

i
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The area under each peak, i.e., the capacity related to the 
node, can then be calculated using Eq. (10):

In this paper, the nodes in the neural network model are 
sorted and labeled based on the central voltage E0 of the 
voltage plateau. Therefore, from Fig. 7, it can be found that 
Node 5 corresponds to the voltage plateau related to phase 
transformation reaction ①*II, while Nodes 3, 4 correspond 
to the voltage plateau related to phase transformation reac-
tion ②*II, and Node 1 corresponds to the voltage plateau 
related to phase transformation reaction ⑤*II. Therefore, the 

(10)Qi = w
(2)

i

IC curves do not need to be calculated since the capacities 
related to the voltage plateaus can be derived directly using 
Eq. (10) from the trained neural network model.

More specifically, the parameter w(2)

5
 from Node 5 of the 

neural network model is the capacity that corresponds to 
phase transformation reaction ①*II; the parameter w(2)

3
+w

(2)

4
 

from Nodes 3, 4 is the capacity that corresponds to phase 
transformation reaction ②*II; and the parameter w(2)

1
 from 

Node 1 is the capacity that corresponds to phase transforma-
tion reaction ⑤*II.

The capacity evolution corresponding to different nodes 
is illustrated in Fig. 10. The figure shows that as the cycle 
time increases, the total capacity related to each phase 
transformation reaction decreases, which represents the 
LAM occurring inside the cell. Additionally, the capacity 
related to phase transformation reaction ①*II decreases 
significantly, which represents the LLI occurring inside 
the cell, and it may be the main cause of the battery deg-
radation. The analysis result is the same as that derived 
from the IC analysis in Sect. 4.2.

Furthermore, the capacity fade for each node can be 
analyzed directly and quantitatively. The capacity corre-
sponding to reaction ①*II decreases rapidly during the first 
few dozen cycles and then gradually decreases slowly. The 
capacity fade is affected by the cycle time, which follows 
a simple t1/2 model, where the capacity usually fades with 
the degradation mechanism of LLI caused by continuous 
thickening of the solid electrolyte interface (SEI) film [10, 
18]. Additionally, the capacities corresponding to reac-
tions ②*II and ⑤*II show complex behavior with obvious 
noise and follow a linear decrement with increasing cycle 
time, which is usually caused by the LAM.

The parameters of each node from the trained neural 
network model can be used to describe the capacities cor-
responding to the voltage plateaus, which are also supposed 
to be related to the phase transformation reactions inside the 
cell. Therefore, this neural network model method could be 
used to analyze the battery aging mechanism quantitatively 
and diagnose the battery’s SOH.

4.4 � Brief Discussion of the Electrochemistry 
Mechanism Behind the Neural Network

The above analysis shows that the neural network model 
proposed in this study is not a “black box” model and that 
the model parameters are considered with respect to certain 
physical meanings. This section provides a brief discussion 
of the electrical mechanism involved.

In most Li-ion cells, multiple electrochemical reactions 
occur inside the batteries. Verbrugge [50] developed theo-
retical equations to model the electrode voltage for multi-
ple electrochemical reactions; the results were applied to a 
lithium–silicon (Li–Si) system and showed excellent results. 

(a)

(b)

3.25 3.3 3.35 3.4 3.45

Voltage / V

0

50

100

150

200

250

300 Neural Network

Point Counting

Polynomial Fit

IC
 / 

A
·h

·V
-1

300

Voltage / V

250

200

150

100

50

0

3.25 3.30 3.35 3.40 3.45

Neural Network
Point Counting
Polynomial Fit

3.34 3.35 3.36 3.37

Voltage / V

0

50

100

150

200

250

300 Neural Network

Point Counting

Polynomial Fit

IC
 / 

A
·h

·V
-1

300

Voltage / V

250

200

150

100

50

0

3.34 3.35 3.36 3.37

Neural Network
Point Counting
Polynomial Fit

Fig. 8   Comparison of IC curves for fresh cell calculated via different 
methods. a Complete IC curve and b magnified section of the derived 
IC curve



272	 X. Han et al.

1 3

Usually, the chemical potential describes the state of the 
electrode/cell as determined by the concentrations of the 
ionic species related to the chemical reactions. For a typical 
lithium insertion/deinsertion reaction, the related chemi-
cal potential E follows the well-known Nernst equation, as 
shown in Eq. (11):

where E0 is the reference potential of the electrode (spe-
cifically, the standard potential of the electrode), F denotes 
Faraday’s constant, R is the universal gas constant and T 
is the absolute temperature. Additionally, x represents the 
fraction of the intercalated sites relative to the available sites 

(11)E = E0 +
RT

nF
ln

(

X − x

x

)

in the host structure and X–x represents the fraction of the 
vacant host sites. E represents the electrode potential.

In most cases with low charge/discharge rates, the tempera-
ture T, R, and F could be considered to be constants, and then, 
a constant k could be defined as shown in Eq. (12):

Therefore, Eq. (11) could be written as Eq. (13):

Furthermore, x can be calculated as shown in Eq. (14):

(12)k =
RT

nF

(13)E = E0 + k ln
(

X − x

x

)
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It can be seen that Eq. (14) has the same form as the sig-
moid function shown in Eq. (5).

Because more than one reaction usually occurs in the elec-
trode, then according to Eq. (14), the xi related to the potential 
E for the ith reaction can be described as shown in Eq. (15):

From a macroscopic perspective, the capacity qi that is 
related to a specific reaction is proportional to x, which means 
that qi can be given by Eq. (16):

(14)x =
X

1 + e
E−E0

k

(15)xi =
Xi

1 + e

E−E0,i

ki

where Qi represents the maximum capacity corresponding 
to the ith reaction and qi represents the capacity state of the 
ith reaction of electrode potential E.

The total capacity q is thus dependent on the potential E 
and can be calculated as the sum of the capacities related to 
the multiple electrochemical reactions as shown in Eq. (17):

with

A function can thus be built as shown in Eq.  (18) to 
describe the electrode voltage with the multiple electro-
chemical reactions. The voltage E is considered to be the 
independent variable, and it is used to calculate the capac-
ity q. It can be seen from the above that Eq. (18) is math-
ematically equivalent to the neural network model described 
using Eqs. (4)–(10). In addition, the capacity related to the 
electrochemical reaction can be calculated using Eq. (10). 
This result shows that although the neural network method 
proposed in this study is intended to determine the capacities 
related to the voltage plateaus, it could provide a theoretical 
basis for the electrochemistry mechanism involved.

In this study, it is found that the proposed neural network 
method could be applied to the cell voltage directly to obtain 
the capacities related to the voltage plateaus and to ana-
lyze the aging mechanism. In theoretical terms, Eq. (18), is 
only suitable to describe the electrode potential. Therefore, 
it would be better to model the potentials of the anode and 
the cathode separately. However, this would complicate the 
calculations, and the reference electrode would have to be 
used to obtain the potential of each electrode, which is dif-
ficult for the real BMS in an EV to perform.

5 � Conclusions

In this paper, several constant current charging voltage curve 
analysis methods, including the point counting method, 
the polynomial curve fitting method, and a proposed new 
method based on a neural network model, are compared and 
analyzed for the purposes of Li-ion cell aging mechanism 
analysis and battery SOH estimation in a BMS in an EV.

The comparison results show that the IC curves derived 
from the point counting method appear coarse, but the cal-
culation involved is simple. The IC curves derived from the 
polynomial curve fitting method appear smooth, but the 

(16)qi =
Qi

1 + e

E−E0,i

ki
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∑

qi =
∑ Qi

1 + e

E−E0,i

ki
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calculation involved is complex and there may also be over-
fitting problems. The IC curves that were derived from the 
proposed neural network model-based method enabled bet-
ter analysis of the charging voltage curve, and the IC results 
appear to approximate the numerical derivation result more 
closely, while the curve shape is smooth.

In addition, the results show that the node parameters 
of the neural network have certain physical meanings. The 
capacities related to the voltage plateaus that correspond 
to different phase transformation reactions can easily be 
derived from the node parameters of the trained neural 
network model. The experimental results show that, based 
on the neural network model, the battery’s aging mecha-
nism and SOH can be analyzed quantitatively. The electro-
chemical mechanism of the neural network model is also 
discussed.

This method is still at the preliminary stage. Different 
electrochemical reactions occur in the positive electrode 
and the negative electrode inside the battery. To improve 
the model’s precision and interpretability, the potentials of 
the positive electrode and the negative electrode should be 
modeled separately to obtain an improved analysis of the 
entire cell charging voltage curve for battery aging mecha-
nism analysis and SOH diagnostic applications.
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